nyx_space/mc/multivariate.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use std::error::Error;
use super::{DispersedState, StateDispersion};
use crate::errors::StateError;
use crate::md::prelude::{BPlane, OrbitDual};
use crate::md::{AstroSnafu, StateParameter};
use crate::{pseudo_inverse, NyxError, Spacecraft, State};
use nalgebra::{DMatrix, DVector, SMatrix, SVector};
use rand_distr::{Distribution, Normal};
use snafu::ResultExt;
/// A multivariate state generator for Monte Carlo analyses. Ensures that the covariance is properly applied on all provided state variables.
pub struct MultivariateNormal
// TODO: Rename to MultivariateNormalSpacecraft ??
{
/// The template state
pub template: Spacecraft,
pub dispersions: Vec<StateDispersion>,
/// The mean of the multivariate normal distribution
pub mean: SVector<f64, 9>,
/// The dot product \sqrt{\vec s} \cdot \vec v, where S is the singular values and V the V matrix from the SVD decomp of the covariance of multivariate normal distribution
pub sqrt_s_v: SMatrix<f64, 9, 9>,
/// The standard normal distribution used to seed the multivariate normal distribution
pub std_norm_distr: Normal<f64>,
}
impl MultivariateNormal {
/// Creates a new mulivariate state generator from a mean and covariance on the set of state parameters.
/// The covariance must be positive semi definite.
///
/// # Algorithm
/// This function will build the rotation matrix to rotate the requested dispersions into the Spacecraft state space using [OrbitDual].
/// If there are any dispersions on the Cr and Cd, then these are dispersed independently (because they are iid).
pub fn new(
template: Spacecraft,
dispersions: Vec<StateDispersion>,
) -> Result<Self, Box<dyn Error>> {
let mut cov = SMatrix::<f64, 9, 9>::zeros();
let mut mean = SVector::<f64, 9>::zeros();
let orbit_dual = OrbitDual::from(template.orbit);
let mut b_plane = None;
for obj in &dispersions {
if obj.param.is_b_plane() {
b_plane = Some(
BPlane::from_dual(orbit_dual)
.context(AstroSnafu)
.map_err(Box::new)?,
);
break;
}
}
let num_orbital = dispersions
.iter()
.filter(|disp| disp.param.is_orbital())
.count();
if num_orbital > 0 {
// Build the rotation matrix from the orbital dispersions to the Cartesian state.
let mut jac = DMatrix::from_element(num_orbital, 6, 0.0);
let mut covar = DMatrix::from_element(num_orbital, num_orbital, 0.0);
let mut means = DVector::from_element(num_orbital, 0.0);
let orbit_dual = OrbitDual::from(template.orbit);
let mut rno = 0;
for disp in &dispersions {
if disp.param.is_orbital() {
let partial = if disp.param.is_b_plane() {
match disp.param {
StateParameter::BdotR => b_plane.unwrap().b_r,
StateParameter::BdotT => b_plane.unwrap().b_t,
StateParameter::BLTOF => b_plane.unwrap().ltof_s,
_ => unreachable!(),
}
} else {
orbit_dual.partial_for(disp.param).context(AstroSnafu)?
};
for (cno, val) in [
partial.wtr_x(),
partial.wtr_y(),
partial.wtr_z(),
partial.wtr_vx(),
partial.wtr_vy(),
partial.wtr_vz(),
]
.iter()
.copied()
.enumerate()
{
jac[(rno, cno)] = val;
}
covar[(rno, rno)] = disp.std_dev.unwrap_or(0.0).powi(2);
means[rno] = disp.mean.unwrap_or(0.0);
rno += 1;
}
}
// Now that we have the Jacobian that rotates from the Cartesian elements to the dispersions parameters,
// let's compute the inverse of this Jacobian to rotate from the dispersion params into the Cartesian elements.
let jac_inv = pseudo_inverse!(&jac)?;
// Rotate the orbital covariance back into the Cartesian state space, making this a 6x6.
