nyx_space/dynamics/guidance/
ruggiero.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use anise::prelude::Almanac;
use serde::{Deserialize, Serialize};
use snafu::ResultExt;

use super::{
    unit_vector_from_plane_angles, GuidStateSnafu, GuidanceError, GuidanceLaw, GuidanceMode,
    GuidancePhysicsSnafu, NyxError, Orbit, Spacecraft, Vector3,
};
use crate::cosmic::eclipse::EclipseLocator;
pub use crate::md::objective::Objective;
pub use crate::md::StateParameter;
use crate::State;
use std::f64::consts::FRAC_PI_2 as half_pi;
use std::fmt;
use std::sync::Arc;

/// Ruggiero defines the closed loop guidance law from IEPC 2011-102
#[derive(Copy, Clone, Default, Serialize, Deserialize)]
pub struct Ruggiero {
    /// Stores the objectives
    pub objectives: [Option<Objective>; 5],
    /// Stores the minimum efficiency to correct a given orbital element, defaults to zero (i.e. always correct)
    pub ηthresholds: [f64; 5],
    /// If define, coast until vehicle is out of the provided eclipse state.
    pub max_eclipse_prct: Option<f64>,
    init_state: Spacecraft,
}

/// The Ruggiero is a locally optimal guidance law of a state for specific osculating elements.
/// NOTE: The efficiency parameters for AoP is NOT implemented: the paper's formulation is broken.
/// WARNING: Objectives must be in degrees!
impl Ruggiero {
    /// Creates a new Ruggiero locally optimal control as an Arc
    /// Note: this returns an Arc so it can be plugged into the Spacecraft dynamics directly.
    pub fn simple(objectives: &[Objective], initial: Spacecraft) -> Result<Arc<Self>, NyxError> {
        Self::from_ηthresholds(objectives, &[0.0; 5], initial)
    }

    /// Creates a new Ruggiero locally optimal control with the provided efficiency threshold.
    /// If the efficiency to correct the mapped orbital element is greater than the threshold, then the control law will be applied to this orbital element.
    /// Note: this returns an Arc so it can be plugged into the Spacecraft dynamics directly.
    pub fn from_ηthresholds(
        objectives: &[Objective],
        ηthresholds: &[f64],
        initial: Spacecraft,
    ) -> Result<Arc<Self>, NyxError> {
        let mut objs: [Option<Objective>; 5] = [None, None, None, None, None];
        let mut eff: [f64; 5] = [0.0; 5];
        if objectives.len() > 5 || objectives.is_empty() {
            return Err(NyxError::GuidanceConfigError {
                msg: format!(
                    "Must provide between 1 and 5 objectives (included), provided {}",
                    objectives.len()
                ),
            });
        } else if objectives.len() > ηthresholds.len() {
            return Err(NyxError::GuidanceConfigError {
                msg: format!(
                    "Must provide at least {} efficiency threshold values, provided {}",
                    objectives.len(),
                    ηthresholds.len()
                ),
            });
        }

        for (i, obj) in objectives.iter().enumerate() {
            if [
                StateParameter::SMA,
                StateParameter::Eccentricity,
                StateParameter::Inclination,
                StateParameter::RAAN,
                StateParameter::AoP,
            ]
            .contains(&obj.parameter)
            {
                objs[i] = Some(*obj);
            } else {
                return Err(NyxError::GuidanceConfigError {
                    msg: format!("Objective {} not supported in Ruggerio", obj.parameter),
                });
            }
        }
        for i in 0..objectives.len() {
            objs[i] = Some(objectives[i]);
            eff[i] = ηthresholds[i];
        }
        Ok(Arc::new(Self {
            objectives: objs,
            init_state: initial,
            ηthresholds: eff,
            max_eclipse_prct: None,
        }))
    }

    /// Creates a new Ruggiero locally optimal control as an Arc
    /// Note: this returns an Arc so it can be plugged into the Spacecraft dynamics directly.
    pub fn from_max_eclipse(
        objectives: &[Objective],
        initial: Spacecraft,
        max_eclipse: f64,
    ) -> Result<Arc<Self>, NyxError> {
        let mut objs: [Option<Objective>; 5] = [None, None, None, None, None];
        let eff: [f64; 5] = [0.0; 5];
        if objectives.len() > 5 || objectives.is_empty() {
            return Err(NyxError::GuidanceConfigError {
                msg: format!(
                    "Must provide between 1 and 5 objectives (included), provided {}",
                    objectives.len()
                ),
            });
        }

