nyx_space/dynamics/guidance/mnvr.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use super::{
ra_dec_from_unit_vector, GuidanceError, GuidanceLaw, GuidancePhysicsSnafu, LocalFrame,
};
use crate::cosmic::{GuidanceMode, Spacecraft};
use crate::dynamics::guidance::unit_vector_from_ra_dec;
use crate::linalg::Vector3;
use crate::polyfit::CommonPolynomial;
use crate::time::{Epoch, Unit};
use crate::State;
use anise::prelude::Almanac;
use hifitime::{Duration, TimeUnits};
use serde::{Deserialize, Serialize};
use snafu::ResultExt;
use std::fmt;
use std::sync::Arc;
/// Mnvr defined a single maneuver. Direction MUST be in the VNC frame (Velocity / Normal / Cross).
/// It may be used with a maneuver scheduler.
#[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)]
pub struct Maneuver {
/// Start epoch of the maneuver
pub start: Epoch,
/// End epoch of the maneuver
pub end: Epoch,
/// TODO: Add a thruster group set to specify which set of thrusters to use for this maneuver, should be a key to a thruster (maybe change thruster to a hashmap actually now that I don't care about embedded stuff).
/// Thrust level, if 1.0 use all thruster available at full power
/// TODO: Convert this to a common polynomial as well to optimize throttle, throttle rate (and accel?)
pub thrust_prct: f64,
/// The representation of this maneuver.
pub representation: MnvrRepr,
/// The frame in which the maneuvers are defined.
pub frame: LocalFrame,
}
impl fmt::Display for Maneuver {
/// Prints the polynomial with the least significant coefficients first
#[allow(clippy::identity_op)]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.end != self.start {
let start_vec = self.vector(self.start);
let end_vec = self.vector(self.end);
write!(
f,
"Finite burn maneuver @ {:.2}% on {} for {} (ending on {})",
100.0 * self.thrust_prct,
self.start,
self.end - self.start,
self.end,
)?;
write!(f, "\n{}", self.representation)?;
write!(
f,
"\n\tinitial dir: [{:.6}, {:.6}, {:.6}]\n\tfinal dir : [{:.6}, {:.6}, {:.6}]",
start_vec[0], start_vec[1], start_vec[2], end_vec[0], end_vec[1], end_vec[2]
)
} else {
write!(
f,
"Impulsive maneuver @ {}\n{}",
self.start, self.representation
)
}
}
}
/// Defines the available maneuver representations.
#[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)]
pub enum MnvrRepr {
/// Represents the maneuver as a fixed vector in the local frame.
Vector(Vector3<f64>),
/// Represents the maneuver as a polynominal of azimuth (right ascension / in-plane) and elevation (declination / out of plane)
Angles {
azimuth: CommonPolynomial,
elevation: CommonPolynomial,
},
}
impl fmt::Display for MnvrRepr {
/// Prints the polynomial with the least significant coefficients first
#[allow(clippy::identity_op)]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
MnvrRepr::Vector(vector) => write!(f, "{vector}"),
MnvrRepr::Angles { azimuth, elevation } => write!(
f,
"\tazimuth (in-plane) α: {}\n\televation (out-of-plane) β: {}",
azimuth, elevation
),
}
}
}
impl Maneuver {
/// Creates an impulsive maneuver whose vector is the deltaV.
/// TODO: This should use William's algorithm
pub fn from_impulsive(dt: Epoch, vector: Vector3<f64>, frame: LocalFrame) -> Self {
Self::from_time_invariant(dt, dt + Unit::Millisecond, 1.0, vector, frame)
}
/// Creates a maneuver from the provided time-invariant delta-v, in km/s
pub fn from_time_invariant(
start: Epoch,
end: Epoch,
thrust_lvl: f64,
vector: Vector3<f64>,
frame: LocalFrame,
) -> Self {
Self {
start,
end,
thrust_prct: thrust_lvl,
representation: MnvrRepr::Vector(vector),
frame,
}
}
/// Return the thrust vector computed at the provided epoch
pub fn vector(&self, epoch: Epoch) -> Vector3<f64> {
match self.representation {
MnvrRepr::Vector(vector) => vector,
MnvrRepr::Angles { azimuth, elevation } => {
let t = (epoch - self.start).to_seconds();
let alpha = azimuth.eval(t);
let delta = elevation.eval(t);
unit_vector_from_ra_dec(alpha, delta)
}
}
}
/// Return the duration of this maneuver
pub fn duration(&self) -> Duration {
self.end - self.start
}
/// Return whether this is an antichronological maneuver
pub fn antichronological(&self) -> bool {
self.duration().abs() > 1.microseconds() && self.duration() < 1.microseconds()
}
/// Returns the direction of the burn at the start of the burn, useful for setting new angles
pub fn direction(&self) -> Vector3<f64> {
match self.representation {
MnvrRepr::Vector(vector) => vector / vector.norm(),
MnvrRepr::Angles { azimuth, elevation } => {
let alpha = azimuth.coeff_in_order(0).unwrap();
let delta = elevation.coeff_in_order(0).unwrap();
unit_vector_from_ra_dec(alpha, delta)
}
}
}
