1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use anise::math::interpolation::{hermite_eval, InterpolationError};

pub(crate) const INTERPOLATION_SAMPLES: usize = 13;

use super::StateParameter;
use crate::cosmic::Frame;
use crate::linalg::allocator::Allocator;
use crate::linalg::DefaultAllocator;
use crate::time::Epoch;
use crate::{Orbit, Spacecraft, State};

use enum_iterator::all;

/// States that can be interpolated should implement this trait.
pub trait Interpolatable: State
where
    Self: Sized,
    DefaultAllocator: Allocator<f64, Self::Size>
        + Allocator<f64, Self::Size, Self::Size>
        + Allocator<f64, Self::VecLength>,
{
    /// Interpolates a new state at the provided epochs given a slice of states.
    fn interpolate(self, epoch: Epoch, states: &[Self]) -> Result<Self, InterpolationError>;

    /// Returns the frame of this state
    fn frame(&self) -> Frame;

    /// Sets the frame of this state
    fn set_frame(&mut self, frame: Frame);

    /// List of state parameters that will be exported to a trajectory file in addition to the epoch (provided in this different formats).
    fn export_params() -> Vec<StateParameter>;

    /// Returns the orbit
    fn orbit(&self) -> &Orbit;
}

impl Interpolatable for Spacecraft {
    fn interpolate(mut self, epoch: Epoch, states: &[Self]) -> Result<Self, InterpolationError> {
        // Interpolate the Orbit first
        // Statically allocated arrays of the maximum number of samples
        let mut epochs_tdb = [0.0; INTERPOLATION_SAMPLES];
        let mut xs = [0.0; INTERPOLATION_SAMPLES];
        let mut ys = [0.0; INTERPOLATION_SAMPLES];
        let mut zs = [0.0; INTERPOLATION_SAMPLES];
        let mut vxs = [0.0; INTERPOLATION_SAMPLES];
        let mut vys = [0.0; INTERPOLATION_SAMPLES];
        let mut vzs = [0.0; INTERPOLATION_SAMPLES];

        for (cno, state) in states.iter().enumerate() {
            xs[cno] = state.orbit.radius_km.x;
            ys[cno] = state.orbit.radius_km.y;
            zs[cno] = state.orbit.radius_km.z;
            vxs[cno] = state.orbit.velocity_km_s.x;
            vys[cno] = state.orbit.velocity_km_s.y;
            vzs[cno] = state.orbit.velocity_km_s.z;
            epochs_tdb[cno] = state.epoch().to_et_seconds();
        }

        // Ensure that if we don't have enough states, we only interpolate using what we have instead of INTERPOLATION_SAMPLES
        let n = states.len();

        let (x_km, vx_km_s) =
            hermite_eval(&epochs_tdb[..n], &xs[..n], &vxs[..n], epoch.to_et_seconds())?;

        let (y_km, vy_km_s) =
            hermite_eval(&epochs_tdb[..n], &ys[..n], &vys[..n], epoch.to_et_seconds())?;

        let (z_km, vz_km_s) =
            hermite_eval(&epochs_tdb[..n], &zs[..n], &vzs[..n], epoch.to_et_seconds())?;

        self.orbit = Orbit::new(
            x_km,
            y_km,
            z_km,
            vx_km_s,
            vy_km_s,
            vz_km_s,
            epoch,
            self.orbit.frame,
        );

        // Fuel is linearly interpolated -- should really be a Lagrange interpolation here
        let first = states.first().unwrap();
        let last = states.last().unwrap();
        let fuel_kg_dt =
            (last.fuel_mass_kg - first.fuel_mass_kg) / (last.epoch() - first.epoch()).to_seconds();

        self.fuel_mass_kg += fuel_kg_dt * (epoch - first.epoch()).to_seconds();

        Ok(self)
    }

    fn frame(&self) -> Frame {
        self.orbit.frame
    }

    fn set_frame(&mut self, frame: Frame) {
        self.orbit.frame = frame;
    }

    fn export_params() -> Vec<StateParameter> {
        // Build all of the orbital parameters but keep the Cartesian state first
        let orbit_params = all::<StateParameter>()
            .filter(|p| {
                p.is_orbital()
                    && !p.is_b_plane()
                    && !matches!(
                        p,
                        StateParameter::X
                            | StateParameter::Y
                            | StateParameter::Z
                            | StateParameter::VX
                            | StateParameter::VY
                            | StateParameter::VZ
                            | StateParameter::HyperbolicAnomaly
                            | StateParameter::Height
                            | StateParameter::Latitude
                            | StateParameter::Longitude
                    )
            })
            .collect::<Vec<StateParameter>>();

        let sc_params = all::<StateParameter>()
            .filter(|p| p.is_for_spacecraft())
            .collect::<Vec<StateParameter>>();

        [
            vec![
                StateParameter::X,
                StateParameter::Y,
                StateParameter::Z,
                StateParameter::VX,
                StateParameter::VY,
                StateParameter::VZ,
            ],
            orbit_params,
            sc_params,
        ]
        .concat()
    }

    fn orbit(&self) -> &Orbit {
        &self.orbit
    }
}