nyx_space/md/opti/
raphson_finite_diff.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use super::solution::TargeterSolution;
use super::targeter::Targeter;
use crate::cosmic::{AstroAlmanacSnafu, AstroPhysicsSnafu};
use crate::dynamics::guidance::{GuidanceError, LocalFrame, Mnvr};
use crate::errors::TargetingError;
use crate::linalg::{SMatrix, SVector, Vector6};
use crate::md::{prelude::*, AstroSnafu, GuidanceSnafu, UnderdeterminedProblemSnafu};
use crate::md::{PropSnafu, StateParameter};
pub use crate::md::{Variable, Vary};
use crate::polyfit::CommonPolynomial;
use crate::pseudo_inverse;
use hifitime::TimeUnits;
use rayon::prelude::*;
use snafu::{ensure, ResultExt};
#[cfg(not(target_arch = "wasm32"))]
use std::time::Instant;

impl<const V: usize, const O: usize> Targeter<'_, V, O> {
    /// Differential correction using finite differencing
    #[allow(clippy::comparison_chain)]
    pub fn try_achieve_fd(
        &self,
        initial_state: Spacecraft,
        correction_epoch: Epoch,
        achievement_epoch: Epoch,
        almanac: Arc<Almanac>,
    ) -> Result<TargeterSolution<V, O>, TargetingError> {
        ensure!(!self.objectives.is_empty(), UnderdeterminedProblemSnafu);

        let mut is_bplane_tgt = false;
        for obj in &self.objectives {
            if obj.parameter.is_b_plane() {
                is_bplane_tgt = true;
                break;
            }
        }

        // Now we know that the problem is correctly defined, so let's propagate as is to the epoch
        // where the correction should be applied.
        let xi_start = self
            .prop
            .with(initial_state, almanac.clone())
            .until_epoch(correction_epoch)
            .context(PropSnafu)?;

        debug!("initial_state = {}", initial_state);
        debug!("xi_start = {}", xi_start);

        let mut xi = xi_start;
        // We'll store the initial state correction here.
        let mut state_correction = Vector6::<f64>::zeros();

        // Store the total correction in Vector3
        let mut total_correction = SVector::<f64, V>::zeros();

        let mut mnvr = Mnvr {
            start: correction_epoch,
            end: achievement_epoch,
            thrust_prct: 1.0,
            alpha_inplane_radians: CommonPolynomial::Quadratic(0.0, 0.0, 0.0),
            delta_outofplane_radians: CommonPolynomial::Quadratic(0.0, 0.0, 0.0),
            frame: LocalFrame::RCN,
        };

        let mut finite_burn_target = false;

        // Apply the initial guess
        for (i, var) in self.variables.iter().enumerate() {
            // Check the validity (this function will report to log and raise an error)
            var.valid()?;
            // Check that there is no attempt to target a position in a local frame
            if self.correction_frame.is_some() && var.component.vec_index() < 3 {
                // Then this is a position correction, which is not allowed if a frame is provided!
                let msg = format!(
                    "Variable is in frame {:?} but that frame cannot be used for a {:?} correction",
                    self.correction_frame.unwrap(),
                    var.component
                );
                error!("{}", msg);
                return Err(TargetingError::FrameError { msg });
            }

            // Check that a thruster is provided since we'll be changing that and the burn duration
            if var.component.is_finite_burn() {
                if xi_start.thruster.is_none() {
                    return Err(TargetingError::GuidanceError {
                        source: GuidanceError::NoThrustersDefined,
                    });
                }

