1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use anise::almanac::Almanac;
use anise::constants::frames::IAU_EARTH_FRAME;
use snafu::ResultExt;

use super::{
    DynamicsAlmanacSnafu, DynamicsAstroSnafu, DynamicsError, DynamicsPlanetarySnafu, ForceModel,
};
use crate::cosmic::{AstroError, AstroPhysicsSnafu, Frame, Spacecraft};
use crate::linalg::{Matrix3, Vector3};
use std::fmt;
use std::sync::Arc;

/// Density in kg/m^3 and altitudes in meters, not kilometers!
#[derive(Clone, Copy, Debug)]
pub enum AtmDensity {
    Constant(f64),
    Exponential { rho0: f64, r0: f64, ref_alt_m: f64 },
    StdAtm { max_alt_m: f64 },
}

/// `ConstantDrag` implements a constant drag model as defined in Vallado, 4th ed., page 551, with an important caveat.
///
/// **WARNING:** This basic model assumes that the velocity of the spacecraft is identical to the velocity of the upper atmosphere,
/// This is a **bad** assumption and **should not** be used for high fidelity simulations.
/// This will be resolved after https://gitlab.com/chrisrabotin/nyx/issues/93 is implemented.
#[derive(Clone)]
pub struct ConstantDrag {
    /// atmospheric density in kg/m^3
    pub rho: f64,
    /// Geoid causing the drag
    pub drag_frame: Frame,
}

impl fmt::Display for ConstantDrag {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "\tConstant Drag rho = {} kg/m^3 in frame {}",
            self.rho, self.drag_frame
        )
    }
}

impl ForceModel for ConstantDrag {
    fn eom(&self, ctx: &Spacecraft, almanac: Arc<Almanac>) -> Result<Vector3<f64>, DynamicsError> {
        let osc = almanac
            .transform_to(ctx.orbit, self.drag_frame, None)
            .context(DynamicsAlmanacSnafu {
                action: "transforming into drag frame",
            })?;

        let velocity = osc.velocity_km_s;
        // Note the 1e3 factor to convert drag units from ((kg * km^2 * s^-2) / m^1) to (kg * km * s^-2)
        Ok(-0.5 * 1e3 * self.rho * ctx.drag.cd * ctx.drag.area_m2 * velocity.norm() * velocity)
    }

    fn dual_eom(
        &self,
        _osc_ctx: &Spacecraft,
        _almanac: Arc<Almanac>,
    ) -> Result<(Vector3<f64>, Matrix3<f64>), DynamicsError> {
        Err(DynamicsError::DynamicsAstro {
            source: AstroError::PartialsUndefined,
        })
    }
}

/// `Drag` implements all three drag models.
#[derive(Clone)]
pub struct Drag {
    /// Density computation method
    pub density: AtmDensity,
    /// Frame to compute the drag in
    pub drag_frame: Frame,
}

impl Drag {
    /// Common exponential drag model for the Earth
    pub fn earth_exp(almanac: Arc<Almanac>) -> Result<Arc<Self>, DynamicsError> {
        Ok(Arc::new(Self {
            density: AtmDensity::Exponential {
                rho0: 3.614e-13,
                r0: 700_000.0,
                ref_alt_m: 88_667.0,
            },
            drag_frame: almanac.frame_from_uid(IAU_EARTH_FRAME).context({
                DynamicsPlanetarySnafu {
                    action: "planetary data from third body not loaded",
                }
            })?,
        }))
    }

    /// Drag model which uses the standard atmosphere 1976 model for atmospheric density
    pub fn std_atm1976(almanac: Arc<Almanac>) -> Result<Arc<Self>, DynamicsError> {
        Ok(Arc::new(Self {
            density: AtmDensity::StdAtm {
                max_alt_m: 1_000_000.0,
            },
            drag_frame: almanac.frame_from_uid(IAU_EARTH_FRAME).context({
                DynamicsPlanetarySnafu {
                    action: "planetary data from third body not loaded",
                }
            })?,
        }))
    }
}

impl fmt::Display for Drag {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "\tDrag density {:?} in frame {}",
            self.density, self.drag_frame
        )
    }
}

