nyx_space/dynamics/
sph_harmonics.rs

1/*
2    Nyx, blazing fast astrodynamics
3    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
4
5    This program is free software: you can redistribute it and/or modify
6    it under the terms of the GNU Affero General Public License as published
7    by the Free Software Foundation, either version 3 of the License, or
8    (at your option) any later version.
9
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU Affero General Public License for more details.
14
15    You should have received a copy of the GNU Affero General Public License
16    along with this program.  If not, see <https://www.gnu.org/licenses/>.
17*/
18
19use anise::errors::OrientationSnafu;
20use anise::prelude::Almanac;
21use snafu::ResultExt;
22
23use crate::cosmic::{AstroPhysicsSnafu, Frame, Orbit};
24use crate::dynamics::AccelModel;
25use crate::io::gravity::HarmonicsMem;
26use crate::linalg::{DMatrix, Matrix3, Vector3, Vector4, U7};
27use hyperdual::linalg::norm;
28use hyperdual::{hyperspace_from_vector, Float, OHyperdual};
29use std::cmp::min;
30use std::fmt;
31use std::sync::Arc;
32
33use super::{DynamicsAlmanacSnafu, DynamicsAstroSnafu, DynamicsError};
34
35#[derive(Clone)]
36pub struct Harmonics {
37    compute_frame: Frame,
38    stor: HarmonicsMem,
39    a_nm: DMatrix<f64>,
40    b_nm: DMatrix<f64>,
41    c_nm: DMatrix<f64>,
42    vr01: DMatrix<f64>,
43    vr11: DMatrix<f64>,
44    a_nm_h: DMatrix<OHyperdual<f64, U7>>,
45    b_nm_h: DMatrix<OHyperdual<f64, U7>>,
46    c_nm_h: DMatrix<OHyperdual<f64, U7>>,
47    vr01_h: DMatrix<OHyperdual<f64, U7>>,
48    vr11_h: DMatrix<OHyperdual<f64, U7>>,
49}
50
51impl Harmonics {
52    /// Create a new Harmonics dynamical model from the provided gravity potential storage instance.
53    pub fn from_stor(compute_frame: Frame, stor: HarmonicsMem) -> Arc<Self> {
54        let degree_np2 = stor.max_degree_n() + 2;
55        let mut a_nm = DMatrix::from_element(degree_np2 + 1, degree_np2 + 1, 0.0);
56        let mut b_nm = DMatrix::from_element(degree_np2, degree_np2, 0.0);
57        let mut c_nm = DMatrix::from_element(degree_np2, degree_np2, 0.0);
58        let mut vr01 = DMatrix::from_element(degree_np2, degree_np2, 0.0);
59        let mut vr11 = DMatrix::from_element(degree_np2, degree_np2, 0.0);
60
61        // Initialize the diagonal elements (not a function of the input)
62        a_nm[(0, 0)] = 1.0;
63        for n in 1..=degree_np2 {
64            let nf64 = n as f64;
65            // Diagonal element
66            a_nm[(n, n)] = (1.0 + 1.0 / (2.0 * nf64)).sqrt() * a_nm[(n - 1, n - 1)];
67        }
68
69        // Pre-compute the B_nm, C_nm, vr01 and vr11 storages
70        for n in 0..degree_np2 {
71            for m in 0..degree_np2 {
72                let nf64 = n as f64;
73                let mf64 = m as f64;
74                // Compute c_nm, which is B_nm/B_(n-1,m) in Jones' dissertation
75                c_nm[(n, m)] = (((2.0 * nf64 + 1.0) * (nf64 + mf64 - 1.0) * (nf64 - mf64 - 1.0))
76                    / ((nf64 - mf64) * (nf64 + mf64) * (2.0 * nf64 - 3.0)))
77                    .sqrt();
78
79                b_nm[(n, m)] = (((2.0 * nf64 + 1.0) * (2.0 * nf64 - 1.0))
80                    / ((nf64 + mf64) * (nf64 - mf64)))
81                    .sqrt();
82
83                vr01[(n, m)] = ((nf64 - mf64) * (nf64 + mf64 + 1.0)).sqrt();
84                vr11[(n, m)] = (((2.0 * nf64 + 1.0) * (nf64 + mf64 + 2.0) * (nf64 + mf64 + 1.0))
85                    / (2.0 * nf64 + 3.0))
86                    .sqrt();
87
88                if m == 0 {
89                    vr01[(n, m)] /= 2.0_f64.sqrt();
90                    vr11[(n, m)] /= 2.0_f64.sqrt();
91                }
92            }
93        }
94
95        // Repeat for the hyperdual part in case we need to super the partials
96        let mut a_nm_h =
97            DMatrix::from_element(degree_np2 + 1, degree_np2 + 1, OHyperdual::from(0.0));
98        let mut b_nm_h = DMatrix::from_element(degree_np2, degree_np2, OHyperdual::from(0.0));
99        let mut c_nm_h = DMatrix::from_element(degree_np2, degree_np2, OHyperdual::from(0.0));