                finite_burn_target = true;
                // Modify the default maneuver
                match var.component {
                    Vary::Duration => mnvr.end = mnvr.start + var.init_guess.seconds(),
                    Vary::EndEpoch => mnvr.end += var.init_guess.seconds(),
                    Vary::StartEpoch => mnvr.start += var.init_guess.seconds(),
                    Vary::MnvrAlpha | Vary::MnvrAlphaDot | Vary::MnvrAlphaDDot => {
                        mnvr.alpha_inplane_radians = mnvr
                            .alpha_inplane_radians
                            .add_val_in_order(var.init_guess, var.component.vec_index())
                            .unwrap();
                    }
                    Vary::MnvrDelta | Vary::MnvrDeltaDot | Vary::MnvrDeltaDDot => {
                        mnvr.delta_outofplane_radians = mnvr
                            .delta_outofplane_radians
                            .add_val_in_order(var.init_guess, var.component.vec_index())
                            .unwrap();
                    }
                    Vary::ThrustX | Vary::ThrustY | Vary::ThrustZ => {
                        let mut vector = mnvr.direction();
                        vector[var.component.vec_index()] += var.perturbation;
                        mnvr.set_direction(vector).context(GuidanceSnafu)?;
                    }
                    Vary::ThrustRateX | Vary::ThrustRateY | Vary::ThrustRateZ => {
                        let mut vector = mnvr.rate();
                        vector[(var.component.vec_index() - 1) % 3] += var.perturbation;
                        mnvr.set_rate(vector).context(GuidanceSnafu)?;
                    }
                    Vary::ThrustAccelX | Vary::ThrustAccelY | Vary::ThrustAccelZ => {
                        let mut vector = mnvr.accel();
                        vector[(var.component.vec_index() - 1) % 3] += var.perturbation;
                        mnvr.set_accel(vector).context(GuidanceSnafu)?;
                    }
                    Vary::ThrustLevel => {
                        mnvr.thrust_prct += var.perturbation;
                        mnvr.thrust_prct = mnvr.thrust_prct.clamp(0.0, 1.0);
                    }
                    _ => unreachable!(),
                }
                info!("Initial maneuver guess: {}", mnvr);
            } else {
                state_correction[var.component.vec_index()] += var.init_guess;
                // Now, let's apply the correction to the initial state
                if let Some(frame) = self.correction_frame {
                    // The following will error if the frame is not local
                    let dcm_vnc2inertial = frame
                        .dcm_to_inertial(xi.orbit)
                        .context(AstroPhysicsSnafu)
                        .context(AstroSnafu)?
                        .rot_mat;

                    let velocity_correction =
                        dcm_vnc2inertial * state_correction.fixed_rows::<3>(3);
                    xi.orbit.apply_dv_km_s(velocity_correction);
                } else {
                    xi.orbit.radius_km += state_correction.fixed_rows::<3>(0).to_owned();
                    xi.orbit.velocity_km_s += state_correction.fixed_rows::<3>(3).to_owned();
                }
            }

            total_correction[i] += var.init_guess;
        }

        let mut prev_err_norm = f64::INFINITY;

        // Determine padding in debugging info
        // For the width, we find the largest desired values and multiply it by the order of magnitude of its tolerance
        let max_obj_val = self
            .objectives
            .iter()
            .map(|obj| {
                obj.desired_value.abs().ceil() as i32
                    * 10_i32.pow(obj.tolerance.abs().log10().ceil() as u32)
            })
            .max()
            .unwrap();

        let max_obj_tol = self
            .objectives
            .iter()
            .map(|obj| obj.tolerance.log10().abs().ceil() as usize)
            .max()
            .unwrap();

        let width = f64::from(max_obj_val).log10() as usize + 2 + max_obj_tol;

        #[cfg(not(target_arch = "wasm32"))]
        let start_instant = Instant::now();

        for it in 0..=self.iterations {
            // Modify each variable by the desired perturbation, propagate, compute the final parameter, and store how modifying that variable affects the final parameter
            let cur_xi = xi;

            // If we are targeting a finite burn, let's set propagate in several steps to make sure we don't miss the burn
            let xf = if finite_burn_target {
                info!("#{} {}", it, mnvr);
                let mut prop = self.prop.clone();
                let prop_opts = prop.opts;
                let pre_mnvr = prop
                    .with(cur_xi, almanac.clone())
                    .until_epoch(mnvr.start)
                    .context(PropSnafu)?;
                prop.dynamics = prop.dynamics.with_guidance_law(Arc::new(mnvr));
                prop.set_max_step(mnvr.duration());
                let post_mnvr = prop
                    .with(
                        pre_mnvr.with_guidance_mode(GuidanceMode::Thrust),
                        almanac.clone(),
                    )
                    .until_epoch(mnvr.end)
                    .context(PropSnafu)?;
                // Reset the propagator options to their previous configuration
                prop.opts = prop_opts;
                // And propagate until the achievement epoch
                prop.with(post_mnvr, almanac.clone())
                    .until_epoch(achievement_epoch)
                    .context(PropSnafu)?
                    .orbit
            } else {
                self.prop
                    .with(cur_xi, almanac.clone())
                    .until_epoch(achievement_epoch)
                    .context(PropSnafu)?
                    .orbit
            };

            let xf_dual_obj_frame = match &self.objective_frame {
                Some(frame) => {
                    let orbit_obj_frame = almanac
                        .transform_to(xf, *frame, None)
                        .context(AstroAlmanacSnafu)
                        .context(AstroSnafu)?;

