nyx_space/md/opti/multipleshooting/multishoot.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use snafu::ResultExt;
pub use super::CostFunction;
use super::{MultipleShootingError, TargetingSnafu};
use crate::linalg::{DMatrix, DVector, SVector};
use crate::md::opti::solution::TargeterSolution;
use crate::md::targeter::Targeter;
use crate::md::{prelude::*, TargetingError};
use crate::pseudo_inverse;
use crate::{Orbit, Spacecraft};
use std::fmt;
pub trait MultishootNode<const O: usize>: Copy + Into<[Objective; O]> {
fn epoch(&self) -> Epoch;
fn update_component(&mut self, component: usize, add_val: f64);
}
/// Multiple shooting is an optimization method.
/// Source of implementation: "Low Thrust Optimization in Cislunar and Translunar space", 2018 Nathan Re (Parrish)
/// OT: size of the objectives for each node (e.g. 3 if the objectives are X, Y, Z).
/// VT: size of the variables for targeter node (e.g. 4 if the objectives are thrust direction (x,y,z) and thrust level).
pub struct MultipleShooting<'a, T: MultishootNode<OT>, const VT: usize, const OT: usize> {
/// The propagator setup (kind, stages, etc.)
pub prop: &'a Propagator<SpacecraftDynamics>,
/// List of nodes of the optimal trajectory
pub targets: Vec<T>,
/// Starting point, must be a spacecraft equipped with a thruster
pub x0: Spacecraft,
/// Destination (Should this be the final node?)
pub xf: Orbit,
pub current_iteration: usize,
/// The maximum number of iterations allowed
pub max_iterations: usize,
/// Threshold after which the outer loop is considered to have converged,
/// e.g. 0.01 means that a 1% of less improvement in case between two iterations
/// will stop the iterations.
pub improvement_threshold: f64,
/// The kind of correction to apply to achieve the objectives
pub variables: [Variable; VT],
pub all_dvs: Vec<SVector<f64, VT>>,
}
impl<T: MultishootNode<OT>, const VT: usize, const OT: usize> MultipleShooting<'_, T, VT, OT> {
/// Solve the multiple shooting problem by finding the arrangement of nodes to minimize the cost function.
pub fn solve(
&mut self,
cost: CostFunction,
almanac: Arc<Almanac>,
) -> Result<MultipleShootingSolution<T, OT>, MultipleShootingError> {
let mut prev_cost = 1e12; // We don't use infinity because we compare a ratio of cost
for it in 0..self.max_iterations {
let mut initial_states = Vec::with_capacity(self.targets.len());
initial_states.push(self.x0);
let mut outer_jacobian =
DMatrix::from_element(3 * self.targets.len(), OT * (self.targets.len() - 1), 0.0);
let mut cost_vec = DVector::from_element(3 * self.targets.len(), 0.0);
// Reset the all_dvs
self.all_dvs = Vec::with_capacity(self.all_dvs.len());
for i in 0..self.targets.len() {
/* ***
** 1. Solve the delta-v differential corrector between each node
** *** */
let tgt = Targeter {
prop: self.prop,
objectives: self.targets[i].into(),
variables: self.variables,
iterations: 100,
objective_frame: None,
correction_frame: None,
};
let sol = tgt
.try_achieve_dual(
initial_states[i],
initial_states[i].epoch(),
self.targets[i].epoch(),
almanac.clone(),
)
.context(TargetingSnafu { segment: i })?;
let nominal_delta_v = sol.correction;
self.all_dvs.push(nominal_delta_v);
// Store the Δv and the initial state for the next targeter.
initial_states.push(sol.achieved_state);
}
// NOTE: We have two separate loops because we need the initial state of node i+2 for the dv computation
// of the third entry to the outer jacobian.