100        let mut vr01_h = DMatrix::from_element(degree_np2, degree_np2, OHyperdual::from(0.0));
101        let mut vr11_h = DMatrix::from_element(degree_np2, degree_np2, OHyperdual::from(0.0));
102
103        // initialize the diagonal elements (not a function of the input)
104        a_nm_h[(0, 0)] = OHyperdual::from(1.0);
105        for n in 1..=degree_np2 {
106            // Diagonal element
107            a_nm_h[(n, n)] = OHyperdual::from(a_nm[(n, n)]);
108        }
109
110        // Pre-compute the B_nm, C_nm, vr01 and vr11 storages
111        for n in 0..degree_np2 {
112            for m in 0..degree_np2 {
113                vr01_h[(n, m)] = OHyperdual::from(vr01[(n, m)]);
114                vr11_h[(n, m)] = OHyperdual::from(vr11[(n, m)]);
115                b_nm_h[(n, m)] = OHyperdual::from(b_nm[(n, m)]);
116                c_nm_h[(n, m)] = OHyperdual::from(c_nm[(n, m)]);
117            }
118        }
119
120        Arc::new(Self {
121            compute_frame,
122            stor,
123            a_nm,
124            b_nm,
125            c_nm,
126            vr01,
127            vr11,
128            a_nm_h,
129            b_nm_h,
130            c_nm_h,
131            vr01_h,
132            vr11_h,
133        })
134    }
135}
136
137impl fmt::Display for Harmonics {
138    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
139        write!(
140            f,
141            "{} gravity field {}x{} (order x degree)",
142            self.compute_frame,
143            self.stor.max_order_m(),
144            self.stor.max_degree_n(),
145        )
146    }
147}
148
149impl AccelModel for Harmonics {
150    fn eom(&self, osc: &Orbit, almanac: Arc<Almanac>) -> Result<Vector3<f64>, DynamicsError> {
151        // Convert the osculating orbit to the correct frame (needed for multiple harmonic fields)
152        let state = almanac
153            .transform_to(*osc, self.compute_frame, None)
154            .context(DynamicsAlmanacSnafu {
155                action: "transforming into gravity field frame",
156            })?;
157
158        // Using the GMAT notation, with extra character for ease of highlight
159        let r_ = state.rmag_km();
160        let s_ = state.radius_km.x / r_;
161        let t_ = state.radius_km.y / r_;
162        let u_ = state.radius_km.z / r_;
163        let max_degree = self.stor.max_degree_n(); // In GMAT, the degree is NN
164        let max_order = self.stor.max_order_m(); // In GMAT, the order is MM
165
166        // Create the associated Legendre polynomials. Note that we add three items as per GMAT (this may be useful for the STM)
167        let mut a_nm = self.a_nm.clone();
168
169        // Initialize the diagonal elements (not a function of the input)
170        a_nm[(1, 0)] = u_ * 3.0f64.sqrt();
171        for n in 1..=max_degree + 1 {
172            let nf64 = n as f64;
173            // Off diagonal
174            a_nm[(n + 1, n)] = (2.0 * nf64 + 3.0).sqrt() * u_ * a_nm[(n, n)];
175        }
176
177        for m in 0..=max_order + 1 {
178            for n in (m + 2)..=max_degree + 1 {
179                let hm_idx = (n, m);
180                a_nm[hm_idx] = u_ * self.b_nm[hm_idx] * a_nm[(n - 1, m)]
181                    - self.c_nm[hm_idx] * a_nm[(n - 2, m)];
182            }
183        }
184
185        // Generate r_m and i_m
186        let mut r_m = Vec::with_capacity(min(max_degree, max_order) + 1);
187        let mut i_m = Vec::with_capacity(min(max_degree, max_order) + 1);
188
189        r_m.push(1.0);
190        i_m.push(0.0);
191
192        for m in 1..=min(max_degree, max_order) {
193            r_m.push(s_ * r_m[m - 1] - t_ * i_m[m - 1]);
194            i_m.push(s_ * i_m[m - 1] + t_ * r_m[m - 1]);
195        }
196
197        let eq_radius_km = self
198            .compute_frame
199            .mean_equatorial_radius_km()
200            .context(AstroPhysicsSnafu)
201            .context(DynamicsAstroSnafu)?;
202
203        let mu_km3_s2 = self
204            .compute_frame
205            .mu_km3_s2()
206            .context(AstroPhysicsSnafu)
207            .context(DynamicsAstroSnafu)?;
208
209        let rho = eq_radius_km / r_;