let orbit_cov = &jac_inv * &covar * jac_inv.transpose();
// Rotate the means into the Cartesian space
let cartesian_mean = jac_inv * means;
for ii in 0..6 {
for jj in 0..6 {
cov[(ii, jj)] = orbit_cov[(ii, jj)];
}
mean[ii] = cartesian_mean[ii];
}
};
if dispersions.len() > num_orbital {
for disp in &dispersions {
if disp.param.is_orbital() {
continue;
} else {
match disp.param {
StateParameter::Cr => {
cov[(7, 7)] = disp.mean.unwrap_or(0.0).powi(2);
}
StateParameter::Cd => {
cov[(8, 8)] = disp.mean.unwrap_or(0.0).powi(2);
}
StateParameter::DryMass | StateParameter::FuelMass => {
cov[(9, 9)] = disp.mean.unwrap_or(0.0).powi(2);
}
_ => return Err(Box::new(StateError::ReadOnly { param: disp.param })),
}
}
}
}
// At this point, the cov matrix is a 9x9 with all dispersions transformed into the Cartesian state space.
let svd = cov.svd(false, true);
if svd.v_t.is_none() {
return Err(Box::new(NyxError::CovarianceMatrixNotPsd));
}
let sqrt_s = svd.singular_values.map(|x| x.sqrt());
let mut sqrt_s_v_t = svd.v_t.unwrap().transpose();
for (i, mut col) in sqrt_s_v_t.column_iter_mut().enumerate() {
col *= sqrt_s[i];
}
Ok(Self {
template,
dispersions,
mean,
sqrt_s_v: sqrt_s_v_t,
std_norm_distr: Normal::new(0.0, 1.0).unwrap(),
})
}
/// Same as `new` but with a zero mean
pub fn zero_mean(
template: Spacecraft,
mut dispersions: Vec<StateDispersion>,
) -> Result<Self, Box<dyn Error>> {
for disp in &mut dispersions {
disp.mean = Some(0.0);
}
Self::new(template, dispersions)
}
/// Initializes a new multivariate distribution using the state data in the spacecraft state space.
pub fn from_spacecraft_cov(
template: Spacecraft,
cov: SMatrix<f64, 9, 9>,
mean: SVector<f64, 9>,
) -> Result<Self, Box<dyn Error>> {
// Check that covariance is PSD by ensuring that all the eigenvalues are positive or nil
match cov.eigenvalues() {
None => return Err(Box::new(NyxError::CovarianceMatrixNotPsd)),
Some(evals) => {
for eigenval in &evals {
if *eigenval < 0.0 {
return Err(Box::new(NyxError::CovarianceMatrixNotPsd));
}
}
}
};
let svd = cov.svd(false, true);
if svd.v_t.is_none() {
return Err(Box::new(NyxError::CovarianceMatrixNotPsd));
}
let s = svd.singular_values;
// Item by item multiplication
let mut sqrt_s_v = svd.v_t.unwrap().transpose();
for (i, mut col) in sqrt_s_v.column_iter_mut().enumerate() {
col *= s[i].sqrt();
}
let dispersions = vec![
StateDispersion::builder()
.param(StateParameter::X)
.std_dev(cov[(0, 0)])
.build(),
StateDispersion::builder()
.param(StateParameter::Y)
.std_dev(cov[(1, 1)])
.build(),
StateDispersion::builder()
.param(StateParameter::Z)
.std_dev(cov[(2, 2)])
.build(),
StateDispersion::builder()
.param(StateParameter::VX)
.std_dev(cov[(3, 3)])
.build(),
StateDispersion::builder()
.param(StateParameter::VY)
.std_dev(cov[(4, 4)])
.build(),
StateDispersion::builder()
.param(StateParameter::VZ)
.std_dev(cov[(5, 5)])
.build(),
StateDispersion::builder()
.param(StateParameter::Cr)
.std_dev(cov[(6, 6)])
.build(),
StateDispersion::builder()
.param(StateParameter::Cd)
.std_dev(cov[(7, 7)])
.build(),
StateDispersion::builder()
.param(StateParameter::FuelMass)
.std_dev(cov[(8, 8)])
.build(),
];
Ok(Self {
template,
dispersions,
mean,
sqrt_s_v,
std_norm_distr: Normal::new(0.0, 1.0).unwrap(),
})
}
}
impl Distribution<DispersedState<Spacecraft>> for MultivariateNormal {
fn sample<R: rand::Rng + ?Sized>(&self, rng: &mut R) -> DispersedState<Spacecraft> {
// Generate the vector representing the state
let x_rng = SVector::<f64, 9>::from_fn(|_, _| self.std_norm_distr.sample(rng));
let x = self.sqrt_s_v * x_rng + self.mean;
let mut state = self.template;
// Set the new state data
for (coord, val) in x.iter().copied().enumerate() {
if coord < 3 {
state.orbit.radius_km[coord] += val;
} else if coord < 6 {
state.orbit.velocity_km_s[coord % 3] += val;
} else if coord == 6 {
state.srp.cr += val;
} else if coord == 7 {
state.drag.cd += val;
} else if coord == 8 {
state.fuel_mass_kg += val;
}
}
let mut actual_dispersions = Vec::new();
for disp in &self.dispersions {
// Compute the delta
let delta = self.template.value(disp.param).unwrap() - state.value(disp.param).unwrap();
actual_dispersions.push((disp.param, delta));
}
DispersedState {
state,
actual_dispersions,
}
}
}
#[cfg(test)]
mod multivariate_ut {
use super::*;
use crate::Spacecraft;
use crate::GMAT_EARTH_GM;
#[test]
fn disperse_r_mag() {
use anise::constants::frames::EARTH_J2000;
use anise::prelude::Orbit;
use crate::time::Epoch;
use rand_pcg::Pcg64Mcg;
// Ensure that this worked: a 3 sigma deviation around 1 km means we shouldn't have 99.7% of samples within those bounds.