for i in 0..(self.targets.len() - 1) {
/* ***
** 2. Perturb each node and compute the partial of the Δv for the (i-1), i, and (i+1) nodes
** where the partial on the i+1 -th node is just the difference between the velocity at the
** achieved state and the initial state at that node.
** We don't perturb the endpoint node
** *** */
for axis in 0..OT {
/* ***
** 2.A. Perturb the i-th node
** *** */
let mut next_node = self.targets[i].into();
next_node[axis].desired_value += next_node[axis].tolerance;
/* ***
** 2.b. Rerun the targeter from the previous node to this one
** Note that because the first initial_state is x0, the i-th "initial state"
** is the initial state to reach the i-th node.
** *** */
let inner_tgt_a = Targeter::delta_v(self.prop, next_node);
let inner_sol_a = inner_tgt_a
.try_achieve_dual(
initial_states[i],
initial_states[i].epoch(),
self.targets[i].epoch(),
almanac.clone(),
)
.context(TargetingSnafu { segment: i })?;
// ∂Δv_x / ∂r_x
outer_jacobian[(3 * i, OT * i + axis)] = (inner_sol_a.correction[0]
- self.all_dvs[i][0])
/ next_node[axis].tolerance;
// ∂Δv_y / ∂r_x
outer_jacobian[(3 * i + 1, OT * i + axis)] = (inner_sol_a.correction[1]
- self.all_dvs[i][1])
/ next_node[axis].tolerance;
// ∂Δv_z / ∂r_x
outer_jacobian[(3 * i + 2, OT * i + axis)] = (inner_sol_a.correction[2]
- self.all_dvs[i][2])
/ next_node[axis].tolerance;
/* ***
** 2.C. Rerun the targeter from the new state at the perturbed node to the next unpertubed node
** *** */
let inner_tgt_b = Targeter::delta_v(self.prop, self.targets[i + 1].into());
let inner_sol_b = inner_tgt_b
.try_achieve_dual(
inner_sol_a.achieved_state,
inner_sol_a.achieved_state.epoch(),
self.targets[i + 1].epoch(),
almanac.clone(),
)
.context(TargetingSnafu { segment: i })?;
// Compute the partials wrt the next Δv
// ∂Δv_x / ∂r_x
outer_jacobian[(3 * (i + 1), OT * i + axis)] = (inner_sol_b.correction[0]
- self.all_dvs[i + 1][0])
/ next_node[axis].tolerance;
// ∂Δv_y / ∂r_x
outer_jacobian[(3 * (i + 1) + 1, OT * i + axis)] = (inner_sol_b.correction[1]
- self.all_dvs[i + 1][1])
/ next_node[axis].tolerance;
// ∂Δv_z / ∂r_x
outer_jacobian[(3 * (i + 1) + 2, OT * i + axis)] = (inner_sol_b.correction[2]
- self.all_dvs[i + 1][2])
/ next_node[axis].tolerance;
/* ***
** 2.D. Compute the difference between the arrival and departure velocities and node i+1
** *** */
if i < self.targets.len() - 3 {
let dv_ip1 = inner_sol_b.achieved_state.orbit.velocity_km_s
- initial_states[i + 2].orbit.velocity_km_s;
// ∂Δv_x / ∂r_x
outer_jacobian[(3 * (i + 2), OT * i + axis)] =
dv_ip1[0] / next_node[axis].tolerance;
// ∂Δv_y / ∂r_x
outer_jacobian[(3 * (i + 2) + 1, OT * i + axis)] =
dv_ip1[1] / next_node[axis].tolerance;
// ∂Δv_z / ∂r_x
outer_jacobian[(3 * (i + 2) + 2, OT * i + axis)] =
dv_ip1[2] / next_node[axis].tolerance;
}
}
}
// Build the cost vector
for i in 0..self.targets.len() {
for j in 0..3 {
cost_vec[3 * i + j] = self.all_dvs[i][j];
}
}
// Compute the cost -- used to stop the algorithm if it does not change much.
let new_cost = match cost {
CostFunction::MinimumEnergy => cost_vec.dot(&cost_vec),
CostFunction::MinimumFuel => cost_vec.dot(&cost_vec).sqrt(),
};
// If the new cost is greater than the previous one, then the cost improvement is negative.