210        let mut rho_np1 = mu_km3_s2 / r_ * rho;
211        let mut accel4: Vector4<f64> = Vector4::zeros();
212
213        for n in 1..max_degree {
214            let mut sum: Vector4<f64> = Vector4::zeros();
215            rho_np1 *= rho;
216
217            for m in 0..=min(n, max_order) {
218                let (c_val, s_val) = self.stor.cs_nm(n, m);
219                let d_ = (c_val * r_m[m] + s_val * i_m[m]) * 2.0.sqrt();
220                let e_ = if m == 0 {
221                    0.0
222                } else {
223                    (c_val * r_m[m - 1] + s_val * i_m[m - 1]) * 2.0.sqrt()
224                };
225                let f_ = if m == 0 {
226                    0.0
227                } else {
228                    (s_val * r_m[m - 1] - c_val * i_m[m - 1]) * 2.0.sqrt()
229                };
230
231                sum.x += (m as f64) * a_nm[(n, m)] * e_;
232                sum.y += (m as f64) * a_nm[(n, m)] * f_;
233                sum.z += self.vr01[(n, m)] * a_nm[(n, m + 1)] * d_;
234                sum.w -= self.vr11[(n, m)] * a_nm[(n + 1, m + 1)] * d_;
235            }
236            let rr = rho_np1 / eq_radius_km;
237            accel4 += rr * sum;
238        }
239        let accel = Vector3::new(
240            accel4.x + accel4.w * s_,
241            accel4.y + accel4.w * t_,
242            accel4.z + accel4.w * u_,
243        );
244        // Rotate this acceleration vector back into the integration frame (no center change needed, it's just a vector)
245        // As discussed with Sai, if the Earth was spinning faster, would the acceleration due to the harmonics be any different?
246        // No. Therefore, we do not need to account for the transport theorem here.
247        let dcm = almanac
248            .rotate(self.compute_frame, osc.frame, osc.epoch)
249            .context(OrientationSnafu {
250                action: "transform state dcm",
251            })
252            .context(DynamicsAlmanacSnafu {
253                action: "transforming into gravity field frame",
254            })?;
255
256        Ok(dcm.rot_mat * accel)
257    }
258
259    fn dual_eom(
260        &self,
261        osc: &Orbit,
262        almanac: Arc<Almanac>,
263    ) -> Result<(Vector3<f64>, Matrix3<f64>), DynamicsError> {
264        // Convert the osculating orbit to the correct frame (needed for multiple harmonic fields)
265        let state = almanac
266            .transform_to(*osc, self.compute_frame, None)
267            .context(DynamicsAlmanacSnafu {
268                action: "transforming into gravity field frame",
269            })?;
270
271        let radius: Vector3<OHyperdual<f64, U7>> = hyperspace_from_vector(&state.radius_km);
272
273        // Using the GMAT notation, with extra character for ease of highlight
274        let r_ = norm(&radius);
275        let s_ = radius[0] / r_;
276        let t_ = radius[1] / r_;
277        let u_ = radius[2] / r_;
278        let max_degree = self.stor.max_degree_n(); // In GMAT, the order is NN
279        let max_order = self.stor.max_order_m(); // In GMAT, the order is MM
280
281        // Create the associated Legendre polynomials. Note that we add three items as per GMAT (this may be useful for the STM)
282        let mut a_nm = self.a_nm_h.clone();
283
284        // Initialize the diagonal elements (not a function of the input)
285        a_nm[(1, 0)] = u_ * 3.0f64.sqrt();
286        for n in 1..=max_degree + 1 {
287            let nf64 = n as f64;
288            // Off diagonal
289            a_nm[(n + 1, n)] = OHyperdual::from((2.0 * nf64 + 3.0).sqrt()) * u_ * a_nm[(n, n)];
290        }
291
292        for m in 0..=max_order + 1 {
293            for n in (m + 2)..=max_degree + 1 {
294                let hm_idx = (n, m);
295                a_nm[hm_idx] = u_ * self.b_nm_h[hm_idx] * a_nm[(n - 1, m)]
296                    - self.c_nm_h[hm_idx] * a_nm[(n - 2, m)];
297            }
298        }
299
300        // Generate r_m and i_m
301        let mut r_m = Vec::with_capacity(min(max_degree, max_order) + 1);
302        let mut i_m = Vec::with_capacity(min(max_degree, max_order) + 1);
303
