nyx_space/md/trajectory/interpolatable.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use anise::math::interpolation::{hermite_eval, InterpolationError};
pub(crate) const INTERPOLATION_SAMPLES: usize = 13;
use super::StateParameter;
use crate::cosmic::Frame;
use crate::linalg::allocator::Allocator;
use crate::linalg::DefaultAllocator;
use crate::time::Epoch;
use crate::{Orbit, Spacecraft, State};
use enum_iterator::all;
/// States that can be interpolated should implement this trait.
pub trait Interpolatable: State
where
Self: Sized,
DefaultAllocator:
Allocator<Self::Size> + Allocator<Self::Size, Self::Size> + Allocator<Self::VecLength>,
{
/// Interpolates a new state at the provided epochs given a slice of states.
fn interpolate(self, epoch: Epoch, states: &[Self]) -> Result<Self, InterpolationError>;
/// Returns the frame of this state
fn frame(&self) -> Frame;
/// Sets the frame of this state
fn set_frame(&mut self, frame: Frame);
/// List of state parameters that will be exported to a trajectory file in addition to the epoch (provided in this different formats).
fn export_params() -> Vec<StateParameter>;
}
impl Interpolatable for Spacecraft {
fn interpolate(mut self, epoch: Epoch, states: &[Self]) -> Result<Self, InterpolationError> {
// Interpolate the Orbit first
// Statically allocated arrays of the maximum number of samples
let mut epochs_tdb = [0.0; INTERPOLATION_SAMPLES];
let mut xs = [0.0; INTERPOLATION_SAMPLES];
let mut ys = [0.0; INTERPOLATION_SAMPLES];
let mut zs = [0.0; INTERPOLATION_SAMPLES];
let mut vxs = [0.0; INTERPOLATION_SAMPLES];
let mut vys = [0.0; INTERPOLATION_SAMPLES];
let mut vzs = [0.0; INTERPOLATION_SAMPLES];
for (cno, state) in states.iter().enumerate() {
xs[cno] = state.orbit.radius_km.x;
ys[cno] = state.orbit.radius_km.y;
zs[cno] = state.orbit.radius_km.z;
vxs[cno] = state.orbit.velocity_km_s.x;
vys[cno] = state.orbit.velocity_km_s.y;
vzs[cno] = state.orbit.velocity_km_s.z;
epochs_tdb[cno] = state.epoch().to_et_seconds();
}
// Ensure that if we don't have enough states, we only interpolate using what we have instead of INTERPOLATION_SAMPLES
let n = states.len();
let (x_km, vx_km_s) =
hermite_eval(&epochs_tdb[..n], &xs[..n], &vxs[..n], epoch.to_et_seconds())?;
let (y_km, vy_km_s) =
hermite_eval(&epochs_tdb[..n], &ys[..n], &vys[..n], epoch.to_et_seconds())?;
let (z_km, vz_km_s) =
hermite_eval(&epochs_tdb[..n], &zs[..n], &vzs[..n], epoch.to_et_seconds())?;
self.orbit = Orbit::new(
x_km,
y_km,
z_km,
vx_km_s,
vy_km_s,
vz_km_s,
epoch,
self.orbit.frame,
);
// Fuel is linearly interpolated -- should really be a Lagrange interpolation here
let first = states.first().unwrap();
let last = states.last().unwrap();
let prop_kg_dt = (last.mass.prop_mass_kg - first.mass.prop_mass_kg)
/ (last.epoch() - first.epoch()).to_seconds();
self.mass.prop_mass_kg += prop_kg_dt * (epoch - first.epoch()).to_seconds();
Ok(self)
}
fn frame(&self) -> Frame {
self.orbit.frame
}
fn set_frame(&mut self, frame: Frame) {
self.orbit.frame = frame;
}
fn export_params() -> Vec<StateParameter> {
// Build all of the orbital parameters but keep the Cartesian state first
let orbit_params = all::<StateParameter>()
.filter(|p| {
p.is_orbital()
&& !p.is_b_plane()
&& !matches!(
p,
StateParameter::X
| StateParameter::Y
| StateParameter::Z
| StateParameter::VX
| StateParameter::VY
| StateParameter::VZ
| StateParameter::HyperbolicAnomaly
| StateParameter::Height
| StateParameter::Latitude
| StateParameter::Longitude
)
})
.collect::<Vec<StateParameter>>();
let sc_params = all::<StateParameter>()
.filter(|p| p.is_for_spacecraft())
.collect::<Vec<StateParameter>>();
[
vec![
StateParameter::X,
StateParameter::Y,
StateParameter::Z,
StateParameter::VX,
StateParameter::VY,
StateParameter::VZ,
],
orbit_params,
sc_params,
]
.concat()
}
}