nyx_space/dynamics/
sph_harmonics.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use anise::errors::OrientationSnafu;
use anise::prelude::Almanac;
use snafu::ResultExt;

use crate::cosmic::{AstroPhysicsSnafu, Frame, Orbit};
use crate::dynamics::AccelModel;
use crate::io::gravity::HarmonicsMem;
use crate::linalg::{DMatrix, Matrix3, Vector3, Vector4, U7};
use hyperdual::linalg::norm;
use hyperdual::{hyperspace_from_vector, Float, OHyperdual};
use std::cmp::min;
use std::fmt;
use std::sync::Arc;

use super::{DynamicsAlmanacSnafu, DynamicsAstroSnafu, DynamicsError};

#[derive(Clone)]
pub struct Harmonics {
    compute_frame: Frame,
    stor: HarmonicsMem,
    a_nm: DMatrix<f64>,
    b_nm: DMatrix<f64>,
    c_nm: DMatrix<f64>,
    vr01: DMatrix<f64>,
    vr11: DMatrix<f64>,
    a_nm_h: DMatrix<OHyperdual<f64, U7>>,
    b_nm_h: DMatrix<OHyperdual<f64, U7>>,
    c_nm_h: DMatrix<OHyperdual<f64, U7>>,
    vr01_h: DMatrix<OHyperdual<f64, U7>>,
    vr11_h: DMatrix<OHyperdual<f64, U7>>,
}

impl Harmonics {
    /// Create a new Harmonics dynamical model from the provided gravity potential storage instance.
    pub fn from_stor(compute_frame: Frame, stor: HarmonicsMem) -> Arc<Self> {
        let degree_np2 = stor.max_degree_n() + 2;
        let mut a_nm = DMatrix::from_element(degree_np2 + 1, degree_np2 + 1, 0.0);
        let mut b_nm = DMatrix::from_element(degree_np2, degree_np2, 0.0);
        let mut c_nm = DMatrix::from_element(degree_np2, degree_np2, 0.0);
        let mut vr01 = DMatrix::from_element(degree_np2, degree_np2, 0.0);
        let mut vr11 = DMatrix::from_element(degree_np2, degree_np2, 0.0);

        // Initialize the diagonal elements (not a function of the input)
        a_nm[(0, 0)] = 1.0;
        for n in 1..=degree_np2 {
            let nf64 = n as f64;
            // Diagonal element
            a_nm[(n, n)] = (1.0 + 1.0 / (2.0 * nf64)).sqrt() * a_nm[(n - 1, n - 1)];
        }

        // Pre-compute the B_nm, C_nm, vr01 and vr11 storages
        for n in 0..degree_np2 {
            for m in 0..degree_np2 {
                let nf64 = n as f64;
                let mf64 = m as f64;
                // Compute c_nm, which is B_nm/B_(n-1,m) in Jones' dissertation
                c_nm[(n, m)] = (((2.0 * nf64 + 1.0) * (nf64 + mf64 - 1.0) * (nf64 - mf64 - 1.0))
                    / ((nf64 - mf64) * (nf64 + mf64) * (2.0 * nf64 - 3.0)))
                    .sqrt();

                b_nm[(n, m)] = (((2.0 * nf64 + 1.0) * (2.0 * nf64 - 1.0))
                    / ((nf64 + mf64) * (nf64 - mf64)))
                    .sqrt();

                vr01[(n, m)] = ((nf64 - mf64) * (nf64 + mf64 + 1.0)).sqrt();
                vr11[(n, m)] = (((2.0 * nf64 + 1.0) * (nf64 + mf64 + 2.0) * (nf64 + mf64 + 1.0))
                    / (2.0 * nf64 + 3.0))
                    .sqrt();

                if m == 0 {
                    vr01[(n, m)] /= 2.0_f64.sqrt();
                    vr11[(n, m)] /= 2.0_f64.sqrt();
                }
            }
        }

        // Repeat for the hyperdual part in case we need to super the partials
        let mut a_nm_h =
            DMatrix::from_element(degree_np2 + 1, degree_np2 + 1, OHyperdual::from(0.0));
        let mut b_nm_h = DMatrix::from_element(degree_np2, degree_np2, OHyperdual::from(0.0));
        let mut c_nm_h = DMatrix::from_element(degree_np2, degree_np2, OHyperdual::from(0.0));
        let mut vr01_h = DMatrix::from_element(degree_np2, degree_np2, OHyperdual::from(0.0));
        let mut vr11_h = DMatrix::from_element(degree_np2, degree_np2, OHyperdual::from(0.0));