304        r_m.push(OHyperdual::<f64, U7>::from(1.0));
305        i_m.push(OHyperdual::<f64, U7>::from(0.0));
306
307        for m in 1..=min(max_degree, max_order) {
308            r_m.push(s_ * r_m[m - 1] - t_ * i_m[m - 1]);
309            i_m.push(s_ * i_m[m - 1] + t_ * r_m[m - 1]);
310        }
311
312        let real_eq_radius_km = self
313            .compute_frame
314            .mean_equatorial_radius_km()
315            .context(AstroPhysicsSnafu)
316            .context(DynamicsAstroSnafu)?;
317
318        let real_mu_km3_s2 = self
319            .compute_frame
320            .mu_km3_s2()
321            .context(AstroPhysicsSnafu)
322            .context(DynamicsAstroSnafu)?;
323
324        let eq_radius = OHyperdual::<f64, U7>::from(real_eq_radius_km);
325        let rho = eq_radius / r_;
326        let mut rho_np1 = OHyperdual::<f64, U7>::from(real_mu_km3_s2) / r_ * rho;
327
328        let mut a0 = OHyperdual::<f64, U7>::from(0.0);
329        let mut a1 = OHyperdual::<f64, U7>::from(0.0);
330        let mut a2 = OHyperdual::<f64, U7>::from(0.0);
331        let mut a3 = OHyperdual::<f64, U7>::from(0.0);
332        let sqrt2 = OHyperdual::<f64, U7>::from(2.0.sqrt());
333
334        for n in 1..max_degree {
335            let mut sum0 = OHyperdual::from(0.0);
336            let mut sum1 = OHyperdual::from(0.0);
337            let mut sum2 = OHyperdual::from(0.0);
338            let mut sum3 = OHyperdual::from(0.0);
339            rho_np1 *= rho;
340
341            for m in 0..=min(n, max_order) {
342                let (c_valf64, s_valf64) = self.stor.cs_nm(n, m);
343                let c_val = OHyperdual::<f64, U7>::from(c_valf64);
344                let s_val = OHyperdual::<f64, U7>::from(s_valf64);
345
346                let d_ = (c_val * r_m[m] + s_val * i_m[m]) * sqrt2;
347                let e_ = if m == 0 {
348                    OHyperdual::from(0.0)
349                } else {
350                    (c_val * r_m[m - 1] + s_val * i_m[m - 1]) * sqrt2
351                };
352                let f_ = if m == 0 {
353                    OHyperdual::from(0.0)
354                } else {
355                    (s_val * r_m[m - 1] - c_val * i_m[m - 1]) * sqrt2
356                };
357
358                sum0 += OHyperdual::from(m as f64) * a_nm[(n, m)] * e_;
359                sum1 += OHyperdual::from(m as f64) * a_nm[(n, m)] * f_;
360                sum2 += self.vr01_h[(n, m)] * a_nm[(n, m + 1)] * d_;
361                sum3 += self.vr11_h[(n, m)] * a_nm[(n + 1, m + 1)] * d_;
362            }
363            let rr = rho_np1 / eq_radius;
364            a0 += rr * sum0;
365            a1 += rr * sum1;
366            a2 += rr * sum2;
367            a3 -= rr * sum3;
368        }
369
370        let dcm = almanac
371            .rotate(self.compute_frame, osc.frame, osc.epoch)
372            .context(OrientationSnafu {
373                action: "transform state dcm",
374            })
375            .context(DynamicsAlmanacSnafu {
376                action: "transforming into gravity field frame",
377            })?
378            .rot_mat;
379
380        // Convert DCM to OHyperdual DCMs
381        let mut dcm_d = Matrix3::<OHyperdual<f64, U7>>::zeros();
382        for i in 0..3 {
383            for j in 0..3 {
384                dcm_d[(i, j)] = OHyperdual::from_fn(|k| {
385                    if k == 0 {
386                        dcm[(i, j)]
387                    } else if i + 1 == k {
388                        1.0
389                    } else {
390                        0.0
391                    }
392                })
393            }
394        }
395
396        let accel = dcm_d * Vector3::new(a0 + a3 * s_, a1 + a3 * t_, a2 + a3 * u_);
397        // Extract data
398        let mut dx = Vector3::zeros();
399        let mut grad = Matrix3::zeros();
400        for i in 0..3 {
401            dx[i] += accel[i].real();
402            // NOTE: Although the hyperdual state is of size 7, we're only setting the values up to 3 (Matrix3)
403            for j in 1..4 {
404                grad[(i, j - 1)] += accel[i][j];
405            }
406        }
407        Ok((dx, grad))
408    }
409}