        for (i, obj) in objectives.iter().enumerate() {
            if [
                StateParameter::SMA,
                StateParameter::Eccentricity,
                StateParameter::Inclination,
                StateParameter::RAAN,
                StateParameter::AoP,
            ]
            .contains(&obj.parameter)
            {
                objs[i] = Some(*obj);
            } else {
                return Err(NyxError::GuidanceConfigError {
                    msg: format!("Objective {} not supported in Ruggerio", obj.parameter),
                });
            }
        }
        for i in 0..objectives.len() {
            objs[i] = Some(objectives[i]);
        }
        Ok(Arc::new(Self {
            objectives: objs,
            init_state: initial,
            ηthresholds: eff,
            max_eclipse_prct: Some(max_eclipse),
        }))
    }

    /// Sets the maximum eclipse during which we can thrust.
    pub fn set_max_eclipse(&mut self, max_eclipse: f64) {
        self.max_eclipse_prct = Some(max_eclipse);
    }

    /// Returns the efficiency η ∈ [0; 1] of correcting a specific orbital element at the provided osculating orbit
    pub fn efficency(parameter: &StateParameter, osc_orbit: &Orbit) -> Result<f64, GuidanceError> {
        let e = osc_orbit.ecc().context(GuidancePhysicsSnafu {
            action: "computing Ruggiero efficency",
        })?;

        let ν_ta = osc_orbit
            .ta_deg()
            .context(GuidancePhysicsSnafu {
                action: "computing Ruggiero efficency",
            })?
            .to_radians();

        let ω = osc_orbit
            .aop_deg()
            .context(GuidancePhysicsSnafu {
                action: "computing Ruggiero efficency",
            })?
            .to_radians();

        match parameter {
            StateParameter::SMA => {
                let a = osc_orbit.sma_km().context(GuidancePhysicsSnafu {
                    action: "computing Ruggiero efficency",
                })?;

                let μ = osc_orbit.frame.mu_km3_s2().context(GuidancePhysicsSnafu {
                    action: "computing Ruggiero efficency",
                })?;
                Ok(osc_orbit.vmag_km_s() * ((a * (1.0 - e)) / (μ * (1.0 + e))).sqrt())
            }
            StateParameter::Eccentricity => {
                let num = 1.0 + 2.0 * e * ν_ta.cos() + ν_ta.cos().powi(2);
                let denom = 1.0 + e * ν_ta.cos();
                // NOTE: There is a typo in IEPC 2011 102: the max of this efficiency function is at ν=0
                // where it is equal to 2*(2+2e) / (1+e). Therefore, I think the correct formulation should be
                // _divided_ by two, not multiplied by two.
                Ok(num / (2.0 * denom))
            }
            StateParameter::Inclination => {
                let num = (ω + ν_ta).cos().abs()
                    * ((1.0 - e.powi(2) * ω.sin().powi(2)).sqrt() - e * ω.cos().abs());
                let denom = 1.0 + e * ν_ta.cos();
                Ok(num / denom)
            }
            StateParameter::RAAN => {
                let num = (ω + ν_ta).sin().abs()
                    * ((1.0 - e.powi(2) * ω.cos().powi(2)).sqrt() - e * ω.sin().abs());
                let denom = 1.0 + e * ν_ta.cos();
                Ok(num / denom)
            }
            StateParameter::AoP => Ok(1.0),
            _ => Err(GuidanceError::InvalidControl { param: *parameter }),
        }
    }

    /// Computes the weight at which to correct this orbital element, will be zero if the current efficiency is below the threshold
    fn weighting(&self, obj: &Objective, osc_sc: &Spacecraft, η_threshold: f64) -> f64 {
        let init = self.init_state.value(obj.parameter).unwrap();
        let osc = osc_sc.value(obj.parameter).unwrap();
        let target = obj.desired_value;
        let tol = obj.tolerance;

        // Calculate the efficiency of correcting this specific orbital element
        let η = Self::efficency(&obj.parameter, &osc_sc.orbit).unwrap();

        if (osc - target).abs() < tol || η < η_threshold {
            0.0
        } else {
            // Let's add the tolerance to the initial value if we want to keep a parameter fixed (i.e. target and initial are equal)
            (target - osc)
                / (target
                    - if (init - target).abs() < tol {
                        init + tol
                    } else {
                        init
                    })
                .abs()
        }
    }

