nyx_space/cosmic/bplane.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use anise::prelude::{Frame, Orbit};
use super::{AstroError, AstroPhysicsSnafu, OrbitDual, OrbitPartial};
use crate::cosmic::NotHyperbolicSnafu;
use crate::linalg::{Matrix2, Matrix3, Vector2, Vector3};
use crate::md::objective::Objective;
use crate::md::{AstroSnafu, StateParameter, TargetingError};
use crate::time::{Duration, Epoch, Unit};
use crate::utils::between_pm_180;
use hyperdual::linalg::norm;
use hyperdual::{Float, OHyperdual};
use snafu::{ensure, ResultExt};
use std::convert::From;
use std::fmt;
/// Stores a B-Plane
#[derive(Copy, Clone, Debug)]
pub struct BPlane {
/// The $B_T$ component, in kilometers
pub b_t: OrbitPartial,
/// The $B_R$ component, in kilometers
pub b_r: OrbitPartial,
/// The Linearized Time of Flight
pub ltof_s: OrbitPartial,
/// The B-Plane rotation matrix
pub str_dcm: Matrix3<f64>,
/// The frame in which this B Plane was computed
pub frame: Frame,
/// The time of computation
pub epoch: Epoch,
}
impl BPlane {
/// Returns a newly define B-Plane if the orbit is hyperbolic and already in Dual form
pub fn from_dual(orbit: OrbitDual) -> Result<Self, AstroError> {
ensure!(
orbit.ecc().context(AstroPhysicsSnafu)?.real() > 1.0,
NotHyperbolicSnafu
);
let one = OHyperdual::from(1.0);
let zero = OHyperdual::from(0.0);
let e_hat =
orbit.evec().context(AstroPhysicsSnafu)? / orbit.ecc().context(AstroPhysicsSnafu)?.dual;
let h_hat = orbit.hvec() / orbit.hmag().dual;
let n_hat = h_hat.cross(&e_hat);
// The reals implementation (which was initially validated) was:
// let s = e_hat / orbit.ecc() + (1.0 - (1.0 / orbit.ecc()).powi(2)).sqrt() * n_hat;
// let s_hat = s / s.norm();
let ecc = orbit.ecc().context(AstroPhysicsSnafu)?;
let incoming_asymptote_fact = (one - (one / ecc.dual).powi(2)).sqrt();
let s = Vector3::new(
e_hat[0] / ecc.dual + incoming_asymptote_fact * n_hat[0],
e_hat[1] / ecc.dual + incoming_asymptote_fact * n_hat[1],
e_hat[2] / ecc.dual + incoming_asymptote_fact * n_hat[2],
);
let s_hat = s / norm(&s); // Just to make sure to renormalize everything
// The reals implementation (which was initially validated) was:
// let b_vec = orbit.semi_minor_axis()
// * ((1.0 - (1.0 / orbit.ecc()).powi(2)).sqrt() * e_hat
// - (1.0 / orbit.ecc() * n_hat));
let semi_minor_axis = orbit.semi_minor_axis_km().context(AstroPhysicsSnafu)?;
let b_vec = Vector3::new(
semi_minor_axis.dual
* (incoming_asymptote_fact * e_hat[0] - ((one / ecc.dual) * n_hat[0])),
semi_minor_axis.dual
* (incoming_asymptote_fact * e_hat[1] - ((one / ecc.dual) * n_hat[1])),
semi_minor_axis.dual
* (incoming_asymptote_fact * e_hat[2] - ((one / ecc.dual) * n_hat[2])),
);
let t = s_hat.cross(&Vector3::new(zero, zero, one));
let t_hat = t / norm(&t);
let r_hat = s_hat.cross(&t_hat);
// Build the rotation matrix from inertial to B Plane
let str_rot = Matrix3::new(
s_hat[0].real(),
s_hat[1].real(),
s_hat[2].real(),
t_hat[0].real(),
t_hat[1].real(),
t_hat[2].real(),
r_hat[0].real(),
r_hat[1].real(),
r_hat[2].real(),
);
Ok(BPlane {
b_r: OrbitPartial {
dual: b_vec.dot(&r_hat),
param: StateParameter::BdotR,
},
b_t: OrbitPartial {
dual: b_vec.dot(&t_hat),
param: StateParameter::BdotT,
},
ltof_s: OrbitPartial {
dual: b_vec.dot(&s_hat) / orbit.vmag_km_s().dual,
param: StateParameter::BLTOF,
},
str_dcm: str_rot,
frame: orbit.frame,
epoch: orbit.dt,
})
}
/// Returns a newly defined B-Plane if the orbit is hyperbolic.
