nyx_space/dynamics/guidance/ruggiero.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use anise::prelude::Almanac;
use snafu::ResultExt;
use super::{
unit_vector_from_plane_angles, GuidStateSnafu, GuidanceError, GuidanceLaw, GuidanceMode,
GuidancePhysicsSnafu, NyxError, Orbit, Spacecraft, Vector3,
};
use crate::cosmic::eclipse::EclipseLocator;
pub use crate::md::objective::Objective;
pub use crate::md::StateParameter;
use crate::State;
use std::f64::consts::FRAC_PI_2 as half_pi;
use std::fmt;
use std::sync::Arc;
/// Ruggiero defines the closed loop guidance law from IEPC 2011-102
#[derive(Copy, Clone, Default)]
pub struct Ruggiero {
/// Stores the objectives
pub objectives: [Option<Objective>; 5],
/// Stores the minimum efficiency to correct a given orbital element, defaults to zero (i.e. always correct)
pub ηthresholds: [f64; 5],
/// If define, coast until vehicle is out of the provided eclipse state.
pub max_eclipse_prct: Option<f64>,
init_state: Spacecraft,
}
/// The Ruggiero is a locally optimal guidance law of a state for specific osculating elements.
/// NOTE: The efficiency parameters for AoP is NOT implemented: the paper's formulation is broken.
/// WARNING: Objectives must be in degrees!
impl Ruggiero {
/// Creates a new Ruggiero locally optimal control as an Arc
/// Note: this returns an Arc so it can be plugged into the Spacecraft dynamics directly.
pub fn simple(objectives: &[Objective], initial: Spacecraft) -> Result<Arc<Self>, NyxError> {
Self::from_ηthresholds(objectives, &[0.0; 5], initial)
}
/// Creates a new Ruggiero locally optimal control with the provided efficiency threshold.
/// If the efficiency to correct the mapped orbital element is greater than the threshold, then the control law will be applied to this orbital element.
/// Note: this returns an Arc so it can be plugged into the Spacecraft dynamics directly.
pub fn from_ηthresholds(
objectives: &[Objective],
ηthresholds: &[f64],
initial: Spacecraft,
) -> Result<Arc<Self>, NyxError> {
let mut objs: [Option<Objective>; 5] = [None, None, None, None, None];
let mut eff: [f64; 5] = [0.0; 5];
if objectives.len() > 5 || objectives.is_empty() {
return Err(NyxError::GuidanceConfigError {
msg: format!(
"Must provide between 1 and 5 objectives (included), provided {}",
objectives.len()
),
});
} else if objectives.len() > ηthresholds.len() {
return Err(NyxError::GuidanceConfigError {
msg: format!(
"Must provide at least {} efficiency threshold values, provided {}",
objectives.len(),
ηthresholds.len()
),
});
}
for (i, obj) in objectives.iter().enumerate() {
if [
StateParameter::SMA,
StateParameter::Eccentricity,
StateParameter::Inclination,
StateParameter::RAAN,
StateParameter::AoP,
]
.contains(&obj.parameter)
{
objs[i] = Some(*obj);
} else {
return Err(NyxError::GuidanceConfigError {
msg: format!("Objective {} not supported in Ruggerio", obj.parameter),
});
}
}
for i in 0..objectives.len() {
objs[i] = Some(objectives[i]);
eff[i] = ηthresholds[i];
}
Ok(Arc::new(Self {
objectives: objs,
init_state: initial,
ηthresholds: eff,
max_eclipse_prct: None,
}))
}
/// Creates a new Ruggiero locally optimal control as an Arc
/// Note: this returns an Arc so it can be plugged into the Spacecraft dynamics directly.
