nyx_space/dynamics/spacecraft.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use anise::prelude::Almanac;
use snafu::ResultExt;
use super::guidance::{ra_dec_from_unit_vector, GuidanceError, GuidanceLaw};
use super::orbital::OrbitalDynamics;
use super::{Dynamics, DynamicsGuidanceSnafu, ForceModel};
pub use crate::cosmic::{GuidanceMode, Spacecraft, STD_GRAVITY};
use crate::dynamics::DynamicsError;
use crate::linalg::{Const, DimName, OMatrix, OVector, Vector3};
pub use crate::md::prelude::SolarPressure;
use crate::State;
use std::fmt::{self, Write};
use std::sync::Arc;
use crate::cosmic::AstroError;
const NORM_ERR: f64 = 1e-4;
/// A generic spacecraft dynamics with associated force models, guidance law, and flag specifying whether to decrement the prop mass or not.
/// Note: when developing new guidance laws, it is recommended to _not_ enable prop decrement until the guidance law seems to work without proper physics.
/// Note: if the spacecraft runs out of prop, the propagation segment will return an error.
#[derive(Clone)]
pub struct SpacecraftDynamics {
pub orbital_dyn: OrbitalDynamics,
// TODO: https://github.com/nyx-space/nyx/issues/214
pub force_models: Vec<Arc<dyn ForceModel>>,
pub guid_law: Option<Arc<dyn GuidanceLaw>>,
pub decrement_mass: bool,
}
impl SpacecraftDynamics {
/// Initialize a Spacecraft with a set of orbital dynamics and a propulsion subsystem.
/// By default, the mass of the vehicle will be decremented as propellant is consumed.
pub fn from_guidance_law(orbital_dyn: OrbitalDynamics, guid_law: Arc<dyn GuidanceLaw>) -> Self {
Self {
orbital_dyn,
guid_law: Some(guid_law),
force_models: Vec::new(),
decrement_mass: true,
}
}
/// Initialize a Spacecraft with a set of orbital dynamics and a propulsion subsystem.
/// Will _not_ decrement the prop mass as propellant is consumed.
pub fn from_guidance_law_no_decr(
orbital_dyn: OrbitalDynamics,
guid_law: Arc<dyn GuidanceLaw>,
) -> Self {
Self {
orbital_dyn,
guid_law: Some(guid_law),
force_models: Vec::new(),
decrement_mass: false,
}
}
/// Initialize a Spacecraft with a set of orbital dynamics and with SRP enabled.
pub fn new(orbital_dyn: OrbitalDynamics) -> Self {
Self {
orbital_dyn,
guid_law: None,
force_models: Vec::new(),
decrement_mass: true,
}
}
/// Initialize new spacecraft dynamics with the provided orbital mechanics and with the provided force model.
pub fn from_model(orbital_dyn: OrbitalDynamics, force_model: Arc<dyn ForceModel>) -> Self {
Self {
orbital_dyn,
guid_law: None,
force_models: vec![force_model],
decrement_mass: true,
}
}
/// Initialize new spacecraft dynamics with a vector of force models.
pub fn from_models(
orbital_dyn: OrbitalDynamics,
force_models: Vec<Arc<dyn ForceModel>>,
) -> Self {
let mut me = Self::new(orbital_dyn);
me.force_models = force_models;
me
}
/// A shortcut to spacecraft.guid_law if a guidance law is defined for these dynamics
pub fn guidance_achieved(&self, state: &Spacecraft) -> Result<bool, GuidanceError> {
match &self.guid_law {
Some(guid_law) => guid_law.achieved(state),
None => Err(GuidanceError::NoGuidanceObjectiveDefined),
}
}
/// Clone these spacecraft dynamics and update the control to the one provided.
pub fn with_guidance_law(&self, guid_law: Arc<dyn GuidanceLaw>) -> Self {
Self {
orbital_dyn: self.orbital_dyn.clone(),
guid_law: Some(guid_law),
force_models: self.force_models.clone(),
decrement_mass: self.decrement_mass,
}
}
}
impl fmt::Display for SpacecraftDynamics {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let force_models: String = if self.force_models.is_empty() {
"No force models;".to_string()
} else {
self.force_models
.iter()
.fold(String::new(), |mut output, x| {
let _ = write!(output, "{x}; ");
output
})
};
write!(
f,
"Spacecraft dynamics (with guidance = {}): {} {}",
self.guid_law.is_some(),
force_models,
self.orbital_dyn
)
}
}
impl Dynamics for SpacecraftDynamics {
type HyperdualSize = Const<9>;
type StateType = Spacecraft;
fn finally(
&self,
next_state: Self::StateType,
almanac: Arc<Almanac>,
) -> Result<Self::StateType, DynamicsError> {
if next_state.mass.prop_mass_kg < 0.0 {
error!("negative prop mass at {}", next_state.epoch());
return Err(DynamicsError::FuelExhausted {
sc: Box::new(next_state),
});
}
if let Some(guid_law) = &self.guid_law {
let mut state = next_state;
// Update the control mode
guid_law.next(&mut state, almanac.clone());
Ok(state)
} else {
Ok(next_state)
}
}
fn eom(
&self,
delta_t_s: f64,
state: &OVector<f64, Const<90>>,
ctx: &Self::StateType,
almanac: Arc<Almanac>,
) -> Result<OVector<f64, Const<90>>, DynamicsError> {
// Rebuild the osculating state for the EOM context.