pub fn new(orbit: Orbit) -> Result<Self, AstroError> {
// Convert to OrbitDual so we can target it
Self::from_dual(OrbitDual::from(orbit))
}
/// Returns the DCM to convert to the B Plane from the inertial frame
pub fn inertial_to_bplane(&self) -> Matrix3<f64> {
self.str_dcm
}
/// Returns the Jacobian of the B plane (BR, BT, LTOF) with respect to the velocity
pub fn jacobian(&self) -> Matrix3<f64> {
Matrix3::new(
self.b_r.wtr_vx(),
self.b_r.wtr_vy(),
self.b_r.wtr_vz(),
self.b_t.wtr_vx(),
self.b_t.wtr_vy(),
self.b_t.wtr_vz(),
self.ltof_s.wtr_vx(),
self.ltof_s.wtr_vy(),
self.ltof_s.wtr_vz(),
)
}
/// Returns the Jacobian of the B plane (BR, BT) with respect to two of the velocity components
pub fn jacobian2(&self, invariant: StateParameter) -> Result<Matrix2<f64>, AstroError> {
match invariant {
StateParameter::VX => Ok(Matrix2::new(
self.b_r.wtr_vy(),
self.b_r.wtr_vz(),
self.b_t.wtr_vy(),
self.b_t.wtr_vz(),
)),
StateParameter::VY => Ok(Matrix2::new(
self.b_r.wtr_vx(),
self.b_r.wtr_vz(),
self.b_t.wtr_vx(),
self.b_t.wtr_vz(),
)),
StateParameter::VZ => Ok(Matrix2::new(
self.b_r.wtr_vx(),
self.b_r.wtr_vy(),
self.b_t.wtr_vx(),
self.b_t.wtr_vy(),
)),
_ => Err(AstroError::BPlaneInvariant),
}
}
}
impl BPlane {
pub fn b_dot_t(&self) -> f64 {
self.b_t.real()
}
pub fn b_dot_r(&self) -> f64 {
self.b_r.real()
}
pub fn ltof(&self) -> Duration {
self.ltof_s.real() * Unit::Second
}
/// Returns the B plane angle in degrees between -180 and 180
pub fn angle(&self) -> f64 {
between_pm_180(self.b_dot_r().atan2(self.b_dot_t()).to_degrees())
}
/// Returns the B plane vector magnitude, in kilometers
pub fn mag(&self) -> f64 {
(self.b_dot_t().powi(2) + self.b_dot_r().powi(2)).sqrt()
}
}
impl fmt::Display for BPlane {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"[{}] {} B-Plane: B∙R = {:.3} km\tB∙T = {:.3} km\tAngle = {:.3} deg",
self.frame,
self.epoch,
self.b_dot_r(),
self.b_dot_t(),
self.angle()
)
}
}
#[derive(Copy, Clone, Debug)]
pub struct BPlaneTarget {
/// The $B_T$ component, in kilometers
pub b_t_km: f64,
/// The $B_R$ component, in kilometers
pub b_r_km: f64,
/// The Linearized Time of Flight, in seconds
pub ltof_s: f64,
/// The tolerance on the $B_T$ component, in kilometers
pub tol_b_t_km: f64,
/// The tolerance on the $B_R$ component, in kilometers
pub tol_b_r_km: f64,
/// The tolerance on the Linearized Time of Flight, in seconds
pub tol_ltof_s: f64,
}
impl BPlaneTarget {
/// Initializes a new B Plane target with only the targets and the default tolerances.
/// Default tolerances are 1 millimeter in positions and 1 second in LTOF
pub fn from_targets(b_t_km: f64, b_r_km: f64, ltof: Duration) -> Self {
let tol_ltof: Duration = 6.0 * Unit::Hour;
Self {
b_t_km,
b_r_km,
ltof_s: ltof.to_seconds(),
tol_b_t_km: 1e-6,
tol_b_r_km: 1e-6,
tol_ltof_s: tol_ltof.to_seconds(),
}
}
/// Initializes a new B Plane target with only the B Plane targets (not LTOF constraint) and the default tolerances.
/// Default tolerances are 1 millimeter in positions. Here, the LTOF tolerance is set to 100 days.
pub fn from_bt_br(b_t_km: f64, b_r_km: f64) -> Self {
let ltof_tol: Duration = 100 * Unit::Day;
Self {
b_t_km,
b_r_km,
ltof_s: 0.0,
tol_b_t_km: 1e-6,
tol_b_r_km: 1e-6,
tol_ltof_s: ltof_tol.to_seconds(),
}
}
pub fn ltof_target_set(&self) -> bool {
self.ltof_s.abs() > 1e-10
}
pub fn to_objectives(self) -> [Objective; 2] {
self.to_objectives_with_tolerance(1.0)
}
pub fn to_objectives_with_tolerance(self, tol_km: f64) -> [Objective; 2] {
[
Objective::within_tolerance(StateParameter::BdotR, self.b_r_km, tol_km),
Objective::within_tolerance(StateParameter::BdotT, self.b_t_km, tol_km),
]
}
/// Includes the linearized time of flight as an objective
pub fn to_all_objectives_with_tolerance(self, tol_km: f64) -> [Objective; 3] {
[
Objective::within_tolerance(StateParameter::BdotR, self.b_r_km, tol_km),
Objective::within_tolerance(StateParameter::BdotT, self.b_t_km, tol_km),
Objective::within_tolerance(StateParameter::BLTOF, self.ltof_s, self.tol_ltof_s * 1e5),
]
}
}
impl fmt::Display for BPlaneTarget {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"B-Plane target: B∙R = {:.3} km (+/- {:.1} m)\tB∙T = {:.3} km (+/- {:.1} m)",
self.b_r_km,
self.tol_b_r_km * 1e-3,
self.b_t_km,
self.tol_b_t_km * 1e-3,
)
}
}
/// Returns the Delta V (in km/s) needed to achieve the B Plane specified by B dot R and B dot T.