        // initialize the diagonal elements (not a function of the input)
        a_nm_h[(0, 0)] = OHyperdual::from(1.0);
        for n in 1..=degree_np2 {
            // Diagonal element
            a_nm_h[(n, n)] = OHyperdual::from(a_nm[(n, n)]);
        }

        // Pre-compute the B_nm, C_nm, vr01 and vr11 storages
        for n in 0..degree_np2 {
            for m in 0..degree_np2 {
                vr01_h[(n, m)] = OHyperdual::from(vr01[(n, m)]);
                vr11_h[(n, m)] = OHyperdual::from(vr11[(n, m)]);
                b_nm_h[(n, m)] = OHyperdual::from(b_nm[(n, m)]);
                c_nm_h[(n, m)] = OHyperdual::from(c_nm[(n, m)]);
            }
        }

        Arc::new(Self {
            compute_frame,
            stor,
            a_nm,
            b_nm,
            c_nm,
            vr01,
            vr11,
            a_nm_h,
            b_nm_h,
            c_nm_h,
            vr01_h,
            vr11_h,
        })
    }
}

impl fmt::Display for Harmonics {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "{} gravity field {}x{} (order x degree)",
            self.compute_frame,
            self.stor.max_order_m(),
            self.stor.max_degree_n(),
        )
    }
}

impl AccelModel for Harmonics {
    fn eom(&self, osc: &Orbit, almanac: Arc<Almanac>) -> Result<Vector3<f64>, DynamicsError> {
        // Convert the osculating orbit to the correct frame (needed for multiple harmonic fields)
        let state = almanac
            .transform_to(*osc, self.compute_frame, None)
            .context(DynamicsAlmanacSnafu {
                action: "transforming into gravity field frame",
            })?;

        // Using the GMAT notation, with extra character for ease of highlight
        let r_ = state.rmag_km();
        let s_ = state.radius_km.x / r_;
        let t_ = state.radius_km.y / r_;
        let u_ = state.radius_km.z / r_;
        let max_degree = self.stor.max_degree_n(); // In GMAT, the degree is NN
        let max_order = self.stor.max_order_m(); // In GMAT, the order is MM

        // Create the associated Legendre polynomials. Note that we add three items as per GMAT (this may be useful for the STM)
        let mut a_nm = self.a_nm.clone();

        // Initialize the diagonal elements (not a function of the input)
        a_nm[(1, 0)] = u_ * 3.0f64.sqrt();
        for n in 1..=max_degree + 1 {
            let nf64 = n as f64;
            // Off diagonal
            a_nm[(n + 1, n)] = (2.0 * nf64 + 3.0).sqrt() * u_ * a_nm[(n, n)];
        }

        for m in 0..=max_order + 1 {
            for n in (m + 2)..=max_degree + 1 {
                let hm_idx = (n, m);
                a_nm[hm_idx] = u_ * self.b_nm[hm_idx] * a_nm[(n - 1, m)]
                    - self.c_nm[hm_idx] * a_nm[(n - 2, m)];
            }
        }

        // Generate r_m and i_m
        let mut r_m = Vec::with_capacity(min(max_degree, max_order) + 1);
        let mut i_m = Vec::with_capacity(min(max_degree, max_order) + 1);

        r_m.push(1.0);
        i_m.push(0.0);

        for m in 1..=min(max_degree, max_order) {
            r_m.push(s_ * r_m[m - 1] - t_ * i_m[m - 1]);
            i_m.push(s_ * i_m[m - 1] + t_ * r_m[m - 1]);
        }

        let eq_radius_km = self
            .compute_frame
            .mean_equatorial_radius_km()
            .context(AstroPhysicsSnafu)
            .context(DynamicsAstroSnafu)?;

        let mu_km3_s2 = self
            .compute_frame
            .mu_km3_s2()
            .context(AstroPhysicsSnafu)
            .context(DynamicsAstroSnafu)?;