// Create a reproducible fast seed
let seed = 0;
let eme2k = EARTH_J2000.with_mu_km3_s2(GMAT_EARTH_GM);
let dt = Epoch::from_gregorian_utc_at_midnight(2021, 1, 31);
let state = Spacecraft::builder()
.orbit(Orbit::keplerian(
8_191.93, 1e-6, 12.85, 306.614, 314.19, 99.887_7, dt, eme2k,
))
.build();
// Check that we can modify the radius magnitude
let std_dev = 1.0;
let generator = MultivariateNormal::new(
state,
vec![StateDispersion::builder()
.param(StateParameter::Rmag)
.std_dev(std_dev)
.build()],
)
.unwrap();
let rng = Pcg64Mcg::new(seed);
let init_rmag = state.orbit.rmag_km();
let cnt_too_far: u16 = generator
.sample_iter(rng)
.take(1000)
.map(|dispersed_state| {
if (init_rmag - dispersed_state.state.orbit.rmag_km()).abs() >= 3.0 * std_dev {
1
} else {
0
}
})
.sum::<u16>();
// We specified a seed so we know exactly what to expect and we've reset the seed to 0.
assert_eq!(
cnt_too_far,
6, // Mathematically, this should be 3!
"Should have about 3% of samples being more than 3 sigma away, got {cnt_too_far}"
);
}
#[test]
fn disperse_full_cartesian() {
use anise::constants::frames::EARTH_J2000;
use anise::prelude::Orbit;
use crate::time::Epoch;
use crate::Spacecraft;
use crate::GMAT_EARTH_GM;
use rand_pcg::Pcg64Mcg;
let eme2k = EARTH_J2000.with_mu_km3_s2(GMAT_EARTH_GM);
let dt = Epoch::from_gregorian_utc_at_midnight(2021, 1, 31);
let state = Orbit::keplerian(8_191.93, 1e-6, 12.85, 306.614, 314.19, 99.887_7, dt, eme2k);
let std_dev = [10.0, 10.0, 10.0, 0.2, 0.2, 0.2, 0.0, 0.0, 0.0];
let generator = MultivariateNormal::new(
Spacecraft {
orbit: state,
..Default::default()
},
vec![
StateDispersion::builder()
.param(StateParameter::X)
.std_dev(10.0)
.build(),
StateDispersion::builder()
.param(StateParameter::Y)
.std_dev(10.0)
.build(),
StateDispersion::builder()
.param(StateParameter::Z)
.std_dev(10.0)
.build(),
StateDispersion::builder()
.param(StateParameter::VX)
.std_dev(0.2)
.build(),
StateDispersion::builder()
.param(StateParameter::VY)
.std_dev(0.2)
.build(),
StateDispersion::builder()
.param(StateParameter::VZ)
.std_dev(0.2)
.build(),
],
)
.unwrap();
// Ensure that this worked: a 3 sigma deviation around 1 km means we shouldn't have 99.7% of samples within those bounds.