let osc_sc = ctx.set_with_delta_seconds(delta_t_s, state);
let mut d_x = OVector::<f64, Const<90>>::zeros();
// Maybe I use this only when estimating the orbit state from a spacecraft, but that functionality will soon disappear.
match ctx.stm {
Some(stm) => {
// Call the gradient (also called the dual EOM function of the force models)
let (state, grad) = self.dual_eom(delta_t_s, &osc_sc, almanac)?;
// Apply the gradient to the STM
let stm_dt = stm * grad;
// Rebuild the state vector
for (i, val) in state.iter().enumerate() {
d_x[i] = *val;
}
for (i, val) in stm_dt.iter().copied().enumerate() {
d_x[i + <Spacecraft as State>::Size::dim()] = val;
}
}
None => {
// Compute the orbital dynamics
for (i, val) in self
.orbital_dyn
.eom(&osc_sc.orbit, almanac.clone())?
.iter()
.copied()
.enumerate()
{
d_x[i] = val;
}
// Apply the force models for non STM propagation
for model in &self.force_models {
let model_frc = model.eom(&osc_sc, almanac.clone())? / osc_sc.mass_kg();
for i in 0..3 {
d_x[i + 3] += model_frc[i];
}
}
}
};
// Now include the control as needed.
if let Some(guid_law) = &self.guid_law {
let (thrust_force, prop_rate) = {
if osc_sc.thruster.is_none() {
return Err(DynamicsError::DynamicsGuidance {
source: GuidanceError::NoThrustersDefined,
});
}
let thruster = osc_sc.thruster.unwrap();
let thrust_throttle_lvl =
guid_law.throttle(&osc_sc).context(DynamicsGuidanceSnafu)?;
if !(0.0..=1.0).contains(&thrust_throttle_lvl) {
return Err(DynamicsError::DynamicsGuidance {
source: GuidanceError::ThrottleRatio {
ratio: thrust_throttle_lvl,
},
});
} else if thrust_throttle_lvl > 0.0 {
// Thrust arc
let thrust_inertial =
guid_law.direction(&osc_sc).context(DynamicsGuidanceSnafu)?;
if (thrust_inertial.norm() - 1.0).abs() > NORM_ERR {
let (alpha, delta) = ra_dec_from_unit_vector(thrust_inertial);
return Err(DynamicsError::DynamicsGuidance {
source: GuidanceError::InvalidDirection {
x: thrust_inertial[0],
y: thrust_inertial[1],
z: thrust_inertial[2],
in_plane_deg: alpha.to_degrees(),
out_of_plane_deg: delta.to_degrees(),
},
});
} else if thrust_inertial.norm().is_normal() {
// Compute the thrust in Newtons and Isp
let total_thrust = (thrust_throttle_lvl * thruster.thrust_N) * 1e-3; // Convert m/s^-2 to km/s^-2
(
thrust_inertial * total_thrust,
if self.decrement_mass {
let prop_usage = thrust_throttle_lvl * thruster.thrust_N
/ (thruster.isp_s * STD_GRAVITY);
-prop_usage
} else {
0.0
},
)
} else {
warn!(
"Abnormal thrust direction vector\t|u| = {}",
thrust_inertial.norm()
);
(Vector3::zeros(), 0.0)
}
} else {
(Vector3::zeros(), 0.0)
}
};
for i in 0..3 {
d_x[i + 3] += thrust_force[i] / osc_sc.mass_kg();
}
d_x[8] += prop_rate;
}
Ok(d_x)
}
fn dual_eom(
&self,
delta_t_s: f64,
ctx: &Self::StateType,
almanac: Arc<Almanac>,
) -> Result<(OVector<f64, Const<9>>, OMatrix<f64, Const<9>, Const<9>>), DynamicsError> {
// Rebuild the appropriately sized state and STM.
// This is the orbital state followed by Cr and Cd
let mut d_x = OVector::<f64, Const<9>>::zeros();
let mut grad = OMatrix::<f64, Const<9>, Const<9>>::zeros();
let (orb_state, orb_grad) =
self.orbital_dyn
.dual_eom(delta_t_s, &ctx.orbit, almanac.clone())?;
// Copy the d orbit dt data
for (i, val) in orb_state.iter().enumerate() {
d_x[i] = *val;
}
for i in 0..6 {
for j in 0..6 {
grad[(i, j)] = orb_grad[(i, j)];
}
}
if self.guid_law.is_some() {
return Err(DynamicsError::DynamicsAstro {
source: AstroError::PartialsUndefined,
});
}
// Call the EOMs
let total_mass = ctx.mass_kg();
for model in &self.force_models {
let (model_frc, model_grad) = model.dual_eom(ctx, almanac.clone())?;
for i in 0..3 {
// Add the velocity changes
d_x[i + 3] += model_frc[i] / total_mass;
// Add the velocity partials
for j in 0..3 {
grad[(i + 3, j)] += model_grad[(i, j)] / total_mass;
}
}
// Add this force model's estimation if applicable.
if let Some(idx) = model.estimation_index() {
for j in 0..3 {
grad[(j + 3, idx)] += model_grad[(3, j)] / total_mass;
}
}
}
Ok((d_x, grad))
}
}