nyx_space/mc/
multivariate.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use std::error::Error;

use super::{DispersedState, StateDispersion};
use crate::errors::StateError;
use crate::md::prelude::{BPlane, OrbitDual};
use crate::md::{AstroSnafu, StateParameter};
use crate::{pseudo_inverse, NyxError, Spacecraft, State};
use nalgebra::{DMatrix, DVector, SMatrix, SVector};
use rand_distr::{Distribution, Normal};
use snafu::ResultExt;

/// A multivariate state generator for Monte Carlo analyses. Ensures that the covariance is properly applied on all provided state variables.
pub struct MultivariateNormal
// TODO: Rename to MultivariateNormalSpacecraft ??
{
    /// The template state
    pub template: Spacecraft,
    pub dispersions: Vec<StateDispersion>,
    /// The mean of the multivariate normal distribution
    pub mean: SVector<f64, 9>,
    /// The dot product \sqrt{\vec s} \cdot \vec v, where S is the singular values and V the V matrix from the SVD decomp of the covariance of multivariate normal distribution
    pub sqrt_s_v: SMatrix<f64, 9, 9>,
    /// The standard normal distribution used to seed the multivariate normal distribution
    pub std_norm_distr: Normal<f64>,
}

impl MultivariateNormal {
    /// Creates a new mulivariate state generator from a mean and covariance on the set of state parameters.
    /// The covariance must be positive semi definite.
    ///
    /// # Algorithm
    /// This function will build the rotation matrix to rotate the requested dispersions into the Spacecraft state space using [OrbitDual].
    /// If there are any dispersions on the Cr and Cd, then these are dispersed independently (because they are iid).
    pub fn new(
        template: Spacecraft,
        dispersions: Vec<StateDispersion>,
    ) -> Result<Self, Box<dyn Error>> {
        let mut cov = SMatrix::<f64, 9, 9>::zeros();
        let mut mean = SVector::<f64, 9>::zeros();

        let orbit_dual = OrbitDual::from(template.orbit);
        let mut b_plane = None;
        for obj in &dispersions {
            if obj.param.is_b_plane() {
                b_plane = Some(
                    BPlane::from_dual(orbit_dual)
                        .context(AstroSnafu)
                        .map_err(Box::new)?,
                );
                break;
            }
        }

        let num_orbital = dispersions
            .iter()
            .filter(|disp| disp.param.is_orbital())
            .count();

        if num_orbital > 0 {
            // Build the rotation matrix from the orbital dispersions to the Cartesian state.
            let mut jac = DMatrix::from_element(num_orbital, 6, 0.0);
            let mut covar = DMatrix::from_element(num_orbital, num_orbital, 0.0);
            let mut means = DVector::from_element(num_orbital, 0.0);
            let orbit_dual = OrbitDual::from(template.orbit);
            let mut rno = 0;
            for disp in &dispersions {
                if disp.param.is_orbital() {
                    let partial = if disp.param.is_b_plane() {
                        match disp.param {
                            StateParameter::BdotR => b_plane.unwrap().b_r,
                            StateParameter::BdotT => b_plane.unwrap().b_t,
                            StateParameter::BLTOF => b_plane.unwrap().ltof_s,
                            _ => unreachable!(),
                        }
                    } else {
                        orbit_dual.partial_for(disp.param).context(AstroSnafu)?
                    };

                    for (cno, val) in [
                        partial.wtr_x(),
                        partial.wtr_y(),
                        partial.wtr_z(),
                        partial.wtr_vx(),
                        partial.wtr_vy(),
                        partial.wtr_vz(),
                    ]
                    .iter()
                    .copied()
                    .enumerate()
                    {
                        jac[(rno, cno)] = val;
                    }
                    covar[(rno, rno)] = disp.std_dev.unwrap_or(0.0).powi(2);
                    means[rno] = disp.mean.unwrap_or(0.0);
                    rno += 1;
                }
            }