pub fn from_max_eclipse(
objectives: &[Objective],
initial: Spacecraft,
max_eclipse: f64,
) -> Result<Arc<Self>, NyxError> {
let mut objs: [Option<Objective>; 5] = [None, None, None, None, None];
let eff: [f64; 5] = [0.0; 5];
if objectives.len() > 5 || objectives.is_empty() {
return Err(NyxError::GuidanceConfigError {
msg: format!(
"Must provide between 1 and 5 objectives (included), provided {}",
objectives.len()
),
});
}
for (i, obj) in objectives.iter().enumerate() {
if [
StateParameter::SMA,
StateParameter::Eccentricity,
StateParameter::Inclination,
StateParameter::RAAN,
StateParameter::AoP,
]
.contains(&obj.parameter)
{
objs[i] = Some(*obj);
} else {
return Err(NyxError::GuidanceConfigError {
msg: format!("Objective {} not supported in Ruggerio", obj.parameter),
});
}
}
for i in 0..objectives.len() {
objs[i] = Some(objectives[i]);
}
Ok(Arc::new(Self {
objectives: objs,
init_state: initial,
ηthresholds: eff,
max_eclipse_prct: Some(max_eclipse),
}))
}
/// Sets the maximum eclipse during which we can thrust.
pub fn set_max_eclipse(&mut self, max_eclipse: f64) {
self.max_eclipse_prct = Some(max_eclipse);
}
/// Returns the efficiency η ∈ [0; 1] of correcting a specific orbital element at the provided osculating orbit
pub fn efficency(parameter: &StateParameter, osc_orbit: &Orbit) -> Result<f64, GuidanceError> {
let e = osc_orbit.ecc().context(GuidancePhysicsSnafu {
action: "computing Ruggiero efficency",
})?;
let ν_ta = osc_orbit
.ta_deg()
.context(GuidancePhysicsSnafu {
action: "computing Ruggiero efficency",
})?
.to_radians();
let ω = osc_orbit
.aop_deg()
.context(GuidancePhysicsSnafu {
action: "computing Ruggiero efficency",
})?
.to_radians();
match parameter {
StateParameter::SMA => {
let a = osc_orbit.sma_km().context(GuidancePhysicsSnafu {
action: "computing Ruggiero efficency",
})?;
let μ = osc_orbit.frame.mu_km3_s2().context(GuidancePhysicsSnafu {
action: "computing Ruggiero efficency",
})?;
Ok(osc_orbit.vmag_km_s() * ((a * (1.0 - e)) / (μ * (1.0 + e))).sqrt())
}
StateParameter::Eccentricity => {
let num = 1.0 + 2.0 * e * ν_ta.cos() + ν_ta.cos().powi(2);
let denom = 1.0 + e * ν_ta.cos();
// NOTE: There is a typo in IEPC 2011 102: the max of this efficiency function is at ν=0
// where it is equal to 2*(2+2e) / (1+e). Therefore, I think the correct formulation should be
// _divided_ by two, not multiplied by two.
Ok(num / (2.0 * denom))
}
StateParameter::Inclination => {
let num = (ω + ν_ta).cos().abs()
* ((1.0 - e.powi(2) * ω.sin().powi(2)).sqrt() - e * ω.cos().abs());
let denom = 1.0 + e * ν_ta.cos();
Ok(num / denom)
}
StateParameter::RAAN => {
let num = (ω + ν_ta).sin().abs()
* ((1.0 - e.powi(2) * ω.cos().powi(2)).sqrt() - e * ω.sin().abs());
let denom = 1.0 + e * ν_ta.cos();
Ok(num / denom)
}
StateParameter::AoP => Ok(1.0),
_ => Err(GuidanceError::InvalidControl { param: *parameter }),
}
}
/// Computes the weight at which to correct this orbital element, will be zero if the current efficiency is below the threshold
fn weighting(&self, obj: &Objective, osc_sc: &Spacecraft, η_threshold: f64) -> f64 {
let init = self.init_state.value(obj.parameter).unwrap();
let osc = osc_sc.value(obj.parameter).unwrap();
let target = obj.desired_value;
let tol = obj.tolerance;
// Calculate the efficiency of correcting this specific orbital element
let η = Self::efficency(&obj.parameter, &osc_sc.orbit).unwrap();
if (osc - target).abs() < tol || η < η_threshold {
0.0
} else {
// Let's add the tolerance to the initial value if we want to keep a parameter fixed (i.e. target and initial are equal)
(target - osc)
/ (target
- if (init - target).abs() < tol {
init + tol
} else {
init
})
.abs()
}
}
/// Returns whether the guidance law has achieved all goals
pub fn status(&self, state: &Spacecraft) -> Vec<String> {
self.objectives
.iter()
.flatten()
.map(|obj| {
let (ok, err) = obj.assess(state).unwrap();
format!(
"{} achieved: {}\t error = {:.5} {}",
obj,
ok,
err,
obj.parameter.unit()
)
})
.collect::<Vec<String>>()
}
}
impl fmt::Display for Ruggiero {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let obj_msg = self
.objectives
.iter()
.flatten()
.map(|obj| format!("{obj}"))
.collect::<Vec<String>>();
write!(
f,
"Ruggiero Controller (max eclipse: {}): \n {}",
match self.max_eclipse_prct {
Some(eclp) => format!("{eclp}"),
None => "None".to_string(),
},
obj_msg.join("\n")
)
}
}
impl GuidanceLaw for Ruggiero {
/// Returns whether the guidance law has achieved all goals
fn achieved(&self, state: &Spacecraft) -> Result<bool, GuidanceError> {
for obj in self.objectives.iter().flatten() {
if !obj
.assess_value(state.value(obj.parameter).context(GuidStateSnafu)?)
