nyx_space/md/trajectory/
sc_traj.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use anise::astro::Aberration;
use anise::constants::orientations::J2000;
use anise::errors::AlmanacError;
use anise::prelude::{Almanac, Frame, Orbit};
use arrow::array::RecordBatchReader;
use arrow::array::{Float64Array, StringArray};
use hifitime::TimeSeries;
use parquet::arrow::arrow_reader::ParquetRecordBatchReaderBuilder;
use snafu::{ensure, ResultExt};

use super::TrajError;
use super::{ExportCfg, Traj};
use crate::cosmic::Spacecraft;
use crate::errors::{FromAlmanacSnafu, NyxError};
use crate::io::watermark::prj_name_ver;
use crate::io::{InputOutputError, MissingDataSnafu, ParquetSnafu, StdIOSnafu};
use crate::md::prelude::{Interpolatable, StateParameter};
use crate::md::EventEvaluator;
use crate::time::{Duration, Epoch, Format, Formatter, TimeUnits};
use crate::State;
use std::collections::{HashMap, HashSet};
use std::error::Error;
use std::fs::File;
use std::io::{BufRead, BufReader, BufWriter, Write};
use std::path::{Path, PathBuf};
use std::str::FromStr;
use std::sync::Arc;
#[cfg(not(target_arch = "wasm32"))]
use std::time::Instant;

impl Traj<Spacecraft> {
    /// Builds a new trajectory built from the SPICE BSP (SPK) file loaded in the provided Almanac, provided the start and stop epochs.
    ///
    /// If the start and stop epochs are not provided, then the full domain of the trajectory will be used.
    pub fn from_bsp(
        target_frame: Frame,
        observer_frame: Frame,
        almanac: Arc<Almanac>,
        sc_template: Spacecraft,
        step: Duration,
        start_epoch: Option<Epoch>,
        end_epoch: Option<Epoch>,
        ab_corr: Option<Aberration>,
        name: Option<String>,
    ) -> Result<Self, AlmanacError> {
        let (domain_start, domain_end) =
            almanac
                .spk_domain(target_frame.ephemeris_id)
                .map_err(|e| AlmanacError::Ephemeris {
                    action: "could not fetch domain",
                    source: Box::new(e),
                })?;

        let start_epoch = start_epoch.unwrap_or(domain_start);
        let end_epoch = end_epoch.unwrap_or(domain_end);

        let time_series = TimeSeries::inclusive(start_epoch, end_epoch, step);
        let mut states = Vec::with_capacity(time_series.len());
        for epoch in time_series {
            let orbit = almanac.transform(target_frame, observer_frame, epoch, ab_corr)?;

            states.push(sc_template.with_orbit(orbit));
        }

        Ok(Self { name, states })
    }
    /// Allows converting the source trajectory into the (almost) equivalent trajectory in another frame
    #[allow(clippy::map_clone)]
    pub fn to_frame(&self, new_frame: Frame, almanac: Arc<Almanac>) -> Result<Self, NyxError> {
        if self.states.is_empty() {
            return Err(NyxError::Trajectory {
                source: TrajError::CreationError {
                    msg: "No trajectory to convert".to_string(),
                },
            });
        }

        #[cfg(not(target_arch = "wasm32"))]
        let start_instant = Instant::now();
        let mut traj = Self::new();
        for state in &self.states {
            let new_orbit =
                almanac
                    .transform_to(state.orbit, new_frame, None)
                    .context(FromAlmanacSnafu {
                        action: "transforming trajectory into new frame",
                    })?;
            traj.states.push(state.with_orbit(new_orbit));
        }
        traj.finalize();

        #[cfg(not(target_arch = "wasm32"))]
        info!(
            "Converted trajectory from {} to {} in {} ms: {traj}",
            self.first().orbit.frame,
            new_frame,
            (Instant::now() - start_instant).as_millis()
        );

        #[cfg(target_arch = "wasm32")]
        info!(
            "Converted trajectory from {} to {}: {traj}",
            self.first().orbit.frame,
            new_frame,
        );

