nyx_space/dynamics/orbital.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use super::{
AccelModel, DynamicsAlmanacSnafu, DynamicsAstroSnafu, DynamicsError, DynamicsPlanetarySnafu,
};
use crate::cosmic::{AstroPhysicsSnafu, Frame, Orbit};
use crate::linalg::{Const, Matrix3, Matrix6, OVector, Vector3, Vector6};
use anise::almanac::Almanac;
use anise::astro::Aberration;
use hyperdual::linalg::norm;
use hyperdual::{extract_jacobian_and_result, hyperspace_from_vector, Float, OHyperdual};
use snafu::ResultExt;
use std::f64;
use std::fmt;
use std::sync::Arc;
pub use super::sph_harmonics::Harmonics;
/// `OrbitalDynamics` provides the equations of motion for any celestial dynamic, without state transition matrix computation.
#[derive(Clone)]
pub struct OrbitalDynamics {
pub accel_models: Vec<Arc<dyn AccelModel + Sync>>,
}
impl OrbitalDynamics {
/// Initializes the point masses gravities with the provided list of bodies
pub fn point_masses(celestial_objects: Vec<i32>) -> Self {
// Create the point masses
Self::new(vec![PointMasses::new(celestial_objects)])
}
/// Initializes a OrbitalDynamics which does not simulate the gravity pull of other celestial objects but the primary one.
pub fn two_body() -> Self {
Self::new(vec![])
}
/// Initialize orbital dynamics with a list of acceleration models
pub fn new(accel_models: Vec<Arc<dyn AccelModel + Sync>>) -> Self {
Self { accel_models }
}
/// Initialize new orbital mechanics with the provided model.
/// **Note:** Orbital dynamics _always_ include two body dynamics, these cannot be turned off.
pub fn from_model(accel_model: Arc<dyn AccelModel + Sync>) -> Self {
Self::new(vec![accel_model])
}
}
impl fmt::Display for OrbitalDynamics {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let models: Vec<String> = self.accel_models.iter().map(|x| format!("{x}")).collect();
write!(f, "Orbital dynamics: {}", models.join("; "))
}
}
impl OrbitalDynamics {
pub(crate) fn eom(
&self,
osc: &Orbit,
almanac: Arc<Almanac>,
) -> Result<OVector<f64, Const<42>>, DynamicsError> {
// Still return something of size 42, but the STM will be zeros.
let body_acceleration = (-osc
.frame
.mu_km3_s2()
.context(AstroPhysicsSnafu)
.context(DynamicsAstroSnafu)?
/ osc.rmag_km().powi(3))
* osc.radius_km;
let mut d_x = Vector6::from_iterator(
osc.velocity_km_s
.iter()
.chain(body_acceleration.iter())
.cloned(),
);
// Apply the acceleration models
for model in &self.accel_models {
let model_acc = model.eom(osc, almanac.clone())?;
for i in 0..3 {
d_x[i + 3] += model_acc[i];
}
}
Ok(OVector::<f64, Const<42>>::from_iterator(
d_x.iter()
.chain(OVector::<f64, Const<36>>::zeros().iter())
.cloned(),
))
}
pub fn dual_eom(
&self,
_delta_t_s: f64,
osc: &Orbit,
almanac: Arc<Almanac>,
) -> Result<(Vector6<f64>, Matrix6<f64>), DynamicsError> {
// Extract data from hyperspace
// Build full state vector with partials in the right position (hence building with all six components)
let state: Vector6<OHyperdual<f64, Const<7>>> =
hyperspace_from_vector(&osc.to_cartesian_pos_vel());
let radius = state.fixed_rows::<3>(0).into_owned();
let velocity = state.fixed_rows::<3>(3).into_owned();
// Code up math as usual
let rmag = norm(&radius);
let body_acceleration = radius
* (OHyperdual::<f64, Const<7>>::from_real(
-osc.frame
.mu_km3_s2()
.context(AstroPhysicsSnafu)
.context(DynamicsAstroSnafu)?,
) / rmag.powi(3));
// Extract result into Vector6 and Matrix6
let mut dx = Vector6::zeros();
let mut grad = Matrix6::zeros();
for i in 0..6 {
dx[i] = if i < 3 {
velocity[i].real()
} else {
body_acceleration[i - 3].real()
};
for j in 1..7 {
grad[(i, j - 1)] = if i < 3 {
velocity[i][j]
} else {
body_acceleration[i - 3][j]
};
}
}
// Apply the acceleration models
for model in &self.accel_models {
let (model_acc, model_grad) = model.dual_eom(osc, almanac.clone())?;
for i in 0..3 {
dx[i + 3] += model_acc[i];
for j in 1..4 {
grad[(i + 3, j - 1)] += model_grad[(i, j - 1)];
}
}
}
// This function returns the time derivative of each function. The propagator will add this to the state vector (which has the previous STM).