.0
{
return Ok(false);
}
}
Ok(true)
}
fn direction(&self, sc: &Spacecraft) -> Result<Vector3<f64>, GuidanceError> {
if sc.mode() == GuidanceMode::Thrust {
let osc = sc.orbit;
let mut steering = Vector3::zeros();
for (i, obj) in self.objectives.iter().flatten().enumerate() {
let weight = self.weighting(obj, sc, self.ηthresholds[i]);
if weight.abs() <= 0.0 {
continue;
}
// Compute all of the orbital elements here to unclutter the algorithm
let ecc = osc.ecc().context(GuidancePhysicsSnafu {
action: "computing Ruggiero guidance",
})?;
let ta_rad = osc
.ta_deg()
.context(GuidancePhysicsSnafu {
action: "computing Ruggiero guidance",
})?
.to_radians();
let inc_rad = osc
.inc_deg()
.context(GuidancePhysicsSnafu {
action: "computing Ruggiero guidance",
})?
.to_radians();
let aop_rad = osc
.aop_deg()
.context(GuidancePhysicsSnafu {
action: "computing Ruggiero guidance",
})?
.to_radians();
let ea_rad = osc
.ea_deg()
.context(GuidancePhysicsSnafu {
action: "computing Ruggiero guidance",
})?
.to_radians();
match obj.parameter {
StateParameter::SMA => {
let num = ecc * ta_rad.sin();
let denom = 1.0 + ecc * ta_rad.cos();
let alpha = num.atan2(denom);
steering += unit_vector_from_plane_angles(alpha, 0.0) * weight;
}
StateParameter::Eccentricity => {
let num = ta_rad.sin();
let denom = ta_rad.cos() + ea_rad.cos();
let alpha = num.atan2(denom);
steering += unit_vector_from_plane_angles(alpha, 0.0) * weight;
}
StateParameter::Inclination => {
let beta = half_pi.copysign((ta_rad + aop_rad).cos());
steering += unit_vector_from_plane_angles(0.0, beta) * weight;
}
StateParameter::RAAN => {
let beta = half_pi.copysign((ta_rad + aop_rad).sin());
steering += unit_vector_from_plane_angles(0.0, beta) * weight;
}
StateParameter::AoP => {
let oe2 = 1.0 - ecc.powi(2);
let e3 = ecc.powi(3);
// Compute the optimal true anomaly for in-plane thrusting
let sqrt_val = (0.25 * (oe2 / e3).powi(2) + 1.0 / 27.0).sqrt();
let opti_ta_alpha = ((oe2 / (2.0 * e3) + sqrt_val).powf(1.0 / 3.0)
- (-oe2 / (2.0 * e3) + sqrt_val).powf(1.0 / 3.0)
- 1.0 / ecc)
.acos();
// Compute the optimal true anomaly for out of plane thrusting
let opti_ta_beta = (-ecc * aop_rad.cos()).acos() - aop_rad;
// And choose whether to do an in-plane or out of plane thrust
if (ta_rad - opti_ta_alpha).abs() < (ta_rad - opti_ta_beta).abs() {
// In plane
let p = osc.semi_parameter_km().context(GuidancePhysicsSnafu {
action: "computing Ruggiero guidance",
})?;
let (sin_ta, cos_ta) = ta_rad.sin_cos();
let alpha = (-p * cos_ta).atan2((p + osc.rmag_km()) * sin_ta);
steering += unit_vector_from_plane_angles(alpha, 0.0) * weight;
} else {
// Out of plane
let beta = half_pi.copysign(-(ta_rad + aop_rad).sin()) * inc_rad.cos();
steering += unit_vector_from_plane_angles(0.0, beta) * weight;
};
}
_ => unreachable!(),
}
}
// Return a normalized vector
steering = if steering.norm() > 0.0 {
steering / steering.norm()
} else {
steering
};
// Convert to inertial -- this whole guidance law is computed in the RCN frame
Ok(osc
.dcm_from_rcn_to_inertial()
.context(GuidancePhysicsSnafu {
action: "computing RCN frame",
})?