            // Now that we have the Jacobian that rotates from the Cartesian elements to the dispersions parameters,
            // let's compute the inverse of this Jacobian to rotate from the dispersion params into the Cartesian elements.
            let jac_inv = pseudo_inverse!(&jac)?;

            // Rotate the orbital covariance back into the Cartesian state space, making this a 6x6.
            let orbit_cov = &jac_inv * &covar * jac_inv.transpose();
            // Rotate the means into the Cartesian space
            let cartesian_mean = jac_inv * means;

            for ii in 0..6 {
                for jj in 0..6 {
                    cov[(ii, jj)] = orbit_cov[(ii, jj)];
                }
                mean[ii] = cartesian_mean[ii];
            }
        };

        if dispersions.len() > num_orbital {
            for disp in &dispersions {
                if disp.param.is_orbital() {
                    continue;
                } else {
                    match disp.param {
                        StateParameter::Cr => {
                            cov[(7, 7)] = disp.mean.unwrap_or(0.0).powi(2);
                        }
                        StateParameter::Cd => {
                            cov[(8, 8)] = disp.mean.unwrap_or(0.0).powi(2);
                        }
                        StateParameter::DryMass | StateParameter::FuelMass => {
                            cov[(9, 9)] = disp.mean.unwrap_or(0.0).powi(2);
                        }
                        _ => return Err(Box::new(StateError::ReadOnly { param: disp.param })),
                    }
                }
            }
        }

        // At this point, the cov matrix is a 9x9 with all dispersions transformed into the Cartesian state space.

        let svd = cov.svd(false, true);
        if svd.v_t.is_none() {
            return Err(Box::new(NyxError::CovarianceMatrixNotPsd));
        }

        let sqrt_s = svd.singular_values.map(|x| x.sqrt());
        let mut sqrt_s_v_t = svd.v_t.unwrap().transpose();

        for (i, mut col) in sqrt_s_v_t.column_iter_mut().enumerate() {
            col *= sqrt_s[i];
        }

        Ok(Self {
            template,
            dispersions,
            mean,
            sqrt_s_v: sqrt_s_v_t,
            std_norm_distr: Normal::new(0.0, 1.0).unwrap(),
        })
    }

    /// Same as `new` but with a zero mean
    pub fn zero_mean(
        template: Spacecraft,
        mut dispersions: Vec<StateDispersion>,
    ) -> Result<Self, Box<dyn Error>> {
        for disp in &mut dispersions {
            disp.mean = Some(0.0);
        }

        Self::new(template, dispersions)
    }

    /// Initializes a new multivariate distribution using the state data in the spacecraft state space.
    pub fn from_spacecraft_cov(
        template: Spacecraft,
        cov: SMatrix<f64, 9, 9>,
        mean: SVector<f64, 9>,
    ) -> Result<Self, Box<dyn Error>> {
        // Check that covariance is PSD by ensuring that all the eigenvalues are positive or nil
        match cov.eigenvalues() {
            None => return Err(Box::new(NyxError::CovarianceMatrixNotPsd)),
            Some(evals) => {
                for eigenval in &evals {
                    if *eigenval < 0.0 {
                        return Err(Box::new(NyxError::CovarianceMatrixNotPsd));
                    }
                }
            }
        };

        let svd = cov.svd(false, true);
        if svd.v_t.is_none() {
            return Err(Box::new(NyxError::CovarianceMatrixNotPsd));
        }

        let s = svd.singular_values;
        // Item by item multiplication
        let mut sqrt_s_v = svd.v_t.unwrap().transpose();
        for (i, mut col) in sqrt_s_v.column_iter_mut().enumerate() {
            col *= s[i].sqrt();
        }