let cost_improvmt = (prev_cost - new_cost) / new_cost.abs();
// If the cost does not improve by more than threshold stop iteration
match cost {
CostFunction::MinimumEnergy => info!(
"Multiple shooting iteration #{}\t\tCost = {:.3} km^2/s^2\timprovement = {:.2}%",
it,
new_cost,
100.0 * cost_improvmt
),
CostFunction::MinimumFuel => info!(
"Multiple shooting iteration #{}\t\tCost = {:.3} km/s\timprovement = {:.2}%",
it,
new_cost,
100.0 * cost_improvmt
),
};
if cost_improvmt.abs() < self.improvement_threshold {
info!("Improvement below desired threshold. Running targeter on computed nodes.");
/* ***
** FIN -- Check the impulsive burns work and return all targeter solutions
** *** */
let mut ms_sol = MultipleShootingSolution {
x0: self.x0,
xf: self.xf,
nodes: self.targets.clone(),
solutions: Vec::with_capacity(self.targets.len()),
};
let mut initial_states = Vec::with_capacity(self.targets.len());
initial_states.push(self.x0);
for (i, node) in self.targets.iter().enumerate() {
// Run the unpertubed targeter
let tgt = Targeter::delta_v(self.prop, (*node).into());
let sol = tgt
.try_achieve_dual(
initial_states[i],
initial_states[i].epoch(),
node.epoch(),
almanac.clone(),
)
.context(TargetingSnafu { segment: i })?;
initial_states.push(sol.achieved_state);
ms_sol.solutions.push(sol);
}
return Ok(ms_sol);
}
prev_cost = new_cost;
// 2. Solve for the next position of the nodes using a pseudo inverse.
let inv_jac =
pseudo_inverse!(&outer_jacobian).context(TargetingSnafu { segment: 0_usize })?;
let delta_r = inv_jac * cost_vec;
// 3. Apply the correction to the node positions and iterator
let node_vector = -delta_r;
for (i, val) in node_vector.iter().enumerate() {
let node_no = i / 3;
let component_no = i % OT;
self.targets[node_no].update_component(component_no, *val);
}
self.current_iteration += 1;
}
Err(MultipleShootingError::TargetingError {
segment: 0_usize,
source: TargetingError::TooManyIterations,
})
}
}
impl<T: MultishootNode<OT>, const VT: usize, const OT: usize> fmt::Display
for MultipleShooting<'_, T, VT, OT>
{
#[allow(clippy::or_fun_call, clippy::clone_on_copy)]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut nodemsg = String::from("");
// Add the starting point too
nodemsg.push_str(&format!(
"[{:.3}, {:.3}, {:.3}, {}, {}, {}, {}, {}, {}],\n",
self.x0.orbit.radius_km.x,
self.x0.orbit.radius_km.y,
self.x0.orbit.radius_km.z,
self.current_iteration,
0.0,
0.0,
0.0,
0.0,
0
));
for (i, node) in self.targets.iter().enumerate() {
let objectives: [Objective; OT] = (*node).into();
let mut this_nodemsg = String::from("");
for obj in &objectives {
this_nodemsg.push_str(&format!("{:.3}, ", obj.desired_value));
}
let mut this_costmsg = String::from("");
let dv = match self.all_dvs.get(i) {
Some(dv) => dv.clone(),
None => SVector::<f64, VT>::zeros(),
};
for val in &dv {
this_costmsg.push_str(&format!("{val}, "));
}
if VT == 3 {
// Add the norm of the control
this_costmsg.push_str(&format!("{}, ", dv.norm()));
}
nodemsg.push_str(&format!(
"[{}{}, {}{}],\n",
this_nodemsg,
self.current_iteration,
this_nodemsg,
i + 1
));
}
write!(f, "{nodemsg}")
}
}
#[derive(Clone, Debug)]
pub struct MultipleShootingSolution<T: MultishootNode<O>, const O: usize> {
pub x0: Spacecraft,
pub xf: Orbit,
pub nodes: Vec<T>,
pub solutions: Vec<TargeterSolution<3, O>>,
}
impl<T: MultishootNode<O>, const O: usize> fmt::Display for MultipleShootingSolution<T, O> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for sol in &self.solutions {
write!(f, "{sol}")?;
}
Ok(())
}
}
impl<T: MultishootNode<O>, const O: usize> MultipleShootingSolution<T, O> {
/// Allows building the trajectories between different nodes
/// This will rebuild the targeters and apply the solutions sequentially
pub fn build_trajectories(
&self,
prop: &Propagator<SpacecraftDynamics>,
almanac: Arc<Almanac>,
) -> Result<Vec<Trajectory>, MultipleShootingError> {
let mut trajz = Vec::with_capacity(self.nodes.len());
for (i, node) in self.nodes.iter().copied().enumerate() {
let (_, traj) = Targeter::delta_v(prop, node.into())
.apply_with_traj(&self.solutions[i], almanac.clone())
.context(TargetingSnafu { segment: i })?;
trajz.push(traj);
}
Ok(trajz)
}
}