    /// Returns whether the guidance law has achieved all goals
    pub fn status(&self, state: &Spacecraft) -> Vec<String> {
        self.objectives
            .iter()
            .flatten()
            .map(|obj| {
                let (ok, err) = obj.assess(state).unwrap();
                format!(
                    "{} achieved: {}\t error = {:.5} {}",
                    obj,
                    ok,
                    err,
                    obj.parameter.unit()
                )
            })
            .collect::<Vec<String>>()
    }
}

impl fmt::Display for Ruggiero {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let obj_msg = self
            .objectives
            .iter()
            .flatten()
            .map(|obj| format!("{obj}"))
            .collect::<Vec<String>>();
        write!(
            f,
            "Ruggiero Controller (max eclipse: {}): \n {}",
            match self.max_eclipse_prct {
                Some(eclp) => format!("{eclp}"),
                None => "None".to_string(),
            },
            obj_msg.join("\n")
        )
    }
}

impl GuidanceLaw for Ruggiero {
    /// Returns whether the guidance law has achieved all goals
    fn achieved(&self, state: &Spacecraft) -> Result<bool, GuidanceError> {
        for obj in self.objectives.iter().flatten() {
            if !obj
                .assess_value(state.value(obj.parameter).context(GuidStateSnafu)?)
                .0
            {
                return Ok(false);
            }
        }
        Ok(true)
    }

    fn direction(&self, sc: &Spacecraft) -> Result<Vector3<f64>, GuidanceError> {
        if sc.mode() == GuidanceMode::Thrust {
            let osc = sc.orbit;
            let mut steering = Vector3::zeros();
            for (i, obj) in self.objectives.iter().flatten().enumerate() {
                let weight = self.weighting(obj, sc, self.ηthresholds[i]);
                if weight.abs() <= 0.0 {
                    continue;
                }

                // Compute all of the orbital elements here to unclutter the algorithm
                let ecc = osc.ecc().context(GuidancePhysicsSnafu {
                    action: "computing Ruggiero guidance",
                })?;

                let ta_rad = osc
                    .ta_deg()
                    .context(GuidancePhysicsSnafu {
                        action: "computing Ruggiero guidance",
                    })?
                    .to_radians();

                let inc_rad = osc
                    .inc_deg()
                    .context(GuidancePhysicsSnafu {
                        action: "computing Ruggiero guidance",
                    })?
                    .to_radians();

                let aop_rad = osc
                    .aop_deg()
                    .context(GuidancePhysicsSnafu {
                        action: "computing Ruggiero guidance",
                    })?
                    .to_radians();

                let ea_rad = osc
                    .ea_deg()
                    .context(GuidancePhysicsSnafu {
                        action: "computing Ruggiero guidance",
                    })?
                    .to_radians();

                match obj.parameter {
                    StateParameter::SMA => {
                        let num = ecc * ta_rad.sin();
                        let denom = 1.0 + ecc * ta_rad.cos();
                        let alpha = num.atan2(denom);
                        steering += unit_vector_from_plane_angles(alpha, 0.0) * weight;
                    }
                    StateParameter::Eccentricity => {
                        let num = ta_rad.sin();
                        let denom = ta_rad.cos() + ea_rad.cos();
                        let alpha = num.atan2(denom);
                        steering += unit_vector_from_plane_angles(alpha, 0.0) * weight;
                    }
                    StateParameter::Inclination => {
                        let beta = half_pi.copysign((ta_rad + aop_rad).cos());
                        steering += unit_vector_from_plane_angles(0.0, beta) * weight;
                    }
                    StateParameter::RAAN => {
                        let beta = half_pi.copysign((ta_rad + aop_rad).sin());
                        steering += unit_vector_from_plane_angles(0.0, beta) * weight;
                    }
                    StateParameter::AoP => {
                        let oe2 = 1.0 - ecc.powi(2);
                        let e3 = ecc.powi(3);
                        // Compute the optimal true anomaly for in-plane thrusting
                        let sqrt_val = (0.25 * (oe2 / e3).powi(2) + 1.0 / 27.0).sqrt();
                        let opti_ta_alpha = ((oe2 / (2.0 * e3) + sqrt_val).powf(1.0 / 3.0)
                            - (-oe2 / (2.0 * e3) + sqrt_val).powf(1.0 / 3.0)
                            - 1.0 / ecc)
                            .acos();
                        // Compute the optimal true anomaly for out of plane thrusting
                        let opti_ta_beta = (-ecc * aop_rad.cos()).acos() - aop_rad;
                        // And choose whether to do an in-plane or out of plane thrust
                        if (ta_rad - opti_ta_alpha).abs() < (ta_rad - opti_ta_beta).abs() {
                            // In plane
                            let p = osc.semi_parameter_km().context(GuidancePhysicsSnafu {
                                action: "computing Ruggiero guidance",
                            })?;
                            let (sin_ta, cos_ta) = ta_rad.sin_cos();
                            let alpha = (-p * cos_ta).atan2((p + osc.rmag_km()) * sin_ta);
                            steering += unit_vector_from_plane_angles(alpha, 0.0) * weight;
                        } else {
                            // Out of plane
                            let beta = half_pi.copysign(-(ta_rad + aop_rad).sin()) * inc_rad.cos();
                            steering += unit_vector_from_plane_angles(0.0, beta) * weight;
                        };
                    }
                    _ => unreachable!(),
                }
            }

