nyx_space/io/
tracking_data.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use crate::{
    io::{MissingDataSnafu, ParquetSnafu},
    linalg::{allocator::Allocator, DefaultAllocator, OVector},
    od::{msr::TrackingArc, Measurement},
};

#[cfg(feature = "python")]
use crate::NyxError;

use arrow::{
    array::{Float64Array, StringArray},
    record_batch::RecordBatchReader,
};
use hifitime::Epoch;
use parquet::arrow::arrow_reader::ParquetRecordBatchReaderBuilder;
use snafu::prelude::*;
use std::fs::File;
use std::{collections::HashMap, error::Error, fmt::Display, path::Path};

#[cfg(feature = "python")]
use pyo3::prelude::*;

use super::{InputOutputError, StdIOSnafu};

/// A dynamic tracking arc allows loading a set of measurements from a parquet file and converting them
/// to the concrete measurement type when desired.
#[cfg_attr(feature = "python", pyclass)]
pub struct DynamicTrackingArc {
    pub device_cfg: String,
    pub path: String,
    metadata: HashMap<String, String>,
}

impl DynamicTrackingArc {
    pub fn from_parquet<P: AsRef<Path>>(path: P) -> Result<Self, Box<dyn Error>> {
        let file = File::open(&path)?;

        let builder = ParquetRecordBatchReaderBuilder::try_new(file).unwrap();

        let mut metadata = HashMap::new();
        let mut device_cfg = String::new();
        // Build the custom metadata
        if let Some(file_metadata) = builder.metadata().file_metadata().key_value_metadata() {
            for key_value in file_metadata {
                if !key_value.key.starts_with("ARROW:") {
                    metadata.insert(
                        key_value.key.clone(),
                        key_value.value.clone().unwrap_or("[unset]".to_string()),
                    );
                    if key_value.key == "devices" {
                        device_cfg = key_value.value.clone().unwrap_or("[unset]".to_string());
                    }
                }
            }
        }

        let me = Self {
            path: path.as_ref().to_string_lossy().to_string(),
            metadata,
            device_cfg,
        };

        for item in me.repr() {
            info!("{item}");
        }

        Ok(me)
    }

    /// Reads through the loaded parquet file and attempts to convert to the provided tracking arc.
    pub fn to_tracking_arc<Msr>(&self) -> Result<TrackingArc<Msr>, InputOutputError>
    where
        Msr: Measurement,
        DefaultAllocator: Allocator<Msr::MeasurementSize>,
    {
        // Read the file since we closed it earlier
        let file = File::open(&self.path).context(StdIOSnafu {
            action: "opening file for tracking arc",
        })?;
        let builder = ParquetRecordBatchReaderBuilder::try_new(file).unwrap();

        let reader = builder.build().context(ParquetSnafu {
            action: "reading tracking arc",
        })?;

        // Check the schema
        let mut has_epoch = false;
        let mut has_tracking_dev = false;
        let mut range_avail = false;
        let mut rate_avail = false;
        for field in &reader.schema().fields {
            match field.name().as_str() {
                "Epoch (UTC)" => has_epoch = true,
                "Tracking device" => has_tracking_dev = true,
                "Range (km)" => range_avail = true,
                "Doppler (km/s)" => rate_avail = true,
                _ => {}
            }
        }

        ensure!(
            has_epoch,
            MissingDataSnafu {
                which: "Epoch (UTC)"
            }
        );

        ensure!(
            has_tracking_dev,
            MissingDataSnafu {
                which: "Tracking device"
            }
        );

        ensure!(
            range_avail || rate_avail,
            MissingDataSnafu {
                which: "`Range (km)` or `Doppler (km/s)`"
            }
        );

        let expected_type = std::any::type_name::<Msr>().split("::").last().unwrap();

        // Only check that the file contains the data we need
        match expected_type {
            "RangeDoppler" => {
                if !range_avail || !rate_avail {
                    return Err(InputOutputError::MissingData {
                        which: "`Range (km)` and `Doppler (km/s)`".to_string(),
                    });
                }
            }
            "RangeMsr" => {
                if !range_avail {
                    return Err(InputOutputError::MissingData {
                        which: "`Range (km)`".to_string(),
                    });
                }
            }
            "RangeRate" => {
                return Err(InputOutputError::MissingData {
                    which: "`Doppler (km/s)`".to_string(),
                });
            }
            _ => {
                return Err(InputOutputError::UnsupportedData {
                    which: expected_type.to_string(),
                });
            }
        }