* steering)
} else {
Ok(Vector3::zeros())
}
}
// Either thrust full power or not at all
fn throttle(&self, sc: &Spacecraft) -> Result<f64, GuidanceError> {
if sc.mode() == GuidanceMode::Thrust {
if self.direction(sc)?.norm() > 0.0 {
Ok(1.0)
} else {
Ok(0.0)
}
} else {
Ok(0.0)
}
}
/// Update the state for the next iteration
fn next(&self, sc: &mut Spacecraft, almanac: Arc<Almanac>) {
if sc.mode() != GuidanceMode::Inhibit {
if !self.achieved(sc).unwrap() {
// Check eclipse state if applicable.
if let Some(max_eclipse) = self.max_eclipse_prct {
let locator = EclipseLocator::cislunar(almanac.clone());
if locator
.compute(sc.orbit, almanac)
.expect("cannot compute eclipse")
.percentage
> max_eclipse
{
// Coast in eclipse
sc.mode = GuidanceMode::Coast;
} else {
sc.mode = GuidanceMode::Thrust;
}
} else if sc.mode() == GuidanceMode::Coast {
debug!("enabling steering: {:x}", sc.orbit);
}
sc.mut_mode(GuidanceMode::Thrust);
} else {
if sc.mode() == GuidanceMode::Thrust {
debug!("disabling steering: {:x}", sc.orbit);
}
sc.mut_mode(GuidanceMode::Coast);
}
}
}
}
#[test]
fn ruggiero_weight() {
use crate::time::Epoch;
use anise::constants::frames::EARTH_J2000;
let eme2k = EARTH_J2000.with_mu_km3_s2(398_600.433);
let start_time = Epoch::from_gregorian_tai_at_midnight(2020, 1, 1);
let orbit = Orbit::keplerian(7378.1363, 0.01, 0.05, 0.0, 0.0, 1.0, start_time, eme2k);
let sc = Spacecraft::new(orbit, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0);
// Define the objectives
let objectives = &[
Objective::within_tolerance(StateParameter::SMA, 42164.0, 1.0),
Objective::within_tolerance(StateParameter::Eccentricity, 0.01, 5e-5),
];
let ruggiero = Ruggiero::simple(objectives, sc).unwrap();
// 7301.597157 201.699933 0.176016 -0.202974 7.421233 0.006476 298.999726
let osc = Orbit::new(
7_303.253_461_441_64f64,
127.478_714_816_381_75,
0.111_246_193_227_445_4,
-0.128_284_025_765_195_6,
7.422_889_151_816_439,
0.006_477_694_429_837_2,
start_time,
eme2k,
);
let mut osc_sc = Spacecraft::new(osc, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0);
// Must set the guidance mode to thrusting otherwise the direction will be set to zero.
osc_sc.mut_mode(GuidanceMode::Thrust);
let expected = Vector3::new(
-0.017_279_636_133_108_3,
0.999_850_315_226_803,
0.000_872_534_222_883_2,
);
let got = ruggiero.direction(&osc_sc).unwrap();
assert!(
dbg!(expected - got).norm() < 1e-12,
"incorrect direction computed"
);
}