        Ok(traj)
    }

    /// Exports this trajectory to the provided filename in parquet format with only the epoch, the geodetic latitude, longitude, and height at one state per minute.
    /// Must provide a body fixed frame to correctly compute the latitude and longitude.
    #[allow(clippy::identity_op)]
    pub fn to_groundtrack_parquet<P: AsRef<Path>>(
        &self,
        path: P,
        body_fixed_frame: Frame,
        events: Option<Vec<&dyn EventEvaluator<Spacecraft>>>,
        metadata: Option<HashMap<String, String>>,
        almanac: Arc<Almanac>,
    ) -> Result<PathBuf, Box<dyn Error>> {
        let traj = self.to_frame(body_fixed_frame, almanac.clone())?;

        let mut cfg = ExportCfg::builder()
            .step(1.minutes())
            .fields(vec![
                StateParameter::Latitude,
                StateParameter::Longitude,
                StateParameter::Height,
                StateParameter::Rmag,
            ])
            .build();
        cfg.metadata = metadata;

        traj.to_parquet(path, events, cfg, almanac)
    }

    /// Initialize a new spacecraft trajectory from the path to a CCSDS OEM file.
    ///
    /// CCSDS OEM only contains the orbit information but Nyx builds spacecraft trajectories.
    /// If not spacecraft template is provided, then a default massless spacecraft will be built.
    pub fn from_oem_file<P: AsRef<Path>>(
        path: P,
        tpl_option: Option<Spacecraft>,
    ) -> Result<Self, NyxError> {
        // Open the file
        let file = File::open(path).map_err(|e| NyxError::CCSDS {
            msg: format!("File opening error: {e}"),
        })?;
        let reader = BufReader::new(file);

        let template = tpl_option.unwrap_or_default();

        // Parse the Orbit Element messages
        let mut time_system = String::new();

        let ignored_tokens: HashSet<_> = [
            "CCSDS_OMM_VERS".to_string(),
            "CREATION_DATE".to_string(),
            "ORIGINATOR".to_string(),
        ]
        .into();

        let mut traj = Self::default();

        let mut parse = false;

        let mut center_name = None;
        let mut orient_name = None;

        'lines: for (lno, line) in reader.lines().enumerate() {
            let line = line.map_err(|e| NyxError::CCSDS {
                msg: format!("File read error: {e}"),
            })?;
            let line = line.trim();
            if line.is_empty() {
                continue;
            }

            if ignored_tokens.iter().any(|t| line.starts_with(t)) {
                continue 'lines;
            }
            if line.starts_with("OBJECT_NAME") {
                // Extract the object ID from the line
                let parts: Vec<&str> = line.split('=').collect();
                let name = parts[1].trim().to_string();
                debug!("[line: {}] Found object {name}", lno + 1);
                traj.name = Some(name);
            } else if line.starts_with("CENTER_NAME") {
                let parts: Vec<&str> = line.split('=').collect();
                center_name = Some(parts[1].trim().to_owned());
            } else if line.starts_with("REF_FRAME") {
                let parts: Vec<&str> = line.split('=').collect();
                orient_name = Some(parts[1].trim().to_owned());
            } else if line.starts_with("TIME_SYSTEM") {
                let parts: Vec<&str> = line.split('=').collect();
                time_system = parts[1].trim().to_string();
                debug!("[line: {}] Found time system `{time_system}`", lno + 1);
            } else if line.starts_with("META_STOP") {
                // We can start parsing now
                parse = true;
            } else if line.starts_with("META_START") {
                // Stop the parsing
                parse = false;
            } else if line.starts_with("COVARIANCE_START") {
                // Stop the parsing
                warn!("[line: {}] Skipping covariance in OEM parsing", lno + 1);
                parse = false;
            } else if parse {
                let frame = Frame::from_name(
                    center_name.clone().unwrap().as_str(),
                    orient_name.clone().unwrap().as_str(),
                )
                .map_err(|e| NyxError::CCSDS {
                    msg: format!("frame error `{center_name:?} {orient_name:?}`: {e}"),
                })?;
                // Split the line into components
                let parts: Vec<&str> = line.split_whitespace().collect();

