nyx_space/md/events/search.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use super::details::{EventArc, EventDetails, EventEdge};
use crate::errors::{EventError, EventTrajSnafu};
use crate::linalg::allocator::Allocator;
use crate::linalg::DefaultAllocator;
use crate::md::prelude::{Interpolatable, Traj};
use crate::md::EventEvaluator;
use crate::time::{Duration, Epoch, TimeSeries, Unit};
use anise::almanac::Almanac;
use rayon::prelude::*;
use snafu::ResultExt;
use std::iter::Iterator;
use std::sync::mpsc::channel;
use std::sync::Arc;
impl<S: Interpolatable> Traj<S>
where
DefaultAllocator: Allocator<S::VecLength> + Allocator<S::Size> + Allocator<S::Size, S::Size>,
{
/// Find the exact state where the request event happens. The event function is expected to be monotone in the provided interval because we find the event using a Brent solver.
#[allow(clippy::identity_op)]
pub fn find_bracketed<E>(
&self,
start: Epoch,
end: Epoch,
event: &E,
almanac: Arc<Almanac>,
) -> Result<EventDetails<S>, EventError>
where
E: EventEvaluator<S>,
{
let max_iter = 50;
// Helper lambdas, for f64s only
let has_converged =
|xa: f64, xb: f64| (xa - xb).abs() <= event.epoch_precision().to_seconds();
let arrange = |a: f64, ya: f64, b: f64, yb: f64| {
if ya.abs() > yb.abs() {
(a, ya, b, yb)
} else {
(b, yb, a, ya)
}
};
let xa_e = start;
let xb_e = end;
// Search in seconds (convert to epoch just in time)
let mut xa = 0.0;
let mut xb = (xb_e - xa_e).to_seconds();
// Evaluate the event at both bounds
let ya_state = self.at(xa_e).context(EventTrajSnafu {})?;
let yb_state = self.at(xb_e).context(EventTrajSnafu {})?;
let mut ya = event.eval(&ya_state, almanac.clone())?;
let mut yb = event.eval(&yb_state, almanac.clone())?;
// Check if we're already at the root
if ya.abs() <= event.value_precision().abs() {
debug!(
"{event} -- found with |{ya}| < {} @ {xa_e}",
event.value_precision().abs()
);
return EventDetails::new(ya_state, ya, event, self, almanac.clone());
} else if yb.abs() <= event.value_precision().abs() {
debug!(
"{event} -- found with |{yb}| < {} @ {xb_e}",
event.value_precision().abs()
);
return EventDetails::new(yb_state, yb, event, self, almanac.clone());
}
// The Brent solver, from the roots crate (sadly could not directly integrate it here)
// Source: https://docs.rs/roots/0.0.5/src/roots/numerical/brent.rs.html#57-131
let (mut xc, mut yc, mut xd) = (xa, ya, xa);
let mut flag = true;
for _ in 0..max_iter {
if ya.abs() < event.value_precision().abs() {
// Can't fail, we got it earlier
let state = self.at(xa_e + xa * Unit::Second).unwrap();
debug!(
"{event} -- found with |{ya}| < {} @ {}",
event.value_precision().abs(),
state.epoch(),
);
return EventDetails::new(state, ya, event, self, almanac.clone());
}
if yb.abs() < event.value_precision().abs() {
// Can't fail, we got it earlier
let state = self.at(xa_e + xb * Unit::Second).unwrap();
debug!(
"{event} -- found with |{yb}| < {} @ {}",
event.value_precision().abs(),
state.epoch()
);
return EventDetails::new(state, yb, event, self, almanac.clone());
}
if has_converged(xa, xb) {
// The event isn't in the bracket
return Err(EventError::NotFound {
start,
end,
event: format!("{event}"),
});
}
let mut s = if (ya - yc).abs() > f64::EPSILON && (yb - yc).abs() > f64::EPSILON {
