02_jwst/main.rs
1#![doc = include_str!("./README.md")]
2extern crate log;
3extern crate nyx_space as nyx;
4extern crate pretty_env_logger as pel;
5
6use anise::{
7 almanac::metaload::MetaFile,
8 constants::{
9 celestial_objects::{JUPITER_BARYCENTER, MOON, SUN},
10 frames::{EARTH_J2000, MOON_J2000},
11 },
12};
13use hifitime::{TimeUnits, Unit};
14use nyx::{
15 cosmic::{eclipse::EclipseLocator, Frame, Mass, MetaAlmanac, SRPData},
16 dynamics::{guidance::LocalFrame, OrbitalDynamics, SolarPressure, SpacecraftDynamics},
17 io::ExportCfg,
18 mc::MonteCarlo,
19 od::{prelude::KalmanVariant, process::SpacecraftUncertainty, SpacecraftKalmanOD},
20 propagators::Propagator,
21 Spacecraft, State,
22};
23
24use std::{collections::BTreeMap, error::Error, sync::Arc};
25
26fn main() -> Result<(), Box<dyn Error>> {
27 pel::init();
28 // Dynamics models require planetary constants and ephemerides to be defined.
29 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
31
32 // Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
33 // Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
34 let mut latest_jwst_ephem = MetaFile {
35 uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
36 crc32: None,
37 };
38 latest_jwst_ephem.process(true)?;
39
40 // Load this ephem in the general Almanac we're using for this analysis.
41 let almanac = Arc::new(
42 MetaAlmanac::latest()
43 .map_err(Box::new)?
44 .load_from_metafile(latest_jwst_ephem, true)?,
45 );
46
47 // By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
48 // in the BSP. We need this ID in order to query the ephemeris.
49 const JWST_NAIF_ID: i32 = -170;
50 // Let's build a frame in the J2000 orientation centered on the JWST.
51 const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);
52
53 // Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
54 let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
55 println!("JWST defined from {earliest_epoch} to {latest_epoch}");
56 // Fetch the state, printing it in the Earth J2000 frame.
57 let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
58 println!("{jwst_orbit:x}");
59
60 // Build the spacecraft
61 // SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
62 // SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
63 let jwst = Spacecraft::builder()
64 .orbit(jwst_orbit)
65 .srp(SRPData {
66 area_m2: 21.197 * 14.162,
67 coeff_reflectivity: 1.56,
68 })
69 .mass(Mass::from_dry_mass(6200.0))
70 .build();
71
72 // Build up the spacecraft uncertainty builder.
73 // We can use the spacecraft uncertainty structure to build this up.
74 // We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
75 // in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
76 // Nyx can also estimate the deviation of the spacecraft parameters.
77 let jwst_uncertainty = SpacecraftUncertainty::builder()
78 .nominal(jwst)
79 .frame(LocalFrame::RIC)
80 .x_km(0.5)
81 .y_km(0.3)
82 .z_km(1.5)
83 .vx_km_s(1e-4)
84 .vy_km_s(0.6e-3)
85 .vz_km_s(3e-3)
86 .build();
87
88 println!("{jwst_uncertainty}");
89
90 // Build the Kalman filter estimate.
91 // Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
92 // but this approach requires quite a bit more boilerplate code.
93 let jwst_estimate = jwst_uncertainty.to_estimate()?;
94
95 // Set up the spacecraft dynamics.
96 // We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
97 // We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.
98
99 let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
100 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102 // Finalize setting up the dynamics.
103 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
104
105 // Build the propagator set up to use for the whole analysis.
106 let setup = Propagator::default(dynamics);
107
108 // All of the analysis will use this duration.
109 let prediction_duration = 6.5 * Unit::Day;
110
111 // === Covariance mapping ===
112 // For the covariance mapping / prediction, we'll use the common orbit determination approach.
113 // This is done by setting up a spacecraft Kalman filter OD process, and predicting for the analysis duration.
114
115 // Build the propagation instance for the OD process.
116 let odp = SpacecraftKalmanOD::new(
117 setup.clone(),
118 KalmanVariant::DeviationTracking,
119 None,
120 BTreeMap::new(),
121 almanac.clone(),
122 );
123
124 // The prediction step is 1 minute by default, configured in the OD process, i.e. how often we want to know the covariance.
125 assert_eq!(odp.max_step, 1_i64.minutes());
126 // Finally, predict, and export the trajectory with covariance to a parquet file.
127 let od_sol = odp.predict_for(jwst_estimate, prediction_duration)?;
128 od_sol.to_parquet("./02_jwst_covar_map.parquet", ExportCfg::default())?;
129
130 // === Monte Carlo framework ===
131 // Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.
132
133 let my_mc = MonteCarlo::new(
134 jwst, // Nominal state
135 jwst_estimate.to_random_variable()?,
136 "02_jwst".to_string(), // Scenario name
137 None, // No specific seed specified, so one will be drawn from the computer's entropy.
138 );
139
140 let num_runs = 5_000;
141 let rslts = my_mc.run_until_epoch(
142 setup,
143 almanac.clone(),
144 jwst.epoch() + prediction_duration,
145 num_runs,
146 );
147
148 assert_eq!(rslts.runs.len(), num_runs);
149 // Finally, export these results, computing the eclipse percentage for all of these results.
150
151 // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
152 let eclipse_loc = EclipseLocator::cislunar(almanac.clone());
153 let umbra_event = eclipse_loc.to_umbra_event();
154 let penumbra_event = eclipse_loc.to_penumbra_event();
155
156 rslts.to_parquet(
157 "02_jwst_monte_carlo.parquet",
158 Some(vec![&umbra_event, &penumbra_event]),
159 ExportCfg::default(),
160 almanac,
161 )?;
162
163 Ok(())
164}