/// Set the time-invariant direction for this finite burn while keeping the other components as they are
pub fn set_direction(&mut self, vector: Vector3<f64>) -> Result<(), GuidanceError> {
self.set_direction_and_rates(vector, self.rate(), self.accel())
}
/// Returns the rate of direction of the burn at the start of the burn, useful for setting new angles
pub fn rate(&self) -> Vector3<f64> {
match self.representation {
MnvrRepr::Vector(_) => Vector3::zeros(),
MnvrRepr::Angles { azimuth, elevation } => match azimuth.coeff_in_order(1) {
Ok(alpha) => {
let delta = elevation.coeff_in_order(1).unwrap();
unit_vector_from_ra_dec(alpha, delta)
}
Err(_) => Vector3::zeros(),
},
}
}
/// Set the rate of direction for this finite burn while keeping the other components as they are
pub fn set_rate(&mut self, rate: Vector3<f64>) -> Result<(), GuidanceError> {
self.set_direction_and_rates(self.direction(), rate, self.accel())
}
/// Returns the acceleration of the burn at the start of the burn, useful for setting new angles
pub fn accel(&self) -> Vector3<f64> {
match self.representation {
MnvrRepr::Vector(_) => Vector3::zeros(),
MnvrRepr::Angles { azimuth, elevation } => match azimuth.coeff_in_order(2) {
Ok(alpha) => {
let delta = elevation.coeff_in_order(2).unwrap();
unit_vector_from_ra_dec(alpha, delta)
}
Err(_) => Vector3::zeros(),
},
}
}
/// Set the acceleration of the direction of this finite burn while keeping the other components as they are
pub fn set_accel(&mut self, accel: Vector3<f64>) -> Result<(), GuidanceError> {
self.set_direction_and_rates(self.direction(), self.rate(), accel)
}
/// Set the initial direction, direction rate, and direction acceleration for this finite burn
pub fn set_direction_and_rates(
&mut self,
dir: Vector3<f64>,
rate: Vector3<f64>,
accel: Vector3<f64>,
) -> Result<(), GuidanceError> {
if rate.norm() < f64::EPSILON && accel.norm() < f64::EPSILON {
// Set as a vector
self.representation = MnvrRepr::Vector(dir)
} else {
let (alpha, delta) = ra_dec_from_unit_vector(dir);
if alpha.is_nan() || delta.is_nan() {
return Err(GuidanceError::InvalidDirection {
x: dir[0],
y: dir[1],
z: dir[2],
in_plane_deg: alpha.to_degrees(),
out_of_plane_deg: delta.to_degrees(),
});
}
if rate.norm() < f64::EPSILON && accel.norm() < f64::EPSILON {
self.representation = MnvrRepr::Angles {
azimuth: CommonPolynomial::Constant(alpha),
elevation: CommonPolynomial::Constant(delta),
};
} else {
let (alpha_dt, delta_dt) = ra_dec_from_unit_vector(rate);
if alpha_dt.is_nan() || delta_dt.is_nan() {
return Err(GuidanceError::InvalidRate {
x: rate[0],
y: rate[1],
z: rate[2],
in_plane_deg_s: alpha_dt.to_degrees(),
out_of_plane_deg_s: delta_dt.to_degrees(),
});
}
if accel.norm() < f64::EPSILON {
self.representation = MnvrRepr::Angles {
azimuth: CommonPolynomial::Linear(alpha_dt, alpha),
elevation: CommonPolynomial::Linear(delta_dt, delta),
};
} else {
let (alpha_ddt, delta_ddt) = ra_dec_from_unit_vector(accel);
if alpha_ddt.is_nan() || delta_ddt.is_nan() {
return Err(GuidanceError::InvalidAcceleration {
x: accel[0],
y: accel[1],
z: accel[2],
in_plane_deg_s2: alpha_ddt.to_degrees(),
out_of_plane_deg_s2: delta_ddt.to_degrees(),
});
}
self.representation = MnvrRepr::Angles {
azimuth: CommonPolynomial::Quadratic(alpha_ddt, alpha_dt, alpha),
elevation: CommonPolynomial::Quadratic(delta_ddt, delta_dt, delta),
};
}
}
}
Ok(())
}
}
impl GuidanceLaw for Maneuver {
fn direction(&self, osc: &Spacecraft) -> Result<Vector3<f64>, GuidanceError> {
match osc.mode() {
GuidanceMode::Thrust => match self.frame {
LocalFrame::Inertial => Ok(self.vector(osc.epoch())),
_ => Ok(self.frame.dcm_to_inertial(osc.orbit).context({
GuidancePhysicsSnafu {
action: "computing RCN frame",
}
})? * self.vector(osc.epoch())),
},
_ => Ok(Vector3::zeros()),
}
}
fn throttle(&self, osc: &Spacecraft) -> Result<f64, GuidanceError> {
// match self.next(osc) {
match osc.mode() {
GuidanceMode::Thrust => Ok(self.thrust_prct),
_ => {
// We aren't in maneuver mode, so return 0% throttle
Ok(0.0)
}
}
}
fn next(&self, sc: &mut Spacecraft, _almanac: Arc<Almanac>) {
let next_mode = if sc.epoch() >= self.start && sc.epoch() < self.end {
GuidanceMode::Thrust
} else {
GuidanceMode::Coast
};
sc.mut_mode(next_mode);
}
}
#[cfg(test)]
mod ut_mnvr {
use hifitime::Epoch;
use nalgebra::Vector3;
use crate::dynamics::guidance::LocalFrame;
use super::Maneuver;
#[test]
fn serde_mnvr() {
let epoch = Epoch::from_gregorian_utc_at_midnight(2012, 2, 29);
let mnvr = Maneuver::from_impulsive(epoch, Vector3::new(1.0, 1.0, 0.0), LocalFrame::RCN);
let mnvr_yml = serde_yml::to_string(&mnvr).unwrap();
println!("{mnvr_yml}");
let mnvr2 = serde_yml::from_str(&mnvr_yml).unwrap();
assert_eq!(mnvr, mnvr2);
}
}