                    OrbitDual::from(orbit_obj_frame)
                }
                None => OrbitDual::from(xf),
            };

            // Build the error vector
            let mut err_vector = SVector::<f64, O>::zeros();
            let mut converged = true;

            // Build the B-Plane once, if needed, and always in the objective frame
            let b_plane = if is_bplane_tgt {
                Some(BPlane::from_dual(xf_dual_obj_frame).context(AstroSnafu)?)
            } else {
                None
            };

            // Build debugging information
            let mut objmsg = Vec::with_capacity(self.objectives.len());

            // The Jacobian includes the sensitivity of each objective with respect to each variable for the whole trajectory.
            // As such, it includes the STM of that variable for the whole propagation arc.
            let mut jac = SMatrix::<f64, O, V>::zeros();

            for (i, obj) in self.objectives.iter().enumerate() {
                let partial = if obj.parameter.is_b_plane() {
                    match obj.parameter {
                        StateParameter::BdotR => b_plane.unwrap().b_r,
                        StateParameter::BdotT => b_plane.unwrap().b_t,
                        StateParameter::BLTOF => b_plane.unwrap().ltof_s,
                        _ => unreachable!(),
                    }
                } else {
                    xf_dual_obj_frame
                        .partial_for(obj.parameter)
                        .context(AstroSnafu)?
                };

                let achieved = partial.real();

                let (ok, param_err) = obj.assess_value(achieved);
                if !ok {
                    converged = false;
                }
                err_vector[i] = param_err;

                objmsg.push(format!(
                    "\t{:?}: achieved = {:>width$.prec$}\t desired = {:>width$.prec$}\t scaled error = {:>width$.prec$}",
                    obj.parameter,
                    achieved,
                    obj.desired_value,
                    param_err, width=width, prec=max_obj_tol
                ));

                let mut pert_calc: Vec<_> = self
                    .variables
                    .iter()
                    .enumerate()
                    .map(|(j, var)| (j, var, 0.0_f64))
                    .collect();

                pert_calc.par_iter_mut().for_each(|(_, var, jac_val)| {
                    let mut this_xi = xi;

                    let mut this_prop = self.prop.clone();
                    let mut this_mnvr = mnvr;

                    let mut opposed_pert = false;