// Create a reproducible fast seed
let seed = 0;
let rng = Pcg64Mcg::new(seed);
let cnt_too_far: u16 = generator
.sample_iter(rng)
.take(1000)
.map(|dispersed_state| {
let mut cnt = 0;
for (idx, val_std_dev) in std_dev.iter().take(6).enumerate() {
let cur_val = dispersed_state.state.to_vector()[idx];
let nom_val = state.to_cartesian_pos_vel()[idx];
if (cur_val - nom_val).abs() > *val_std_dev {
cnt += 1;
}
}
cnt
})
.sum::<u16>();
// We specified a seed so we know exactly what to expect
assert_eq!(
cnt_too_far / 6,
312,
"Should have about 3% of samples being more than 3 sigma away, got {cnt_too_far}"
);
}
#[test]
fn disperse_raan_only() {
use anise::constants::frames::EARTH_J2000;
use anise::prelude::Orbit;
use crate::time::Epoch;
use rand_pcg::Pcg64Mcg;
let eme2k = EARTH_J2000.with_mu_km3_s2(GMAT_EARTH_GM);
let dt = Epoch::from_gregorian_utc_at_midnight(2021, 1, 31);
let state = Spacecraft::builder()
.orbit(Orbit::keplerian(
8_100.0, 1e-6, 12.85, 356.614, 14.19, 199.887_7, dt, eme2k,
))
.build();
let angle_sigma_deg = 0.2;
let generator = MultivariateNormal::new(
state,
vec![StateDispersion::zero_mean(
StateParameter::RAAN,
angle_sigma_deg,
)],
)
.unwrap();
// Ensure that this worked: a 3 sigma deviation around 1 km means we shouldn't have 99.7% of samples within those bounds.
// Create a reproducible fast seed
let seed = 0;
let rng = Pcg64Mcg::new(seed);
let cnt_too_far: u16 = generator
.sample_iter(rng)
.take(1000)
.map(|dispersed_state| {
// For all other orbital parameters, make sure that we have not changed things dramatically.
for param in [StateParameter::SMA, StateParameter::Inclination] {
let orig = state.value(param).unwrap();
let new = dispersed_state.state.value(param).unwrap();
let prct_change = 100.0 * (orig - new).abs() / orig;
assert!(
prct_change < 5.0,
"{param} changed by {prct_change:.3} % ({orig:.3e} -> {new:.3e})"
);
}
if (dispersed_state.actual_dispersions[0].1).abs() > 3.0 * angle_sigma_deg {
1
} else {
0
}
})
.sum::<u16>();
// We specified a seed so we know exactly what to expect
// Consider: https://github.com/nyx-space/nyx/issues/339
assert_eq!(
cnt_too_far,
7, // This is about twice too high
"Should have about 3% of samples being more than 3 sigma away, got {cnt_too_far}"
);
}
#[ignore = "https://github.com/nyx-space/nyx/issues/339"]
#[test]
fn disperse_keplerian() {
use anise::constants::frames::EARTH_J2000;
use anise::prelude::Orbit;
use crate::time::Epoch;
use rand_pcg::Pcg64Mcg;
let eme2k = EARTH_J2000.with_mu_km3_s2(GMAT_EARTH_GM);
let dt = Epoch::from_gregorian_utc_at_midnight(2021, 1, 31);
let state = Spacecraft::builder()
.orbit(Orbit::keplerian(
8_100.0, 1e-6, 12.85, 356.614, 14.19, 199.887_7, dt, eme2k,
))
.build();
let sma_sigma_km = 10.0;
let inc_sigma_deg = 0.15;
let angle_sigma_deg = 0.02;
let generator = MultivariateNormal::new(
state,
vec![
StateDispersion::zero_mean(StateParameter::SMA, sma_sigma_km),
StateDispersion::zero_mean(StateParameter::Inclination, inc_sigma_deg),
StateDispersion::zero_mean(StateParameter::RAAN, angle_sigma_deg),
StateDispersion::zero_mean(StateParameter::AoP, angle_sigma_deg),
],
)
.unwrap();
// Ensure that this worked: a 3 sigma deviation around 1 km means we shouldn't have 99.7% of samples within those bounds.
// Create a reproducible fast seed
let seed = 0;
let rng = Pcg64Mcg::new(seed);
let cnt_too_far: u16 = generator
.sample_iter(rng)
.take(1000)
.map(|dispersed_state| {
if (dispersed_state.actual_dispersions[0].1).abs() > 3.0 * sma_sigma_km
|| (dispersed_state.actual_dispersions[1].1).abs() > 3.0 * inc_sigma_deg
|| (dispersed_state.actual_dispersions[2].1).abs() > 3.0 * angle_sigma_deg
|| (dispersed_state.actual_dispersions[3].1).abs() > 3.0 * angle_sigma_deg
{
1
} else {
0
}
})
.sum::<u16>();
// We specified a seed so we know exactly what to expect
assert_eq!(
dbg!(cnt_too_far) / 3,
3,
"Should have about 3% of samples being more than 3 sigma away, got {cnt_too_far}"
);
}
}