// This is why we don't multiply the gradient (A matrix) with the previous STM
Ok((dx, grad))
}
}
/// PointMasses model
pub struct PointMasses {
pub celestial_objects: Vec<i32>,
/// Light-time correction computation if extra point masses are needed
pub correction: Option<Aberration>,
}
impl PointMasses {
/// Initializes the point masses gravities with the provided list of bodies
pub fn new(celestial_objects: Vec<i32>) -> Arc<Self> {
Arc::new(Self {
celestial_objects,
correction: None,
})
}
/// Initializes the point masses gravities with the provided list of bodies, and accounting for some light time correction
pub fn with_correction(celestial_objects: Vec<i32>, correction: Aberration) -> Self {
Self {
celestial_objects,
correction: Some(correction),
}
}
}
impl fmt::Display for PointMasses {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let masses: Vec<String> = self
.celestial_objects
.iter()
.map(|third_body| format!("{}", Frame::from_ephem_j2000(*third_body)))
.collect();
write!(f, "Point masses of {}", masses.join(", "))
}
}
impl AccelModel for PointMasses {
fn eom(&self, osc: &Orbit, almanac: Arc<Almanac>) -> Result<Vector3<f64>, DynamicsError> {
let mut d_x = Vector3::zeros();
// Get all of the position vectors between the center body and the third bodies
for third_body in self.celestial_objects.iter().copied() {
if osc.frame.ephem_origin_id_match(third_body) {
// Ignore the contribution of the integration frame, that's handled by OrbitalDynamics
continue;
}
let third_body_frame = almanac
.frame_from_uid(osc.frame.with_ephem(third_body))
.context(DynamicsPlanetarySnafu {
action: "planetary data from third body not loaded",
})?;
// Orbit of j-th body as seen from primary body
let st_ij = almanac
.transform(third_body_frame, osc.frame, osc.epoch, self.correction)
.context(DynamicsAlmanacSnafu {
action: "computing third body gravitational pull",
})?;
let r_ij = st_ij.radius_km;
let r_ij3 = st_ij.rmag_km().powi(3);
let r_j = osc.radius_km - r_ij; // sc as seen from 3rd body
let r_j3 = r_j.norm().powi(3);
d_x += -third_body_frame
.mu_km3_s2()
.context(AstroPhysicsSnafu)
.context(DynamicsAstroSnafu)?
* (r_j / r_j3 + r_ij / r_ij3);
}
Ok(d_x)
}
fn dual_eom(
&self,
osc: &Orbit,
almanac: Arc<Almanac>,
) -> Result<(Vector3<f64>, Matrix3<f64>), DynamicsError> {
// Build the hyperdual space of the radius vector
let radius: Vector3<OHyperdual<f64, Const<7>>> = hyperspace_from_vector(&osc.radius_km);
// Extract result into Vector6 and Matrix6
let mut fx = Vector3::zeros();
let mut grad = Matrix3::zeros();
// Get all of the position vectors between the center body and the third bodies
for third_body in &self.celestial_objects {
let third_body_frame = almanac
.frame_from_uid(Frame::from_ephem_j2000(*third_body))
.context(DynamicsPlanetarySnafu {
action: "planetary data from third body not loaded",
})?;
if osc.frame.ephem_origin_match(third_body_frame) {
// Ignore the contribution of the integration frame, that's handled by OrbitalDynamics
continue;
}
let gm_d = OHyperdual::<f64, Const<7>>::from_real(
-third_body_frame
.mu_km3_s2()
.context(AstroPhysicsSnafu)
.context(DynamicsAstroSnafu)?,
);
// Orbit of j-th body as seen from primary body
let st_ij = almanac
.transform(third_body_frame, osc.frame, osc.epoch, self.correction)
.context(DynamicsAlmanacSnafu {
action: "computing third body gravitational pull",
})?;
let r_ij: Vector3<OHyperdual<f64, Const<7>>> = hyperspace_from_vector(&st_ij.radius_km);
let r_ij3 = norm(&r_ij).powi(3);
// The difference leads to the dual parts nulling themselves out, so let's fix that.
let mut r_j = radius - r_ij; // sc as seen from 3rd body
r_j[0][1] = 1.0;
r_j[1][2] = 1.0;
r_j[2][3] = 1.0;
let r_j3 = norm(&r_j).powi(3);
let mut third_body_acc_d = r_j / r_j3 + r_ij / r_ij3;
third_body_acc_d[0] *= gm_d;
third_body_acc_d[1] *= gm_d;
third_body_acc_d[2] *= gm_d;
let (fxp, gradp) = extract_jacobian_and_result::<_, 3, 3, 7>(&third_body_acc_d);
fx += fxp;
grad += gradp;
}
Ok((fx, grad))
}
}