xa * yb * yc / ((ya - yb) * (ya - yc))
+ xb * ya * yc / ((yb - ya) * (yb - yc))
+ xc * ya * yb / ((yc - ya) * (yc - yb))
} else {
xb - yb * (xb - xa) / (yb - ya)
};
let cond1 = (s - xb) * (s - (3.0 * xa + xb) / 4.0) > 0.0;
let cond2 = flag && (s - xb).abs() >= (xb - xc).abs() / 2.0;
let cond3 = !flag && (s - xb).abs() >= (xc - xd).abs() / 2.0;
let cond4 = flag && has_converged(xb, xc);
let cond5 = !flag && has_converged(xc, xd);
if cond1 || cond2 || cond3 || cond4 || cond5 {
s = (xa + xb) / 2.0;
flag = true;
} else {
flag = false;
}
let next_try = self
.at(xa_e + s * Unit::Second)
.context(EventTrajSnafu {})?;
let ys = event.eval(&next_try, almanac.clone())?;
xd = xc;
xc = xb;
yc = yb;
if ya * ys < 0.0 {
// Root bracketed between a and s
let next_try = self
.at(xa_e + xa * Unit::Second)
.context(EventTrajSnafu {})?;
let ya_p = event.eval(&next_try, almanac.clone())?;
let (_a, _ya, _b, _yb) = arrange(xa, ya_p, s, ys);
{
xa = _a;
ya = _ya;
xb = _b;
yb = _yb;
}
} else {
// Root bracketed between s and b
let next_try = self
.at(xa_e + xb * Unit::Second)
.context(EventTrajSnafu {})?;
let yb_p = event.eval(&next_try, almanac.clone())?;
let (_a, _ya, _b, _yb) = arrange(s, ys, xb, yb_p);
{
xa = _a;
ya = _ya;
xb = _b;
yb = _yb;
}
}
}
error!("Brent solver failed after {max_iter} iterations");
Err(EventError::NotFound {
start,
end,
event: format!("{event}"),
})
}
/// Find all of the states where the event happens
///
/// # Limitations
/// This method uses a Brent solver. If the function that defines the event is not unimodal, the event finder may not converge correctly.
///
/// # Heuristic detail
/// The initial search step is 1% of the duration of the trajectory duration.
/// For example, if the trajectory is 100 days long, then we split the trajectory into 100 chunks of 1 day and see whether
/// the event is in there. If the event happens twice or more times within 1% of the trajectory duration, only the _one_ of
/// such events will be found.
///
/// If this heuristic fails to find any such events, then `find_minmax` is called on the event with a time precision of `Unit::Second`.
/// Then we search only within the min and max bounds of the provided event.
#[allow(clippy::identity_op)]
pub fn find<E>(
&self,
event: &E,
almanac: Arc<Almanac>,
) -> Result<Vec<EventDetails<S>>, EventError>
where
E: EventEvaluator<S>,
{
let start_epoch = self.first().epoch();
let end_epoch = self.last().epoch();
if start_epoch == end_epoch {
return Err(EventError::NotFound {
start: start_epoch,
end: end_epoch,
event: format!("{event}"),
});
}
let heuristic = (end_epoch - start_epoch) / 100;
info!("Searching for {event} with initial heuristic of {heuristic}");
let (sender, receiver) = channel();
let epochs: Vec<Epoch> = TimeSeries::inclusive(start_epoch, end_epoch, heuristic).collect();
epochs.into_par_iter().for_each_with(sender, |s, epoch| {
if let Ok(event_state) =
self.find_bracketed(epoch, epoch + heuristic, event, almanac.clone())
{
s.send(event_state).unwrap()
};
});
let mut states: Vec<_> = receiver.iter().collect();
if states.is_empty() {
warn!("Heuristic failed to find any {event} event, using slower approach");
// Crap, we didn't find the event.