        let dispersions = vec![
            StateDispersion::builder()
                .param(StateParameter::X)
                .std_dev(cov[(0, 0)])
                .build(),
            StateDispersion::builder()
                .param(StateParameter::Y)
                .std_dev(cov[(1, 1)])
                .build(),
            StateDispersion::builder()
                .param(StateParameter::Z)
                .std_dev(cov[(2, 2)])
                .build(),
            StateDispersion::builder()
                .param(StateParameter::VX)
                .std_dev(cov[(3, 3)])
                .build(),
            StateDispersion::builder()
                .param(StateParameter::VY)
                .std_dev(cov[(4, 4)])
                .build(),
            StateDispersion::builder()
                .param(StateParameter::VZ)
                .std_dev(cov[(5, 5)])
                .build(),
            StateDispersion::builder()
                .param(StateParameter::Cr)
                .std_dev(cov[(6, 6)])
                .build(),
            StateDispersion::builder()
                .param(StateParameter::Cd)
                .std_dev(cov[(7, 7)])
                .build(),
            StateDispersion::builder()
                .param(StateParameter::FuelMass)
                .std_dev(cov[(8, 8)])
                .build(),
        ];

        Ok(Self {
            template,
            dispersions,
            mean,
            sqrt_s_v,
            std_norm_distr: Normal::new(0.0, 1.0).unwrap(),
        })
    }
}

impl Distribution<DispersedState<Spacecraft>> for MultivariateNormal {
    fn sample<R: rand::Rng + ?Sized>(&self, rng: &mut R) -> DispersedState<Spacecraft> {
        // Generate the vector representing the state
        let x_rng = SVector::<f64, 9>::from_fn(|_, _| self.std_norm_distr.sample(rng));
        let x = self.sqrt_s_v * x_rng + self.mean;
        let mut state = self.template;

        // Set the new state data
        for (coord, val) in x.iter().copied().enumerate() {
            if coord < 3 {
                state.orbit.radius_km[coord] += val;
            } else if coord < 6 {
                state.orbit.velocity_km_s[coord % 3] += val;
            } else if coord == 6 {
                state.srp.cr += val;
            } else if coord == 7 {
                state.drag.cd += val;
            } else if coord == 8 {
                state.fuel_mass_kg += val;
            }
        }

        let mut actual_dispersions = Vec::new();
        for disp in &self.dispersions {
            // Compute the delta
            let delta = self.template.value(disp.param).unwrap() - state.value(disp.param).unwrap();
            actual_dispersions.push((disp.param, delta));
        }

        DispersedState {
            state,
            actual_dispersions,
        }
    }
}

#[cfg(test)]
mod multivariate_ut {
    use super::*;
    use crate::Spacecraft;
    use crate::GMAT_EARTH_GM;

    #[test]
    fn disperse_r_mag() {
        use anise::constants::frames::EARTH_J2000;
        use anise::prelude::Orbit;

        use crate::time::Epoch;
        use rand_pcg::Pcg64Mcg;

        // Ensure that this worked: a 3 sigma deviation around 1 km means we shouldn't have 99.7% of samples within those bounds.
        // Create a reproducible fast seed
        let seed = 0;

        let eme2k = EARTH_J2000.with_mu_km3_s2(GMAT_EARTH_GM);

        let dt = Epoch::from_gregorian_utc_at_midnight(2021, 1, 31);
        let state = Spacecraft::builder()
            .orbit(Orbit::keplerian(
                8_191.93, 1e-6, 12.85, 306.614, 314.19, 99.887_7, dt, eme2k,
            ))
            .build();

        // Check that we can modify the radius magnitude
        let std_dev = 1.0;
        let generator = MultivariateNormal::new(
            state,
            vec![StateDispersion::builder()
                .param(StateParameter::Rmag)
                .std_dev(std_dev)
                .build()],
        )
        .unwrap();

        let rng = Pcg64Mcg::new(seed);
        let init_rmag = state.orbit.rmag_km();
        let cnt_too_far: u16 = generator
            .sample_iter(rng)
            .take(1000)
            .map(|dispersed_state| {
                if (init_rmag - dispersed_state.state.orbit.rmag_km()).abs() >= 3.0 * std_dev {
                    1
                } else {
                    0
                }
            })
            .sum::<u16>();