impl ForceModel for Drag {
    fn eom(&self, ctx: &Spacecraft, almanac: Arc<Almanac>) -> Result<Vector3<f64>, DynamicsError> {
        let integration_frame = ctx.orbit.frame;

        let osc_drag_frame = almanac
            .transform_to(ctx.orbit, self.drag_frame, None)
            .context(DynamicsAlmanacSnafu {
                action: "transforming into drag frame",
            })?;

        match self.density {
            AtmDensity::Constant(rho) => {
                let velocity = osc_drag_frame.velocity_km_s;
                // Note the 1e3 factor to convert drag units from ((kg * km^2 * s^-2) / m^1) to (kg * km * s^-2)
                Ok(-0.5 * 1e3 * rho * ctx.drag.cd * ctx.drag.area_m2 * velocity.norm() * velocity)
            }

            AtmDensity::Exponential {
                rho0,
                r0,
                ref_alt_m,
            } => {
                // Compute rho in the drag frame.
                let rho = rho0
                    * (-(osc_drag_frame.rmag_km()
                        - (r0
                            + self
                                .drag_frame
                                .mean_equatorial_radius_km()
                                .context(AstroPhysicsSnafu)
                                .context(DynamicsAstroSnafu)?))
                        / ref_alt_m)
                        .exp();

                // TODO: Drag modeling will be improved in https://github.com/nyx-space/nyx/issues/317
                // The frame will be double checked in this PR as well.
                // let velocity_integr_frame = self.cosm.frame_chg(&osc, integration_frame).velocity();
                let velocity_integr_frame = almanac
                    .transform_to(osc_drag_frame, integration_frame, None)
                    .context(DynamicsAlmanacSnafu {
                        action: "rotating into the integration frame",
                    })?
                    .velocity_km_s;

                let velocity = velocity_integr_frame - osc_drag_frame.velocity_km_s;
                // Note the 1e3 factor to convert drag units from ((kg * km^2 * s^-2) / m^1) to (kg * km * s^-2)
                Ok(-0.5 * 1e3 * rho * ctx.drag.cd * ctx.drag.area_m2 * velocity.norm() * velocity)
            }

            AtmDensity::StdAtm { max_alt_m } => {
                let altitude_km = osc_drag_frame.rmag_km()
                    - self
                        .drag_frame
                        .mean_equatorial_radius_km()
                        .context(AstroPhysicsSnafu)
                        .context(DynamicsAstroSnafu)?;
                let rho = if altitude_km > max_alt_m / 1_000.0 {
                    // Use a constant density
                    10.0_f64.powf((-7e-5) * altitude_km - 14.464)
                } else {
                    // Code from AVS/Schaub's Basilisk
                    // Calculating the density based on a scaled 6th order polynomial fit to the log of density
                    let scale = (altitude_km - 526.8000) / 292.8563;
                    let logdensity =
                        0.34047 * scale.powi(6) - 0.5889 * scale.powi(5) - 0.5269 * scale.powi(4)
                            + 1.0036 * scale.powi(3)
                            + 0.60713 * scale.powi(2)
                            - 2.3024 * scale
                            - 12.575;

                    /* Calculating density by raising 10 to the log of density */
                    10.0_f64.powf(logdensity)
                };

                // let velocity_integr_frame = self.cosm.frame_chg(&osc, integration_frame).velocity();
                let velocity_integr_frame = almanac
                    .transform_to(osc_drag_frame, integration_frame, None)
                    .context(DynamicsAlmanacSnafu {
                        action: "rotating into the integration frame",
                    })?
                    .velocity_km_s;

                let velocity = velocity_integr_frame - osc_drag_frame.velocity_km_s;
                // Note the 1e3 factor to convert drag units from ((kg * km^2 * s^-2) / m^1) to (kg * km * s^-2)
                Ok(-0.5 * 1e3 * rho * ctx.drag.cd * ctx.drag.area_m2 * velocity.norm() * velocity)
            }
        }
    }

    fn dual_eom(
        &self,
        _osc_ctx: &Spacecraft,
        _almanac: Arc<Almanac>,
    ) -> Result<(Vector3<f64>, Matrix3<f64>), DynamicsError> {
        Err(DynamicsError::DynamicsAstro {
            source: AstroError::PartialsUndefined,
        })
    }
}