                    if var.component.is_finite_burn() {
                        // Modify the burn itself
                        let pert = var.perturbation;
                        // Modify the maneuver, but do not change the epochs of the maneuver unless the change is greater than one millisecond
                        match var.component {
                            Vary::Duration => {
                                if pert.abs() > 1e-3 {
                                    this_mnvr.end = mnvr.start + pert.seconds()
                                }
                            }
                            Vary::EndEpoch => {
                                if pert.abs() > 1e-3 {
                                    this_mnvr.end = mnvr.end + pert.seconds()
                                }
                            }
                            Vary::StartEpoch => {
                                if pert.abs() > 1e-3 {
                                    this_mnvr.start = mnvr.start + pert.seconds()
                                }
                            }
                            Vary::MnvrAlpha | Vary::MnvrAlphaDot | Vary::MnvrAlphaDDot => {
                                this_mnvr.alpha_inplane_radians = mnvr
                                    .alpha_inplane_radians
                                    .add_val_in_order(pert, var.component.vec_index())
                                    .unwrap();
                            }
                            Vary::MnvrDelta | Vary::MnvrDeltaDot | Vary::MnvrDeltaDDot => {
                                this_mnvr.delta_outofplane_radians = mnvr
                                    .delta_outofplane_radians
                                    .add_val_in_order(pert, var.component.vec_index())
                                    .unwrap();
                            }
                            Vary::ThrustX | Vary::ThrustY | Vary::ThrustZ => {
                                let mut vector = this_mnvr.direction();
                                vector[var.component.vec_index()] += var.perturbation;
                                if !var.check_bounds(vector[var.component.vec_index()]).1 {
                                    // Oops, bound was hit, go the other way
                                    vector[var.component.vec_index()] -= 2.0 * var.perturbation;
                                    opposed_pert = true;
                                }
                                this_mnvr.set_direction(vector).unwrap();
                            }
                            Vary::ThrustRateX | Vary::ThrustRateY | Vary::ThrustRateZ => {
                                let mut vector = this_mnvr.rate();
                                vector[(var.component.vec_index() - 1) % 3] += var.perturbation;
                                if !var
                                    .check_bounds(vector[(var.component.vec_index() - 1) % 3])
                                    .1
                                {
                                    // Oops, bound was hit, go the other way
                                    vector[(var.component.vec_index() - 1) % 3] -=
                                        2.0 * var.perturbation;
                                    opposed_pert = true;
                                }
                                this_mnvr.set_rate(vector).unwrap();
                            }
                            Vary::ThrustAccelX | Vary::ThrustAccelY | Vary::ThrustAccelZ => {
                                let mut vector = this_mnvr.accel();
                                vector[(var.component.vec_index() - 1) % 3] += var.perturbation;
                                if !var
                                    .check_bounds(vector[(var.component.vec_index() - 1) % 3])
                                    .1
                                {
                                    // Oops, bound was hit, go the other way
                                    vector[(var.component.vec_index() - 1) % 3] -=
                                        2.0 * var.perturbation;
                                    opposed_pert = true;
                                }
                                this_mnvr.set_accel(vector).unwrap();
                            }
                            Vary::ThrustLevel => {
                                this_mnvr.thrust_prct += var.perturbation;
                                this_mnvr.thrust_prct = this_mnvr.thrust_prct.clamp(0.0, 1.0);
                            }
                            _ => unreachable!(),
                        }
                    } else {
                        let mut state_correction = Vector6::<f64>::zeros();
                        state_correction[var.component.vec_index()] += var.perturbation;
                        // Now, let's apply the correction to the initial state
                        if let Some(frame) = self.correction_frame {
                            // The following will error if the frame is not local
                            let dcm_vnc2inertial = frame
                                .dcm_to_inertial(this_xi.orbit)
                                .context(AstroPhysicsSnafu)
                                .context(AstroSnafu)
                                .unwrap()
                                .rot_mat;

                            let velocity_correction =
                                dcm_vnc2inertial * state_correction.fixed_rows::<3>(3);
                            this_xi.orbit.apply_dv_km_s(velocity_correction);
                        } else {
                            this_xi = xi + state_correction;
                        }
                    }

                    let this_xf = if finite_burn_target {
                        // Propagate normally until start of maneuver
                        let pre_mnvr = this_prop
                            .with(cur_xi, almanac.clone())
                            .until_epoch(this_mnvr.start)
                            .unwrap();
                        // Add this maneuver to the dynamics, make sure that we don't over-step this maneuver
                        let prop_opts = this_prop.opts;
                        this_prop.set_max_step(this_mnvr.duration());
                        this_prop.dynamics =
                            this_prop.dynamics.with_guidance_law(Arc::new(this_mnvr));
                        let post_mnvr = this_prop
                            .with(
                                pre_mnvr.with_guidance_mode(GuidanceMode::Thrust),
                                almanac.clone(),
                            )
                            .until_epoch(this_mnvr.end)
                            .unwrap();
                        // Reset the propagator options to their previous configuration
                        this_prop.opts = prop_opts;
                        // And propagate until the achievement epoch
                        this_prop
                            .with(post_mnvr, almanac.clone())
                            .until_epoch(achievement_epoch)
                            .unwrap()
                            .orbit
                    } else {
                        this_prop
                            .with(this_xi, almanac.clone())
                            .until_epoch(achievement_epoch)
                            .unwrap()
                            .orbit
                    };

                    let xf_dual_obj_frame = match &self.objective_frame {
                        Some(frame) => {
                            let orbit_obj_frame = almanac
                                .transform_to(this_xf, *frame, None)
                                .context(AstroAlmanacSnafu)
                                .context(AstroSnafu)
                                .unwrap();