        let rho = eq_radius_km / r_;
        let mut rho_np1 = mu_km3_s2 / r_ * rho;
        let mut accel4: Vector4<f64> = Vector4::zeros();

        for n in 1..max_degree {
            let mut sum: Vector4<f64> = Vector4::zeros();
            rho_np1 *= rho;

            for m in 0..=min(n, max_order) {
                let (c_val, s_val) = self.stor.cs_nm(n, m);
                let d_ = (c_val * r_m[m] + s_val * i_m[m]) * 2.0.sqrt();
                let e_ = if m == 0 {
                    0.0
                } else {
                    (c_val * r_m[m - 1] + s_val * i_m[m - 1]) * 2.0.sqrt()
                };
                let f_ = if m == 0 {
                    0.0
                } else {
                    (s_val * r_m[m - 1] - c_val * i_m[m - 1]) * 2.0.sqrt()
                };

                sum.x += (m as f64) * a_nm[(n, m)] * e_;
                sum.y += (m as f64) * a_nm[(n, m)] * f_;
                sum.z += self.vr01[(n, m)] * a_nm[(n, m + 1)] * d_;
                sum.w -= self.vr11[(n, m)] * a_nm[(n + 1, m + 1)] * d_;
            }
            let rr = rho_np1 / eq_radius_km;
            accel4 += rr * sum;
        }
        let accel = Vector3::new(
            accel4.x + accel4.w * s_,
            accel4.y + accel4.w * t_,
            accel4.z + accel4.w * u_,
        );
        // Rotate this acceleration vector back into the integration frame (no center change needed, it's just a vector)
        // As discussed with Sai, if the Earth was spinning faster, would the acceleration due to the harmonics be any different?
        // No. Therefore, we do not need to account for the transport theorem here.
        let dcm = almanac
            .rotate(self.compute_frame, osc.frame, osc.epoch)
            .context(OrientationSnafu {
                action: "transform state dcm",
            })
            .context(DynamicsAlmanacSnafu {
                action: "transforming into gravity field frame",
            })?;

        Ok(dcm.rot_mat * accel)
    }

    fn dual_eom(
        &self,
        osc: &Orbit,
        almanac: Arc<Almanac>,
    ) -> Result<(Vector3<f64>, Matrix3<f64>), DynamicsError> {
        // Convert the osculating orbit to the correct frame (needed for multiple harmonic fields)
        let state = almanac
            .transform_to(*osc, self.compute_frame, None)
            .context(DynamicsAlmanacSnafu {
                action: "transforming into gravity field frame",
            })?;

        let radius: Vector3<OHyperdual<f64, U7>> = hyperspace_from_vector(&state.radius_km);

        // Using the GMAT notation, with extra character for ease of highlight
        let r_ = norm(&radius);
        let s_ = radius[0] / r_;
        let t_ = radius[1] / r_;
        let u_ = radius[2] / r_;
        let max_degree = self.stor.max_degree_n(); // In GMAT, the order is NN
        let max_order = self.stor.max_order_m(); // In GMAT, the order is MM

        // Create the associated Legendre polynomials. Note that we add three items as per GMAT (this may be useful for the STM)
        let mut a_nm = self.a_nm_h.clone();

        // Initialize the diagonal elements (not a function of the input)
        a_nm[(1, 0)] = u_ * 3.0f64.sqrt();
        for n in 1..=max_degree + 1 {
            let nf64 = n as f64;
            // Off diagonal
            a_nm[(n + 1, n)] = OHyperdual::from((2.0 * nf64 + 3.0).sqrt()) * u_ * a_nm[(n, n)];
        }

        for m in 0..=max_order + 1 {
            for n in (m + 2)..=max_degree + 1 {
                let hm_idx = (n, m);
                a_nm[hm_idx] = u_ * self.b_nm_h[hm_idx] * a_nm[(n - 1, m)]
                    - self.c_nm_h[hm_idx] * a_nm[(n - 2, m)];
            }
        }