                if parts.len() < 7 {
                    debug!("[line: {}] Could not understand `{parts:?}`", lno + 1);
                } else {
                    // Extract the values
                    let epoch_str = format!("{} {time_system}", parts[0]);
                    match parts[1].parse::<f64>() {
                        Ok(x_km) => {
                            // Look good!
                            let y_km = parts[2].parse::<f64>().unwrap();
                            let z_km = parts[3].parse::<f64>().unwrap();
                            let vx_km_s = parts[4].parse::<f64>().unwrap();
                            let vy_km_s = parts[5].parse::<f64>().unwrap();
                            let vz_km_s = parts[6].parse::<f64>().unwrap();

                            let epoch =
                                Epoch::from_str(epoch_str.trim()).map_err(|e| NyxError::CCSDS {
                                    msg: format!("Parsing epoch error: {e}"),
                                })?;

                            let orbit = Orbit::new(
                                x_km, y_km, z_km, vx_km_s, vy_km_s, vz_km_s, epoch, frame,
                            );

                            traj.states.push(template.with_orbit(orbit));
                        }
                        Err(_) => {
                            // Probably a comment
                            debug!("[line: {}] Could not parse `{parts:?}`", lno + 1);
                            continue;
                        }
                    };
                }
            }
        }

        traj.finalize();

        Ok(traj)
    }

    pub fn to_oem_file<P: AsRef<Path>>(
        &self,
        path: P,
        cfg: ExportCfg,
    ) -> Result<PathBuf, NyxError> {
        if self.states.is_empty() {
            return Err(NyxError::CCSDS {
                msg: "Cannot export an empty trajectory to OEM".to_string(),
            });
        }
        let tick = Epoch::now().unwrap();
        info!("Exporting trajectory to CCSDS OEM file...");

        // Grab the path here before we move stuff.
        let path_buf = cfg.actual_path(path);

        let metadata = cfg.metadata.unwrap_or_default();

        let file = File::create(&path_buf).map_err(|e| NyxError::CCSDS {
            msg: format!("File creation error: {e}"),
        })?;
        let mut writer = BufWriter::new(file);

        let err_hdlr = |e| NyxError::CCSDS {
            msg: format!("Could not write: {e}"),
        };

        // Build the states iterator -- this does require copying the current states but I can't either get a reference or a copy of all the states.
        let states = if cfg.start_epoch.is_some() || cfg.end_epoch.is_some() || cfg.step.is_some() {
            // Must interpolate the data!
            let start = cfg.start_epoch.unwrap_or_else(|| self.first().epoch());
            let end = cfg.end_epoch.unwrap_or_else(|| self.last().epoch());
            let step = cfg.step.unwrap_or_else(|| 1.minutes());
            self.every_between(step, start, end).collect()
        } else {
            self.states.to_vec()
        };

        // Epoch formmatter.
        let iso8601_no_ts = Format::from_str("%Y-%m-%dT%H:%M:%S.%f").unwrap();

        // Write mandatory metadata
        writeln!(writer, "CCSDS_OMM_VERS = 2.0").map_err(err_hdlr)?;

        writeln!(
            writer,
            "COMMENT Built by {} -- https://nyxspace.com/\n",
            prj_name_ver()
        )
        .map_err(err_hdlr)?;
        writeln!(
            writer,
            "COMMENT Nyx Space provided under the AGPL v3 open source license -- https://nyxspace.com/pricing\n"
        )
        .map_err(err_hdlr)?;

        writeln!(
            writer,
            "CREATION_DATE = {}",
            Formatter::new(Epoch::now().unwrap(), iso8601_no_ts)
        )
        .map_err(err_hdlr)?;
        writeln!(
            writer,
            "ORIGINATOR = {}\n",
            metadata
                .get("originator")
                .unwrap_or(&"Nyx Space".to_string())
        )
        .map_err(err_hdlr)?;

        writeln!(writer, "META_START").map_err(err_hdlr)?;
        // Write optional metadata
        if let Some(object_name) = metadata.get("object_name") {
            writeln!(writer, "\tOBJECT_NAME = {}", object_name).map_err(err_hdlr)?;
        } else if let Some(object_name) = &self.name {
            writeln!(writer, "\tOBJECT_NAME = {}", object_name).map_err(err_hdlr)?;
        }

