03_geo_drift/drift.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
#![doc = include_str!("./README.md")]
extern crate log;
extern crate nyx_space as nyx;
extern crate pretty_env_logger as pel;
use anise::{
almanac::metaload::MetaFile,
constants::{
celestial_objects::{MOON, SUN},
frames::{EARTH_J2000, IAU_EARTH_FRAME, MOON_J2000},
},
};
use hifitime::{Epoch, Unit};
use nyx::{
cosmic::{eclipse::EclipseLocator, MetaAlmanac, Orbit, SrpConfig},
dynamics::{Harmonics, OrbitalDynamics, SolarPressure, SpacecraftDynamics},
io::{gravity::HarmonicsMem, ExportCfg},
propagators::Propagator,
Spacecraft, State,
};
use polars::{df, prelude::ParquetWriter};
use std::fs::File;
use std::{error::Error, sync::Arc};
fn main() -> Result<(), Box<dyn Error>> {
pel::init();
// Dynamics models require planetary constants and ephemerides to be defined.
// Let's start by grabbing those by using ANISE's latest MetaAlmanac.
// This will automatically download the DE440s planetary ephemeris,
// the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
// parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
// planetary constants kernels.
// For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
// Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
// references to many functions.
let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
// Define the orbit epoch
let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
// Define the orbit.
// First we need to fetch the Earth J2000 from information from the Almanac.
// This allows the frame to include the gravitational parameters and the shape of the Earth,
// defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
// by loading a different set of planetary constants.
let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
// Placing this GEO bird just above Colorado.
// In theory, the eccentricity is zero, but in practice, it's about 1e-5 to 1e-6 at best.
let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
// Print in in Keplerian form.
println!("{orbit:x}");
let state_bf = almanac.transform_to(orbit, IAU_EARTH_FRAME, None)?;
let (orig_lat_deg, orig_long_deg, orig_alt_km) = state_bf.latlongalt()?;
// Nyx is used for high fidelity propagation, not Keplerian propagation as above.
// Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
// models such as solar radiation pressure.
// Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
let sc = Spacecraft::builder()
.orbit(orbit)
.dry_mass_kg(9.60)
.srp(SrpConfig {
area_m2: 10e-4,
cr: 1.1,
})
.build();
println!("{sc:x}");
// Set up the spacecraft dynamics.
// Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
// The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
// We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
// We're using the JGM3 model here, which is the default in GMAT.
let mut jgm3_meta = MetaFile {
uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
};
// And let's download it if we don't have it yet.
jgm3_meta.process(true)?;
// Build the spherical harmonics.
// The harmonics must be computed in the body fixed frame.
// We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
let harmonics_21x21 = Harmonics::from_stor(
almanac.frame_from_uid(IAU_EARTH_FRAME)?,
HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
);
// Include the spherical harmonics into the orbital dynamics.
orbital_dyn.accel_models.push(harmonics_21x21);
// We define the solar radiation pressure, using the default solar flux and accounting only
// for the eclipsing caused by the Earth and Moon.
let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
// Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
// acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
println!("{dynamics}");
// Finally, let's propagate this orbit to the same epoch as above.
// The first returned value is the spacecraft state at the final epoch.
// The second value is the full trajectory where the step size is variable step used by the propagator.
let (future_sc, trajectory) = Propagator::default(dynamics)
.with(sc, almanac.clone())
.until_epoch_with_traj(epoch + Unit::Century * 0.03)?;
println!("=== High fidelity propagation ===");
println!(
"SMA changed by {:.3} km",
orbit.sma_km()? - future_sc.orbit.sma_km()?
);
println!(
"ECC changed by {:.6}",
orbit.ecc()? - future_sc.orbit.ecc()?
);
println!(
"INC changed by {:.3e} deg",
orbit.inc_deg()? - future_sc.orbit.inc_deg()?
);
println!(
"RAAN changed by {:.3} deg",
orbit.raan_deg()? - future_sc.orbit.raan_deg()?
);
println!(
"AOP changed by {:.3} deg",
orbit.aop_deg()? - future_sc.orbit.aop_deg()?
);
println!(
"TA changed by {:.3} deg",
orbit.ta_deg()? - future_sc.orbit.ta_deg()?
);
// We also have access to the full trajectory throughout the propagation.
println!("{trajectory}");
println!("Spacecraft params after 3 years without active control:\n{future_sc:x}");
// With the trajectory, let's build a few data products.
// 1. Export the trajectory as a parquet file, which includes the Keplerian orbital elements.
let analysis_step = Unit::Minute * 5;
trajectory.to_parquet(
"./03_geo_hf_prop.parquet",
Some(vec![
&EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
]),
ExportCfg::builder().step(analysis_step).build(),
almanac.clone(),
)?;
// 2. Compute the latitude, longitude, and altitude throughout the trajectory by rotating the spacecraft position into the Earth body fixed frame.
// We iterate over the trajectory, grabbing a state every two minutes.
let mut offset_s = vec![];
let mut epoch_str = vec![];
let mut longitude_deg = vec![];
let mut latitude_deg = vec![];
let mut altitude_km = vec![];
for state in trajectory.every(analysis_step) {
// Convert the GEO bird state into the body fixed frame, and keep track of its latitude, longitude, and altitude.
// These define the GEO stationkeeping box.
let this_epoch = state.epoch();
offset_s.push((this_epoch - orbit.epoch).to_seconds());
epoch_str.push(this_epoch.to_isoformat());
let state_bf = almanac.transform_to(state.orbit, IAU_EARTH_FRAME, None)?;
let (lat_deg, long_deg, alt_km) = state_bf.latlongalt()?;
longitude_deg.push(long_deg);
latitude_deg.push(lat_deg);
altitude_km.push(alt_km);
}
println!(
"Longitude changed by {:.3} deg -- Box is 0.1 deg E-W",
orig_long_deg - longitude_deg.last().unwrap()
);
println!(
"Latitude changed by {:.3} deg -- Box is 0.05 deg N-S",
orig_lat_deg - latitude_deg.last().unwrap()
);
println!(
"Altitude changed by {:.3} km -- Box is 30 km",
orig_alt_km - altitude_km.last().unwrap()
);
// Build the station keeping data frame.
let mut sk_df = df!(
"Offset (s)" => offset_s.clone(),
"Epoch (UTC)" => epoch_str.clone(),
"Longitude E-W (deg)" => longitude_deg,
"Latitude N-S (deg)" => latitude_deg,
"Altitude (km)" => altitude_km,
)?;
// Create a file to write the Parquet to
let file = File::create("./03_geo_lla.parquet").expect("Could not create file");
// Create a ParquetWriter and write the DataFrame to the file
ParquetWriter::new(file).finish(&mut sk_df)?;
Ok(())
}