        // Generate r_m and i_m
        let mut r_m = Vec::with_capacity(min(max_degree, max_order) + 1);
        let mut i_m = Vec::with_capacity(min(max_degree, max_order) + 1);

        r_m.push(OHyperdual::<f64, U7>::from(1.0));
        i_m.push(OHyperdual::<f64, U7>::from(0.0));

        for m in 1..=min(max_degree, max_order) {
            r_m.push(s_ * r_m[m - 1] - t_ * i_m[m - 1]);
            i_m.push(s_ * i_m[m - 1] + t_ * r_m[m - 1]);
        }

        let real_eq_radius_km = self
            .compute_frame
            .mean_equatorial_radius_km()
            .context(AstroPhysicsSnafu)
            .context(DynamicsAstroSnafu)?;

        let real_mu_km3_s2 = self
            .compute_frame
            .mu_km3_s2()
            .context(AstroPhysicsSnafu)
            .context(DynamicsAstroSnafu)?;

        let eq_radius = OHyperdual::<f64, U7>::from(real_eq_radius_km);
        let rho = eq_radius / r_;
        let mut rho_np1 = OHyperdual::<f64, U7>::from(real_mu_km3_s2) / r_ * rho;

        let mut a0 = OHyperdual::<f64, U7>::from(0.0);
        let mut a1 = OHyperdual::<f64, U7>::from(0.0);
        let mut a2 = OHyperdual::<f64, U7>::from(0.0);
        let mut a3 = OHyperdual::<f64, U7>::from(0.0);
        let sqrt2 = OHyperdual::<f64, U7>::from(2.0.sqrt());

        for n in 1..max_degree {
            let mut sum0 = OHyperdual::from(0.0);
            let mut sum1 = OHyperdual::from(0.0);
            let mut sum2 = OHyperdual::from(0.0);
            let mut sum3 = OHyperdual::from(0.0);
            rho_np1 *= rho;

            for m in 0..=min(n, max_order) {
                let (c_valf64, s_valf64) = self.stor.cs_nm(n, m);
                let c_val = OHyperdual::<f64, U7>::from(c_valf64);
                let s_val = OHyperdual::<f64, U7>::from(s_valf64);

                let d_ = (c_val * r_m[m] + s_val * i_m[m]) * sqrt2;
                let e_ = if m == 0 {
                    OHyperdual::from(0.0)
                } else {
                    (c_val * r_m[m - 1] + s_val * i_m[m - 1]) * sqrt2
                };
                let f_ = if m == 0 {
                    OHyperdual::from(0.0)
                } else {
                    (s_val * r_m[m - 1] - c_val * i_m[m - 1]) * sqrt2
                };

                sum0 += OHyperdual::from(m as f64) * a_nm[(n, m)] * e_;
                sum1 += OHyperdual::from(m as f64) * a_nm[(n, m)] * f_;
                sum2 += self.vr01_h[(n, m)] * a_nm[(n, m + 1)] * d_;
                sum3 += self.vr11_h[(n, m)] * a_nm[(n + 1, m + 1)] * d_;
            }
            let rr = rho_np1 / eq_radius;
            a0 += rr * sum0;
            a1 += rr * sum1;
            a2 += rr * sum2;
            a3 -= rr * sum3;
        }

        let dcm = almanac
            .rotate(self.compute_frame, osc.frame, osc.epoch)
            .context(OrientationSnafu {
                action: "transform state dcm",
            })
            .context(DynamicsAlmanacSnafu {
                action: "transforming into gravity field frame",
            })?
            .rot_mat;

        // Convert DCM to OHyperdual DCMs
        let mut dcm_d = Matrix3::<OHyperdual<f64, U7>>::zeros();
        for i in 0..3 {
            for j in 0..3 {
                dcm_d[(i, j)] = OHyperdual::from_fn(|k| {
                    if k == 0 {
                        dcm[(i, j)]
                    } else if i + 1 == k {
                        1.0
                    } else {
                        0.0
                    }
                })
            }
        }

        let accel = dcm_d * Vector3::new(a0 + a3 * s_, a1 + a3 * t_, a2 + a3 * u_);
        // Extract data
        let mut dx = Vector3::zeros();
        let mut grad = Matrix3::zeros();
        for i in 0..3 {
            dx[i] += accel[i].real();
            // NOTE: Although the hyperdual state is of size 7, we're only setting the values up to 3 (Matrix3)
            for j in 1..4 {
                grad[(i, j - 1)] += accel[i][j];
            }
        }
        Ok((dx, grad))
    }
}