        let first_orbit = states[0].orbit;
        let first_frame = first_orbit.frame;
        let frame_str = format!(
            "{first_frame:e} {}",
            match first_frame.orientation_id {
                J2000 => "ICRF".to_string(),
                _ => format!("{first_frame:o}"),
            }
        );
        let splt: Vec<&str> = frame_str.split(' ').collect();
        let center = splt[0];
        let ref_frame = frame_str.replace(center, " ");
        writeln!(
            writer,
            "\tREF_FRAME = {}",
            match ref_frame.trim() {
                "J2000" => "ICRF",
                _ => ref_frame.trim(),
            }
        )
        .map_err(err_hdlr)?;

        writeln!(writer, "\tCENTER_NAME = {center}",).map_err(err_hdlr)?;

        writeln!(writer, "\tTIME_SYSTEM = {}", first_orbit.epoch.time_scale).map_err(err_hdlr)?;

        writeln!(
            writer,
            "\tSTART_TIME = {}",
            Formatter::new(states[0].epoch(), iso8601_no_ts)
        )
        .map_err(err_hdlr)?;
        writeln!(
            writer,
            "\tUSEABLE_START_TIME = {}",
            Formatter::new(states[0].epoch(), iso8601_no_ts)
        )
        .map_err(err_hdlr)?;
        writeln!(
            writer,
            "\tUSEABLE_STOP_TIME = {}",
            Formatter::new(states[states.len() - 1].epoch(), iso8601_no_ts)
        )
        .map_err(err_hdlr)?;
        writeln!(
            writer,
            "\tSTOP_TIME = {}",
            Formatter::new(states[states.len() - 1].epoch(), iso8601_no_ts)
        )
        .map_err(err_hdlr)?;

        writeln!(writer, "META_STOP\n").map_err(err_hdlr)?;

        for sc_state in &states {
            let state = sc_state.orbit;
            writeln!(
                writer,
                "{} {:E} {:E} {:E} {:E} {:E} {:E}",
                Formatter::new(state.epoch, iso8601_no_ts),
                state.radius_km.x,
                state.radius_km.y,
                state.radius_km.z,
                state.velocity_km_s.x,
                state.velocity_km_s.y,
                state.velocity_km_s.z
            )
            .map_err(err_hdlr)?;
        }

        #[allow(clippy::writeln_empty_string)]
        writeln!(writer, "").map_err(err_hdlr)?;

        // Return the path this was written to
        let tock_time = Epoch::now().unwrap() - tick;
        info!(
            "Trajectory written to {} in {tock_time}",
            path_buf.display()
        );
        Ok(path_buf)
    }

    pub fn from_parquet<P: AsRef<Path>>(path: P) -> Result<Self, InputOutputError> {
        let file = File::open(&path).context(StdIOSnafu {
            action: "opening trajectory file",
        })?;

        let builder = ParquetRecordBatchReaderBuilder::try_new(file).unwrap();

        let mut metadata = HashMap::new();
        // Build the custom metadata
        if let Some(file_metadata) = builder.metadata().file_metadata().key_value_metadata() {
            for key_value in file_metadata {
                if !key_value.key.starts_with("ARROW:") {
                    metadata.insert(
                        key_value.key.clone(),
                        key_value.value.clone().unwrap_or("[unset]".to_string()),
                    );
                }
            }
        }