        // At this stage, we know that the measurement is valid and the conversion is supported.
        let mut arc = TrackingArc {
            device_cfg: self.device_cfg.clone(),
            measurements: Vec::new(),
        };

        // Now convert each batch on the fly
        for maybe_batch in reader {
            let batch = maybe_batch.unwrap();

            let tracking_device = batch
                .column_by_name("Tracking device")
                .unwrap()
                .as_any()
                .downcast_ref::<StringArray>()
                .unwrap();

            let epochs = batch
                .column_by_name("Epoch (UTC)")
                .unwrap()
                .as_any()
                .downcast_ref::<StringArray>()
                .unwrap();

            // Now read the data depending on what we're deserializing as
            match expected_type {
                "RangeDoppler" => {
                    let range_data = batch
                        .column_by_name("Range (km)")
                        .unwrap()
                        .as_any()
                        .downcast_ref::<Float64Array>()
                        .unwrap();

                    let rate_data = batch
                        .column_by_name("Doppler (km/s)")
                        .unwrap()
                        .as_any()
                        .downcast_ref::<Float64Array>()
                        .unwrap();

                    // Set the measurements in the tracking arc
                    for i in 0..batch.num_rows() {
                        arc.measurements.push((
                            tracking_device.value(i).to_string(),
                            Msr::from_observation(
                                Epoch::from_gregorian_str(epochs.value(i)).map_err(|e| {
                                    InputOutputError::Inconsistency {
                                        msg: format!("{e} when parsing epoch"),
                                    }
                                })?,
                                OVector::<f64, Msr::MeasurementSize>::from_iterator([
                                    range_data.value(i),
                                    rate_data.value(i),
                                ]),
                            ),
                        ));
                    }
                }
                "RangeMsr" => {
                    let range_data = batch
                        .column_by_name("Range (km)")
                        .unwrap()
                        .as_any()
                        .downcast_ref::<Float64Array>()
                        .unwrap();

                    // Set the measurements in the tracking arc
                    for i in 0..batch.num_rows() {
                        arc.measurements.push((
                            tracking_device.value(i).to_string(),
                            Msr::from_observation(
                                Epoch::from_gregorian_str(epochs.value(i)).map_err(|e| {
                                    InputOutputError::Inconsistency {
                                        msg: format!("{e} when parsing epoch"),
                                    }
                                })?,
                                OVector::<f64, Msr::MeasurementSize>::from_iterator([
                                    range_data.value(i)
                                ]),
                            ),
                        ));
                    }
                }
                "RangeRate" => {
                    let rate_data = batch
                        .column_by_name("Doppler (km/s)")
                        .unwrap()
                        .as_any()
                        .downcast_ref::<Float64Array>()
                        .unwrap();

                    // Set the measurements in the tracking arc
                    for i in 0..batch.num_rows() {
                        arc.measurements.push((
                            tracking_device.value(i).to_string(),
                            Msr::from_observation(
                                Epoch::from_gregorian_str(epochs.value(i)).map_err(|e| {
                                    InputOutputError::Inconsistency {
                                        msg: format!("{e} when parsing epoch"),
                                    }
                                })?,
                                OVector::<f64, Msr::MeasurementSize>::from_iterator([
                                    rate_data.value(i)
                                ]),
                            ),
                        ));
                    }
                }
                _ => unreachable!("should have errored earlier"),
            }
        }

        Ok(arc)
    }

    fn repr(&self) -> Vec<String> {
        let mut r = Vec::new();
        r.push(format!("File: {}", self.path));
        for (k, v) in &self.metadata {
            if k != "devices" {
                r.push(format!("{k}: {v}"));
            }
        }
        r
    }
}

impl Display for DynamicTrackingArc {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        for item in self.repr() {
            writeln!(f, "{item}")?;
        }
        Ok(())
    }
}

#[cfg(feature = "python")]
#[pymethods]
impl DynamicTrackingArc {
    /// Initializes a new dynamic tracking arc from the provided parquet file
    #[new]
    fn new(path: String) -> Result<Self, NyxError> {
        Self::from_parquet(path).map_err(|e| NyxError::CustomError { msg: e.to_string() })
    }

    fn __repr__(&self) -> String {
        format!("{self}")
    }
}