// Let's find the min and max of this event throughout the trajectory, and search around there.
match self.find_minmax(event, Unit::Second, almanac.clone()) {
Ok((min_event, max_event)) => {
let lower_min_epoch =
if min_event.epoch() - 1 * Unit::Millisecond < self.first().epoch() {
self.first().epoch()
} else {
min_event.epoch() - 1 * Unit::Millisecond
};
let lower_max_epoch =
if min_event.epoch() + 1 * Unit::Millisecond > self.last().epoch() {
self.last().epoch()
} else {
min_event.epoch() + 1 * Unit::Millisecond
};
let upper_min_epoch =
if max_event.epoch() - 1 * Unit::Millisecond < self.first().epoch() {
self.first().epoch()
} else {
max_event.epoch() - 1 * Unit::Millisecond
};
let upper_max_epoch =
if max_event.epoch() + 1 * Unit::Millisecond > self.last().epoch() {
self.last().epoch()
} else {
max_event.epoch() + 1 * Unit::Millisecond
};
// Search around the min event
if let Ok(event_state) = self.find_bracketed(
lower_min_epoch,
lower_max_epoch,
event,
almanac.clone(),
) {
states.push(event_state);
};
// Search around the max event
if let Ok(event_state) = self.find_bracketed(
upper_min_epoch,
upper_max_epoch,
event,
almanac.clone(),
) {
states.push(event_state);
};
// If there still isn't any match, report that the event was not found
if states.is_empty() {
return Err(EventError::NotFound {
start: start_epoch,
end: end_epoch,
event: format!("{event}"),
});
}
}
Err(_) => {
return Err(EventError::NotFound {
start: start_epoch,
end: end_epoch,
event: format!("{event}"),
});
}
};
}
// Remove duplicates and reorder
states.sort_by(|s1, s2| s1.state.epoch().partial_cmp(&s2.state.epoch()).unwrap());
states.dedup();
match states.len() {
0 => info!("Event {event} not found"),
1 => info!("Event {event} found once on {}", states[0].state.epoch()),
_ => {
info!(
"Event {event} found {} times from {} until {}",
states.len(),
states.first().unwrap().state.epoch(),
states.last().unwrap().state.epoch()
)
}
};
Ok(states)
}
/// Find the minimum and maximum of the provided event through the trajectory
#[allow(clippy::identity_op)]
pub fn find_minmax<E>(
&self,
event: &E,
precision: Unit,
almanac: Arc<Almanac>,
) -> Result<(S, S), EventError>
where
E: EventEvaluator<S>,
{
let step: Duration = 1 * precision;
let mut min_val = f64::INFINITY;
let mut max_val = f64::NEG_INFINITY;
let mut min_state = S::zeros();
let mut max_state = S::zeros();
let (sender, receiver) = channel();
let epochs: Vec<Epoch> =
TimeSeries::inclusive(self.first().epoch(), self.last().epoch(), step).collect();
epochs.into_par_iter().for_each_with(sender, |s, epoch| {
// The `at` call will work because we only query within the start and end times of the trajectory
let state = self.at(epoch).unwrap();
if let Ok(this_eval) = event.eval(&state, almanac.clone()) {
s.send((this_eval, state)).unwrap();
}
});
let evald_states: Vec<_> = receiver.iter().collect();
for (this_eval, state) in evald_states {
if this_eval < min_val {
min_val = this_eval;
min_state = state;
}
if this_eval > max_val {
max_val = this_eval;
max_state = state;
}
}
Ok((min_state, max_state))
}
/// Identifies and pairs rising and falling edge events in a trajectory.
///
/// This function processes a sequence of events in a trajectory and pairs each rising edge event with its subsequent falling edge event to form arcs.
/// Each arc represents a complete cycle of an event rising above and then falling below a specified threshold.
/// Use this to analyze a trajectory's behavior when understanding the complete cycle of an event (from rising to falling) is essential, e.g. ground station passes.
///
/// # Arguments
/// - `event`: A reference to an object implementing the `EventEvaluator<S>` trait, which is used to evaluate and classify events in the trajectory.
///
/// # Returns
/// - `Result<Vec<EventArc>, NyxError>`: On success, returns a vector of EventArc, where each struct contains a pair of `EventDetails` (one for the rising edge and one for the falling edge). Returns an error if any issues occur during the event evaluation process.