        // We specified a seed so we know exactly what to expect and we've reset the seed to 0.
        assert_eq!(
            cnt_too_far,
            6, // Mathematically, this should be 3!
            "Should have about 3% of samples being more than 3 sigma away, got {cnt_too_far}"
        );
    }

    #[test]
    fn disperse_full_cartesian() {
        use anise::constants::frames::EARTH_J2000;
        use anise::prelude::Orbit;

        use crate::time::Epoch;
        use crate::Spacecraft;
        use crate::GMAT_EARTH_GM;

        use rand_pcg::Pcg64Mcg;

        let eme2k = EARTH_J2000.with_mu_km3_s2(GMAT_EARTH_GM);

        let dt = Epoch::from_gregorian_utc_at_midnight(2021, 1, 31);
        let state = Orbit::keplerian(8_191.93, 1e-6, 12.85, 306.614, 314.19, 99.887_7, dt, eme2k);

        let std_dev = [10.0, 10.0, 10.0, 0.2, 0.2, 0.2, 0.0, 0.0, 0.0];

        let generator = MultivariateNormal::new(
            Spacecraft {
                orbit: state,
                ..Default::default()
            },
            vec![
                StateDispersion::builder()
                    .param(StateParameter::X)
                    .std_dev(10.0)
                    .build(),
                StateDispersion::builder()
                    .param(StateParameter::Y)
                    .std_dev(10.0)
                    .build(),
                StateDispersion::builder()
                    .param(StateParameter::Z)
                    .std_dev(10.0)
                    .build(),
                StateDispersion::builder()
                    .param(StateParameter::VX)
                    .std_dev(0.2)
                    .build(),
                StateDispersion::builder()
                    .param(StateParameter::VY)
                    .std_dev(0.2)
                    .build(),
                StateDispersion::builder()
                    .param(StateParameter::VZ)
                    .std_dev(0.2)
                    .build(),
            ],
        )
        .unwrap();

        // Ensure that this worked: a 3 sigma deviation around 1 km means we shouldn't have 99.7% of samples within those bounds.
        // Create a reproducible fast seed
        let seed = 0;
        let rng = Pcg64Mcg::new(seed);

        let cnt_too_far: u16 = generator
            .sample_iter(rng)
            .take(1000)
            .map(|dispersed_state| {
                let mut cnt = 0;
                for (idx, val_std_dev) in std_dev.iter().take(6).enumerate() {
                    let cur_val = dispersed_state.state.to_vector()[idx];
                    let nom_val = state.to_cartesian_pos_vel()[idx];
                    if (cur_val - nom_val).abs() > *val_std_dev {
                        cnt += 1;
                    }
                }
                cnt
            })
            .sum::<u16>();

        // We specified a seed so we know exactly what to expect
        assert_eq!(
            cnt_too_far / 6,
            312,
            "Should have about 3% of samples being more than 3 sigma away, got {cnt_too_far}"
        );
    }

    #[test]
    fn disperse_raan_only() {
        use anise::constants::frames::EARTH_J2000;
        use anise::prelude::Orbit;

        use crate::time::Epoch;
        use rand_pcg::Pcg64Mcg;

        let eme2k = EARTH_J2000.with_mu_km3_s2(GMAT_EARTH_GM);

        let dt = Epoch::from_gregorian_utc_at_midnight(2021, 1, 31);
        let state = Spacecraft::builder()
            .orbit(Orbit::keplerian(
                8_100.0, 1e-6, 12.85, 356.614, 14.19, 199.887_7, dt, eme2k,
            ))
            .build();

        let angle_sigma_deg = 0.2;

        let generator = MultivariateNormal::new(
            state,
            vec![StateDispersion::zero_mean(
                StateParameter::RAAN,
                angle_sigma_deg,
            )],
        )
        .unwrap();