        // Check the schema
        let mut has_epoch = false; // Required
        let mut frame = None;

        let mut found_fields = vec![
            (StateParameter::X, false),
            (StateParameter::Y, false),
            (StateParameter::Z, false),
            (StateParameter::VX, false),
            (StateParameter::VY, false),
            (StateParameter::VZ, false),
            (StateParameter::PropMass, false),
        ];

        let file = File::open(path).context(StdIOSnafu {
            action: "opening output trajectory file",
        })?;

        let builder = ParquetRecordBatchReaderBuilder::try_new(file).unwrap();

        let reader = builder.build().context(ParquetSnafu {
            action: "building output trajectory file",
        })?;

        for field in &reader.schema().fields {
            if field.name().as_str() == "Epoch (UTC)" {
                has_epoch = true;
            } else {
                for potential_field in &mut found_fields {
                    if field.name() == potential_field.0.to_field(None).name() {
                        potential_field.1 = true;
                        if potential_field.0 != StateParameter::PropMass {
                            if let Some(frame_info) = field.metadata().get("Frame") {
                                // Frame is expected to be serialized as Dhall.
                                match serde_dhall::from_str(frame_info).parse::<Frame>() {
                                    Err(e) => {
                                        return Err(InputOutputError::ParseDhall {
                                            data: frame_info.to_string(),
                                            err: format!("{e}"),
                                        })
                                    }
                                    Ok(deser_frame) => frame = Some(deser_frame),
                                };
                            }
                        }
                        break;
                    }
                }
            }
        }

        ensure!(
            has_epoch,
            MissingDataSnafu {
                which: "Epoch (UTC)"
            }
        );

        ensure!(
            frame.is_some(),
            MissingDataSnafu {
                which: "Frame in metadata"
            }
        );

        for (field, exists) in found_fields.iter().take(found_fields.len() - 1) {
            ensure!(
                exists,
                MissingDataSnafu {
                    which: format!("Missing `{}` field", field.to_field(None).name())
                }
            );
        }

        let sc_compat = found_fields.last().unwrap().1;

        let expected_type = std::any::type_name::<Spacecraft>()
            .split("::")
            .last()
            .unwrap();

        if expected_type == "Spacecraft" {
            ensure!(
                sc_compat,
                MissingDataSnafu {
                    which: format!(
                        "Missing `{}` field",
                        found_fields.last().unwrap().0.to_field(None).name()
                    )
                }
            );
        } else if sc_compat {
            // Not a spacecraft, remove the prop mass
            if let Some(last_field) = found_fields.last_mut() {
                if last_field.0 == StateParameter::PropMass && last_field.1 {
                    last_field.1 = false;
                }
            }
        }

        // At this stage, we know that the measurement is valid and the conversion is supported.
        let mut traj = Traj::default();

        // Now convert each batch on the fly
        for maybe_batch in reader {
            let batch = maybe_batch.unwrap();

            let epochs = batch
                .column_by_name("Epoch (UTC)")
                .unwrap()
                .as_any()
                .downcast_ref::<StringArray>()
                .unwrap();

            let mut shared_data = vec![];

            for (field, _) in found_fields.iter().take(found_fields.len() - 1) {
                shared_data.push(
                    batch
                        .column_by_name(field.to_field(None).name())
                        .unwrap()
                        .as_any()
                        .downcast_ref::<Float64Array>()
                        .unwrap(),
                );
            }

            if expected_type == "Spacecraft" {
                // Read the prop only if this is a spacecraft we're building
                shared_data.push(
                    batch
                        .column_by_name("prop_mass (kg)")
                        .unwrap()
                        .as_any()
                        .downcast_ref::<Float64Array>()
                        .unwrap(),
                );
            }

            // Grab the frame -- it should have been serialized with all of the data so we don't need to reload it.

            // Build the states
            for i in 0..batch.num_rows() {
                let mut state = Spacecraft::zeros();
                state.set_epoch(Epoch::from_gregorian_str(epochs.value(i)).map_err(|e| {
                    InputOutputError::Inconsistency {
                        msg: format!("{e} when parsing epoch"),
                    }
                })?);
                state.set_frame(frame.unwrap()); // We checked it was set above with an ensure! call
                state.unset_stm(); // We don't have any STM data, so let's unset this.

                for (j, (param, exists)) in found_fields.iter().enumerate() {
                    if *exists {
                        state.set_value(*param, shared_data[j].value(i)).unwrap();
                    }
                }

                traj.states.push(state);
            }
        }

        // Remove any duplicates that may exist in the imported trajectory.
        traj.finalize();