                            OrbitDual::from(orbit_obj_frame)
                        }
                        None => OrbitDual::from(this_xf),
                    };

                    let b_plane = if is_bplane_tgt {
                        Some(BPlane::from_dual(xf_dual_obj_frame).unwrap())
                    } else {
                        None
                    };

                    let partial = if obj.parameter.is_b_plane() {
                        match obj.parameter {
                            StateParameter::BdotR => b_plane.unwrap().b_r,
                            StateParameter::BdotT => b_plane.unwrap().b_t,
                            StateParameter::BLTOF => b_plane.unwrap().ltof_s,
                            _ => unreachable!(),
                        }
                    } else {
                        xf_dual_obj_frame.partial_for(obj.parameter).unwrap()
                    };

                    let this_achieved = partial.real();
                    *jac_val = (this_achieved - achieved) / var.perturbation;
                    if opposed_pert {
                        // We opposed the perturbation to ensure we don't over step a min/max bound
                        *jac_val = -*jac_val;
                    }
                });

                for (j, var, jac_val) in &pert_calc {
                    // If this is a thrust level, we oppose the value so that the correction can still be positive.
                    jac[(i, *j)] = if var.component == Vary::ThrustLevel {
                        -*jac_val
                    } else {
                        *jac_val
                    };
                }
            }

            if converged {
                #[cfg(not(target_arch = "wasm32"))]
                let conv_dur = Instant::now() - start_instant;
                #[cfg(target_arch = "wasm32")]
                let conv_dur = Duration::ZERO.into();
                let mut corrected_state = xi_start;

                let mut state_correction = Vector6::<f64>::zeros();
                if !finite_burn_target {
                    for (i, var) in self.variables.iter().enumerate() {
                        state_correction[var.component.vec_index()] += total_correction[i];
                    }
                }
                // Now, let's apply the correction to the initial state
                if let Some(frame) = self.correction_frame {
                    let dcm_vnc2inertial = frame
                        .dcm_to_inertial(corrected_state.orbit)
                        .context(AstroPhysicsSnafu)
                        .context(AstroSnafu)?
                        .rot_mat
                        .transpose();

                    let velocity_correction =
                        dcm_vnc2inertial * state_correction.fixed_rows::<3>(3);
                    corrected_state.orbit.apply_dv_km_s(velocity_correction);
                } else {
                    corrected_state.orbit.radius_km +=
                        state_correction.fixed_rows::<3>(0).to_owned();
                    corrected_state.orbit.velocity_km_s +=
                        state_correction.fixed_rows::<3>(3).to_owned();
                }

                let sol = TargeterSolution {
                    corrected_state,
                    achieved_state: xi_start.with_orbit(xf),
                    correction: total_correction,
                    computation_dur: conv_dur,
                    variables: self.variables,
                    achieved_errors: err_vector,
                    achieved_objectives: self.objectives,
                    iterations: it,
                };
                // Log success as info
                if it == 1 {
                    info!("Targeter -- CONVERGED in 1 iteration");
                } else {
                    info!("Targeter -- CONVERGED in {} iterations", it);
                }
                for obj in &objmsg {
                    info!("{}", obj);
                }
                return Ok(sol);
            }

            // We haven't converged yet, so let's build t
            if (err_vector.norm() - prev_err_norm).abs() < 1e-10 {
                return Err(TargetingError::CorrectionIneffective {
                    prev_val: prev_err_norm,
                    cur_val: err_vector.norm(),
                    action: "Raphson targeter",
                });
            }
            prev_err_norm = err_vector.norm();

            debug!("Jacobian {}", jac);

            // Perform the pseudo-inverse if needed, else just inverse
            let jac_inv = pseudo_inverse!(&jac)?;

            debug!("Inverse Jacobian {}", jac_inv);

            let mut delta = jac_inv * err_vector;

            debug!(
                "Error vector (norm = {}): {}\nRaw correction: {}",
                err_vector.norm(),
                err_vector,
                delta
            );

            // And finally apply it to the xi
            let mut state_correction = Vector6::<f64>::zeros();
            for (i, var) in self.variables.iter().enumerate() {
                debug!(
                    "Correction {:?}{} (element {}): {}",
                    var.component,
                    match self.correction_frame {
                        Some(f) => format!(" in {f:?}"),
                        None => String::new(),
                    },
                    i,
                    delta[i]
                );

                let corr = delta[i];