/// If no LTOF target is set, this method will fix VX, VY and VZ successively and use the minimum of those as a seed for the LTOF variation finding.
/// If the 3x3 search is worse than any of the 2x2s, then a 2x2 will be returned.
/// This uses the hyperdual formulation of the Jacobian and will also vary the linearize time of flight (LTOF).
pub fn try_achieve_b_plane(
orbit: Orbit,
target: BPlaneTarget,
) -> Result<(Vector3<f64>, BPlane), TargetingError> {
let mut total_dv = Vector3::zeros();
let mut attempt_no = 0;
let max_iter = 10;
let mut real_orbit = orbit;
let mut prev_b_plane_err = f64::INFINITY;
if !target.ltof_target_set() {
// If no LTOF is targeted, we'll solve this with a least squared approach.
loop {
if attempt_no > max_iter {
return Err(TargetingError::TooManyIterations);
}
// Build current B Plane
let b_plane = BPlane::new(real_orbit).context(AstroSnafu)?;
// Check convergence
let br_err = target.b_r_km - b_plane.b_dot_r();
let bt_err = target.b_t_km - b_plane.b_dot_t();
if br_err.abs() < target.tol_b_r_km && bt_err.abs() < target.tol_b_t_km {
return Ok((total_dv, b_plane));
}
// Build the error vector
let b_plane_err = Vector2::new(br_err, bt_err);
if b_plane_err.norm() >= prev_b_plane_err {
// If the error is not going down, we'll raise an error
return Err(TargetingError::CorrectionIneffective {
prev_val: prev_b_plane_err,
cur_val: b_plane_err.norm(),
action: "Delta-V correction is ineffective at reducing the B-Plane error",
});
}
prev_b_plane_err = b_plane_err.norm();
// Grab the first two rows of the Jacobian (discard the rest).
let full_jac = b_plane.jacobian();
let jac = full_jac.fixed_rows::<2>(0);
// Solve the Least Squares / compute the delta-v
let dv = jac.transpose() * (jac * jac.transpose()).try_inverse().unwrap() * b_plane_err;
total_dv[0] += dv[0];
total_dv[1] += dv[1];
total_dv[2] += dv[2];
// Rebuild a new orbit
real_orbit.velocity_km_s.x += dv[0];
real_orbit.velocity_km_s.y += dv[1];
real_orbit.velocity_km_s.z += dv[2];
attempt_no += 1;
}
} else {
// The LTOF targeting seems to break often, but it's still implemented
loop {
if attempt_no > max_iter {
return Err(TargetingError::TooManyIterations);
}
// Build current B Plane
let b_plane = BPlane::new(real_orbit).context(AstroSnafu)?;
// Check convergence
let br_err = target.b_r_km - b_plane.b_dot_r();
let bt_err = target.b_t_km - b_plane.b_dot_t();
let ltof_err = target.ltof_s - b_plane.ltof_s.real();
if br_err.abs() < target.tol_b_r_km
&& bt_err.abs() < target.tol_b_t_km
&& ltof_err.abs() < target.tol_ltof_s
{
return Ok((total_dv, b_plane));
}
// Build the error vector
let b_plane_err = Vector3::new(br_err, bt_err, ltof_err);
if b_plane_err.norm() >= prev_b_plane_err {
return Err(TargetingError::CorrectionIneffective {
prev_val: prev_b_plane_err,
cur_val: b_plane_err.norm(),
action: "LTOF enabled correction is failing. Try to not set an LTOF target.",
});
}
prev_b_plane_err = b_plane_err.norm();
// Compute the delta-v
let dv = b_plane.jacobian() * b_plane_err;
total_dv[0] += dv[0];
total_dv[1] += dv[1];
total_dv[2] += dv[2];
// Rebuild a new orbit
real_orbit.velocity_km_s.x += dv[0];
real_orbit.velocity_km_s.y += dv[1];
real_orbit.velocity_km_s.z += dv[2];
attempt_no += 1;
}
}
}