        // Ensure that this worked: a 3 sigma deviation around 1 km means we shouldn't have 99.7% of samples within those bounds.
        // Create a reproducible fast seed
        let seed = 0;
        let rng = Pcg64Mcg::new(seed);

        let cnt_too_far: u16 = generator
            .sample_iter(rng)
            .take(1000)
            .map(|dispersed_state| {
                // For all other orbital parameters, make sure that we have not changed things dramatically.
                for param in [StateParameter::SMA, StateParameter::Inclination] {
                    let orig = state.value(param).unwrap();
                    let new = dispersed_state.state.value(param).unwrap();
                    let prct_change = 100.0 * (orig - new).abs() / orig;
                    assert!(
                        prct_change < 5.0,
                        "{param} changed by {prct_change:.3} % ({orig:.3e} -> {new:.3e})"
                    );
                }

                if (dispersed_state.actual_dispersions[0].1).abs() > 3.0 * angle_sigma_deg {
                    1
                } else {
                    0
                }
            })
            .sum::<u16>();

        // We specified a seed so we know exactly what to expect
        // Consider: https://github.com/nyx-space/nyx/issues/339
        assert_eq!(
            cnt_too_far,
            7, // This is about twice too high
            "Should have about 3% of samples being more than 3 sigma away, got {cnt_too_far}"
        );
    }

    #[ignore = "https://github.com/nyx-space/nyx/issues/339"]
    #[test]
    fn disperse_keplerian() {
        use anise::constants::frames::EARTH_J2000;
        use anise::prelude::Orbit;

        use crate::time::Epoch;
        use rand_pcg::Pcg64Mcg;

        let eme2k = EARTH_J2000.with_mu_km3_s2(GMAT_EARTH_GM);

        let dt = Epoch::from_gregorian_utc_at_midnight(2021, 1, 31);
        let state = Spacecraft::builder()
            .orbit(Orbit::keplerian(
                8_100.0, 1e-6, 12.85, 356.614, 14.19, 199.887_7, dt, eme2k,
            ))
            .build();

        let sma_sigma_km = 10.0;
        let inc_sigma_deg = 0.15;
        let angle_sigma_deg = 0.02;

        let generator = MultivariateNormal::new(
            state,
            vec![
                StateDispersion::zero_mean(StateParameter::SMA, sma_sigma_km),
                StateDispersion::zero_mean(StateParameter::Inclination, inc_sigma_deg),
                StateDispersion::zero_mean(StateParameter::RAAN, angle_sigma_deg),
                StateDispersion::zero_mean(StateParameter::AoP, angle_sigma_deg),
            ],
        )
        .unwrap();

        // Ensure that this worked: a 3 sigma deviation around 1 km means we shouldn't have 99.7% of samples within those bounds.
        // Create a reproducible fast seed
        let seed = 0;
        let rng = Pcg64Mcg::new(seed);

        let cnt_too_far: u16 = generator
            .sample_iter(rng)
            .take(1000)
            .map(|dispersed_state| {
                if (dispersed_state.actual_dispersions[0].1).abs() > 3.0 * sma_sigma_km
                    || (dispersed_state.actual_dispersions[1].1).abs() > 3.0 * inc_sigma_deg
                    || (dispersed_state.actual_dispersions[2].1).abs() > 3.0 * angle_sigma_deg
                    || (dispersed_state.actual_dispersions[3].1).abs() > 3.0 * angle_sigma_deg
                {
                    1
                } else {
                    0
                }
            })
            .sum::<u16>();

        // We specified a seed so we know exactly what to expect
        assert_eq!(
            dbg!(cnt_too_far) / 3,
            3,
            "Should have about 3% of samples being more than 3 sigma away, got {cnt_too_far}"
        );
    }
}