                if var.component.is_finite_burn() {
                    // Modify the maneuver, but do not change the epochs of the maneuver unless the change is greater than one millisecond
                    match var.component {
                        Vary::Duration => {
                            if corr.abs() > 1e-3 {
                                // Check that we are within the bounds
                                let init_duration_s =
                                    (correction_epoch - achievement_epoch).to_seconds();
                                let acceptable_corr = var.apply_bounds(init_duration_s).seconds();
                                mnvr.end = mnvr.start + acceptable_corr;
                            }
                        }
                        Vary::EndEpoch => {
                            if corr.abs() > 1e-3 {
                                // Check that we are within the bounds
                                let total_end_corr =
                                    (mnvr.end + corr.seconds() - achievement_epoch).to_seconds();
                                let acceptable_corr = var.apply_bounds(total_end_corr).seconds();
                                mnvr.end += acceptable_corr;
                            }
                        }
                        Vary::StartEpoch => {
                            if corr.abs() > 1e-3 {
                                // Check that we are within the bounds
                                let total_start_corr =
                                    (mnvr.start + corr.seconds() - correction_epoch).to_seconds();
                                let acceptable_corr = var.apply_bounds(total_start_corr).seconds();
                                mnvr.end += acceptable_corr;

                                mnvr.start += corr.seconds()
                            }
                        }
                        Vary::MnvrAlpha | Vary::MnvrAlphaDot | Vary::MnvrAlphaDDot => {
                            mnvr.alpha_inplane_radians = mnvr
                                .alpha_inplane_radians
                                .add_val_in_order(corr, var.component.vec_index())
                                .unwrap();
                        }
                        Vary::MnvrDelta | Vary::MnvrDeltaDot | Vary::MnvrDeltaDDot => {
                            mnvr.delta_outofplane_radians = mnvr
                                .delta_outofplane_radians
                                .add_val_in_order(corr, var.component.vec_index())
                                .unwrap();
                        }
                        Vary::ThrustX | Vary::ThrustY | Vary::ThrustZ => {
                            let mut vector = mnvr.direction();
                            vector[var.component.vec_index()] += corr;
                            var.ensure_bounds(&mut vector[var.component.vec_index()]);
                            mnvr.set_direction(vector).context(GuidanceSnafu)?;
                        }
                        Vary::ThrustRateX | Vary::ThrustRateY | Vary::ThrustRateZ => {
                            let mut vector = mnvr.rate();
                            let idx = (var.component.vec_index() - 1) % 3;
                            vector[idx] += corr;
                            var.ensure_bounds(&mut vector[idx]);
                            mnvr.set_rate(vector).context(GuidanceSnafu)?;
                        }
                        Vary::ThrustAccelX | Vary::ThrustAccelY | Vary::ThrustAccelZ => {
                            let mut vector = mnvr.accel();
                            let idx = (var.component.vec_index() - 1) % 3;
                            vector[idx] += corr;
                            var.ensure_bounds(&mut vector[idx]);
                            mnvr.set_accel(vector).context(GuidanceSnafu)?;
                        }
                        Vary::ThrustLevel => {
                            mnvr.thrust_prct += corr;
                            var.ensure_bounds(&mut mnvr.thrust_prct);
                        }
                        _ => unreachable!(),
                    }
                } else {
                    // Choose the minimum step between the provided max step and the correction.
                    if delta[i].abs() > var.max_step.abs() {
                        delta[i] = var.max_step.abs() * delta[i].signum();
                    } else if delta[i] > var.max_value {
                        delta[i] = var.max_value;
                    } else if delta[i] < var.min_value {
                        delta[i] = var.min_value;
                    }
                    state_correction[var.component.vec_index()] += delta[i];
                }
            }

            // Now, let's apply the correction to the initial state
            if let Some(frame) = self.correction_frame {
                let dcm_vnc2inertial = frame
                    .dcm_to_inertial(xi.orbit)
                    .context(AstroPhysicsSnafu)
                    .context(AstroSnafu)?
                    .rot_mat;

                let velocity_correction = dcm_vnc2inertial * state_correction.fixed_rows::<3>(3);
                xi.orbit.apply_dv_km_s(velocity_correction);
            } else {
                xi = xi + state_correction;
            }
            total_correction += delta;
            debug!("Total correction: {:e}", total_correction);

            // Log progress to debug
            info!("Targeter -- Iteration #{} -- {}", it, achievement_epoch);
            for obj in &objmsg {
                info!("{}", obj);
            }
        }

        Err(TargetingError::TooManyIterations)
    }
}