nyx_space/dynamics/guidance/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use crate::cosmic::{GuidanceMode, Orbit, Spacecraft, STD_GRAVITY};
use crate::errors::{NyxError, StateError};
use crate::linalg::Vector3;
use anise::astro::PhysicsResult;
use anise::errors::PhysicsError;
use anise::math::rotation::DCM;
use anise::prelude::Almanac;
use serde::{Deserialize, Serialize};

mod finiteburns;
pub use finiteburns::FiniteBurns;

mod mnvr;
pub use mnvr::{Maneuver, MnvrRepr};

mod ruggiero;
pub use ruggiero::{Objective, Ruggiero, StateParameter};
use snafu::Snafu;

use std::fmt;
use std::sync::Arc;

/// Defines a thruster with a maximum isp and a maximum thrust.
#[allow(non_snake_case)]
#[derive(Copy, Clone, Debug, PartialEq, Serialize, Deserialize)]
pub struct Thruster {
    /// The thrust is to be provided in Newtons
    pub thrust_N: f64,
    /// The Isp is to be provided in seconds
    pub isp_s: f64,
}

impl Thruster {
    /// Returns the exhaust velocity v_e in meters per second
    pub fn exhaust_velocity_m_s(&self) -> f64 {
        self.isp_s * STD_GRAVITY
    }
}

/// The `GuidanceLaw` trait handles guidance laws, optimizations, and other such methods for
/// controlling the overall thrust direction when tied to a `BaseSpacecraft`. For delta V control,
/// tie the DeltaVctrl to a MissionArc.
pub trait GuidanceLaw: fmt::Display + Send + Sync {
    /// Returns a unit vector corresponding to the thrust direction in the inertial frame.
    fn direction(&self, osc_state: &Spacecraft) -> Result<Vector3<f64>, GuidanceError>;

    /// Returns a number between [0;1] corresponding to the engine throttle level.
    /// For example, 0 means coasting, i.e. no thrusting, and 1 means maximum thrusting.
    fn throttle(&self, osc_state: &Spacecraft) -> Result<f64, GuidanceError>;

    /// Updates the state of the BaseSpacecraft for the next maneuver, e.g. prepares the controller for the next maneuver
    fn next(&self, next_state: &mut Spacecraft, almanac: Arc<Almanac>);

    /// Returns whether this thrust control has been achieved, if it has an objective
    fn achieved(&self, _osc_state: &Spacecraft) -> Result<bool, GuidanceError> {
        Err(GuidanceError::NoGuidanceObjectiveDefined)
    }
}

/// Converts the alpha (in-plane) and beta (out-of-plane) angles in the RCN frame to the unit vector in the RCN frame
fn unit_vector_from_plane_angles(alpha: f64, beta: f64) -> Vector3<f64> {
    Vector3::new(
        alpha.sin() * beta.cos(),
        alpha.cos() * beta.cos(),
        beta.sin(),
    )
}

/// Converts the provided unit vector into in-plane and out-of-plane angles in the RCN frame, returned in radians
pub fn plane_angles_from_unit_vector(vhat: Vector3<f64>) -> (f64, f64) {
    (vhat[1].atan2(vhat[0]), vhat[2].asin())
}

/// Converts the alpha (in-plane) and beta (out-of-plane) angles in the RCN frame to the unit vector in the RCN frame
pub(crate) fn unit_vector_from_ra_dec(alpha: f64, delta: f64) -> Vector3<f64> {
    Vector3::new(
        delta.cos() * alpha.cos(),
        delta.cos() * alpha.sin(),
        delta.sin(),
    )
}

/// Converts the provided unit vector into in-plane and out-of-plane angles in the RCN frame, returned in radians
pub(crate) fn ra_dec_from_unit_vector(vhat: Vector3<f64>) -> (f64, f64) {
    let alpha = vhat[1].atan2(vhat[0]);
    let delta = vhat[2].asin();
    (alpha, delta)
}

#[derive(Debug, PartialEq, Snafu)]
pub enum GuidanceError {
    #[snafu(display("No thruster attached to spacecraft"))]
    NoThrustersDefined,
    #[snafu(display("Throttle is not between 0.0 and 1.0: {ratio}"))]
    ThrottleRatio { ratio: f64 },
    #[snafu(display("Invalid finite burn control direction u = [{x}, {y}, {z}] => i-plane = {in_plane_deg} deg, Delta = {out_of_plane_deg} deg",))]
    InvalidDirection {
        x: f64,
        y: f64,
        z: f64,
        in_plane_deg: f64,
        out_of_plane_deg: f64,
    },
    #[snafu(display("Invalid finite burn control rate u = [{x}, {y}, {z}] => in-plane = {in_plane_deg_s} deg/s, out of plane = {out_of_plane_deg_s} deg/s",))]
    InvalidRate {
        x: f64,
        y: f64,
        z: f64,
        in_plane_deg_s: f64,
        out_of_plane_deg_s: f64,
    },
    #[snafu(display("Invalid finite burn control acceleration u = [{x}, {y}, {z}] => in-plane = {in_plane_deg_s2} deg/s^2, out of plane = {out_of_plane_deg_s2} deg/s^2",))]
    InvalidAcceleration {
        x: f64,
        y: f64,
        z: f64,
        in_plane_deg_s2: f64,
        out_of_plane_deg_s2: f64,
    },
    #[snafu(display("when {action} encountered {source}"))]
    GuidancePhysicsError {
        action: &'static str,
        source: PhysicsError,
    },
    #[snafu(display(
        "An objective based analysis or control was attempted, but no objective was defined"
    ))]
    NoGuidanceObjectiveDefined,
    #[snafu(display("{param} is not a control variable in this guidance law"))]
    InvalidControl { param: StateParameter },
    #[snafu(display("guidance encountered {source}"))]
    GuidState { source: StateError },
}

/// Local frame options, used notably for guidance laws.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum LocalFrame {
    Inertial,
    RIC,
    VNC,
    RCN,
}

impl LocalFrame {
    pub fn dcm_to_inertial(&self, state: Orbit) -> PhysicsResult<DCM> {
        match self {
            LocalFrame::Inertial => Ok(DCM::identity(
                state.frame.orientation_id,
                state.frame.orientation_id,
            )),
            LocalFrame::RIC => state.dcm_from_ric_to_inertial(),
            LocalFrame::VNC => state.dcm_from_vnc_to_inertial(),
            LocalFrame::RCN => state.dcm_from_rcn_to_inertial(),
        }
    }
}

#[test]
fn ra_dec_from_vec() {
    use std::f64::consts::{FRAC_PI_2, PI, TAU};
    let mut delta = -FRAC_PI_2;
    let mut alpha = 0.0;
    loop {
        loop {
            let unit_v = unit_vector_from_ra_dec(alpha, delta);
            let (alpha2, delta2) = ra_dec_from_unit_vector(unit_v);
            assert!((alpha - alpha2).abs() < f64::EPSILON);
            assert!((delta - delta2).abs() < f64::EPSILON);
            alpha += TAU * 0.1; // Increment right ascension by one tenth of a circle
            if alpha > PI {
                alpha = 0.0;
                break;
            }
        }
        delta += TAU * 0.1; // Increment declination by one tenth of a circle
        if delta > FRAC_PI_2 {
            break;
        }
    }
}