///
/// # Logic
/// - Sorts the events by their epoch to ensure chronological processing.
/// - Iterates through the sorted events, identifying transitions from falling to rising edges and vice versa.
/// - Pairs a rising edge with the subsequent falling edge to form an arc.
/// - Handles edge cases where the trajectory starts or ends with a rising or falling edge.
/// - Prints debug information for each event and arc.
///
/// ## Note
/// If no zero crossing happens in the trajectory, i.e. the there is "event is true" _and_ "event is false",
/// then this function checks whether the event is true at the start and end of the trajectory. If so, it means
/// that there is a single arc that spans the whole trajectory.
///
pub fn find_arcs<E>(
&self,
event: &E,
almanac: Arc<Almanac>,
) -> Result<Vec<EventArc<S>>, EventError>
where
E: EventEvaluator<S>,
{
let mut events = match self.find(event, almanac.clone()) {
Ok(events) => events,
Err(_) => {
// We haven't found the start or end of an arc, i.e. no zero crossing on the event.
// However, if the trajectory start and end are above the event value, then we found an arc.
let first_eval = event.eval(self.first(), almanac.clone())?;
let last_eval = event.eval(self.last(), almanac.clone())?;
if first_eval > 0.0 && last_eval > 0.0 {
// No event crossing found, but from the start until the end of the trajectory, we're in the same arc
// because the evaluation of the event is above the zero crossing.
// Hence, there's a single arc, and it's from start until the end of the trajectory.
vec![
EventDetails::new(*self.first(), first_eval, event, self, almanac.clone())?,
EventDetails::new(*self.last(), last_eval, event, self, almanac.clone())?,
]
} else {
return Err(EventError::NotFound {
start: self.first().epoch(),
end: self.last().epoch(),
event: format!("{event}"),
});
}
}
};
events.sort_by_key(|event| event.state.epoch());
// Now, let's pair the events.
let mut arcs = Vec::new();
if events.is_empty() {
return Ok(arcs);
}
// If the first event isn't a rising edge, then we mark the start of the trajectory as a rising edge
let mut prev_rise = if events[0].edge != EventEdge::Rising {
let value = event.eval(self.first(), almanac.clone())?;
Some(EventDetails::new(
*self.first(),
value,
event,
self,
almanac.clone(),
)?)
} else {
Some(events[0].clone())
};
let mut prev_fall = if events[0].edge == EventEdge::Falling {
Some(events[0].clone())
} else {
None
};
for event in events {
if event.edge == EventEdge::Rising {
if prev_rise.is_none() && prev_fall.is_none() {
// This is a new rising edge
prev_rise = Some(event.clone());
} else if prev_fall.is_some() {
// We've found a transition from a fall to a rise, so we can close this arc out.
if prev_rise.is_some() {
let arc = EventArc {
rise: prev_rise.clone().unwrap(),
fall: prev_fall.clone().unwrap(),
};
arcs.push(arc);
} else {
let arc = EventArc {
rise: event.clone(),
fall: prev_fall.clone().unwrap(),
};
arcs.push(arc);
}
prev_fall = None;
// We have a new rising edge since this is how we ended up here.
prev_rise = Some(event.clone());
}
} else if event.edge == EventEdge::Falling {
prev_fall = Some(event.clone());
}
}
// Add the final pass
if prev_rise.is_some() {
if prev_fall.is_some() {
let arc = EventArc {
rise: prev_rise.clone().unwrap(),
fall: prev_fall.clone().unwrap(),
};
arcs.push(arc);
} else {
// Use the last trajectory as the end of the arc
let value = event.eval(self.last(), almanac.clone())?;
let fall = EventDetails::new(*self.last(), value, event, self, almanac.clone())?;
let arc = EventArc {
rise: prev_rise.clone().unwrap(),
fall,
};
arcs.push(arc);
}
}
Ok(arcs)
}
}