            // Return a normalized vector
            steering = if steering.norm() > 0.0 {
                steering / steering.norm()
            } else {
                steering
            };

            // Convert to inertial -- this whole guidance law is computed in the RCN frame
            Ok(osc
                .dcm_from_rcn_to_inertial()
                .context(GuidancePhysicsSnafu {
                    action: "computing RCN frame",
                })?
                * steering)
        } else {
            Ok(Vector3::zeros())
        }
    }

    // Either thrust full power or not at all
    fn throttle(&self, sc: &Spacecraft) -> Result<f64, GuidanceError> {
        if sc.mode() == GuidanceMode::Thrust {
            if self.direction(sc)?.norm() > 0.0 {
                Ok(1.0)
            } else {
                Ok(0.0)
            }
        } else {
            Ok(0.0)
        }
    }

    /// Update the state for the next iteration
    fn next(&self, sc: &mut Spacecraft, almanac: Arc<Almanac>) {
        if sc.mode() != GuidanceMode::Inhibit {
            if !self.achieved(sc).unwrap() {
                // Check eclipse state if applicable.
                if let Some(max_eclipse) = self.max_eclipse_prct {
                    let locator = EclipseLocator::cislunar(almanac.clone());
                    if locator
                        .compute(sc.orbit, almanac)
                        .expect("cannot compute eclipse")
                        .percentage
                        > max_eclipse
                    {
                        // Coast in eclipse
                        sc.mode = GuidanceMode::Coast;
                    } else {
                        sc.mode = GuidanceMode::Thrust;
                    }
                } else if sc.mode() == GuidanceMode::Coast {
                    debug!("enabling steering: {:x}", sc.orbit);
                }
                sc.mut_mode(GuidanceMode::Thrust);
            } else {
                if sc.mode() == GuidanceMode::Thrust {
                    debug!("disabling steering: {:x}", sc.orbit);
                }
                sc.mut_mode(GuidanceMode::Coast);
            }
        }
    }
}

#[test]
fn ruggiero_weight() {
    use crate::time::Epoch;
    use anise::constants::frames::EARTH_J2000;

    let eme2k = EARTH_J2000.with_mu_km3_s2(398_600.433);
    let start_time = Epoch::from_gregorian_tai_at_midnight(2020, 1, 1);
    let orbit = Orbit::keplerian(7378.1363, 0.01, 0.05, 0.0, 0.0, 1.0, start_time, eme2k);
    let sc = Spacecraft::new(orbit, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);

    // Define the objectives
    let objectives = &[
        Objective::within_tolerance(StateParameter::SMA, 42164.0, 1.0),
        Objective::within_tolerance(StateParameter::Eccentricity, 0.01, 5e-5),
    ];

    let ruggiero = Ruggiero::simple(objectives, sc).unwrap();
    // 7301.597157 201.699933 0.176016 -0.202974 7.421233 0.006476 298.999726
    let osc = Orbit::new(
        7_303.253_461_441_64f64,
        127.478_714_816_381_75,
        0.111_246_193_227_445_4,
        -0.128_284_025_765_195_6,
        7.422_889_151_816_439,
        0.006_477_694_429_837_2,
        start_time,
        eme2k,
    );

    let mut osc_sc = Spacecraft::new(osc, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0);
    // Must set the guidance mode to thrusting otherwise the direction will be set to zero.
    osc_sc.mut_mode(GuidanceMode::Thrust);

    let expected = Vector3::new(
        -0.017_279_636_133_108_3,
        0.999_850_315_226_803,
        0.000_872_534_222_883_2,
    );

    let got = ruggiero.direction(&osc_sc).unwrap();

    assert!(
        dbg!(expected - got).norm() < 1e-12,
        "incorrect direction computed"
    );
}