        Ok(traj)
    }
}

#[cfg(test)]
mod ut_ccsds_oem {

    use crate::md::prelude::{OrbitalDynamics, Propagator, SpacecraftDynamics};
    use crate::time::{Epoch, TimeUnits};
    use crate::Spacecraft;
    use crate::{io::ExportCfg, md::prelude::Traj, Orbit};
    use anise::almanac::Almanac;
    use anise::constants::frames::MOON_J2000;
    use pretty_env_logger;
    use std::env;
    use std::str::FromStr;
    use std::sync::Arc;
    use std::{collections::HashMap, path::PathBuf};

    #[test]
    fn test_load_oem_leo() {
        // All three samples were taken from https://github.com/bradsease/oem/blob/main/tests/samples/real/
        let path: PathBuf = [
            env!("CARGO_MANIFEST_DIR"),
            "data",
            "tests",
            "ccsds",
            "oem",
            "LEO_10s.oem",
        ]
        .iter()
        .collect();

        let _ = pretty_env_logger::try_init();

        let traj: Traj<Spacecraft> = Traj::from_oem_file(path, None).unwrap();

        // This trajectory has two duplicate epochs, which should be removed by the call to finalize()
        assert_eq!(traj.states.len(), 361);
        assert_eq!(traj.name.unwrap(), "TEST_OBJ".to_string());
    }

    #[test]
    fn test_load_oem_meo() {
        // All three samples were taken from https://github.com/bradsease/oem/blob/main/tests/samples/real/
        let path: PathBuf = [
            env!("CARGO_MANIFEST_DIR"),
            "data",
            "tests",
            "ccsds",
            "oem",
            "MEO_60s.oem",
        ]
        .iter()
        .collect();

        let _ = pretty_env_logger::try_init();

        let traj: Traj<Spacecraft> = Traj::from_oem_file(path, None).unwrap();

        assert_eq!(traj.states.len(), 61);
        assert_eq!(traj.name.unwrap(), "TEST_OBJ".to_string());
    }

    #[test]
    fn test_load_oem_geo() {
        use pretty_env_logger;
        use std::env;

        // All three samples were taken from https://github.com/bradsease/oem/blob/main/tests/samples/real/
        let path: PathBuf = [
            env!("CARGO_MANIFEST_DIR"),
            "data",
            "tests",
            "ccsds",
            "oem",
            "GEO_20s.oem",
        ]
        .iter()
        .collect();

        let _ = pretty_env_logger::try_init();

        let traj: Traj<Spacecraft> = Traj::from_oem_file(path, None).unwrap();

        assert_eq!(traj.states.len(), 181);
        assert_eq!(traj.name.as_ref().unwrap(), &"TEST_OBJ".to_string());

        // Reexport this to CCSDS.
        let cfg = ExportCfg::builder()
            .timestamp(true)
            .metadata(HashMap::from([
                ("originator".to_string(), "Test suite".to_string()),
                ("object_name".to_string(), "TEST_OBJ".to_string()),
            ]))
            .build();

        let path: PathBuf = [
            env!("CARGO_MANIFEST_DIR"),
            "output_data",
            "GEO_20s_rebuilt.oem",
        ]
        .iter()
        .collect();

        let out_path = traj.to_oem_file(path.clone(), cfg).unwrap();
        // And reload, make sure we have the same data.
        let traj_reloaded: Traj<Spacecraft> = Traj::from_oem_file(out_path, None).unwrap();

        assert_eq!(traj_reloaded, traj);

        // Now export after trimming one state on either end
        let cfg = ExportCfg::builder()
            .timestamp(true)
            .metadata(HashMap::from([
                ("originator".to_string(), "Test suite".to_string()),
                ("object_name".to_string(), "TEST_OBJ".to_string()),
            ]))
            .step(20.seconds())
            .start_epoch(traj.first().orbit.epoch + 1.seconds())
            .end_epoch(traj.last().orbit.epoch - 1.seconds())
            .build();
        let out_path = traj.to_oem_file(path, cfg).unwrap();
        // And reload, make sure we have the same data.
        let traj_reloaded: Traj<Spacecraft> = Traj::from_oem_file(out_path, None).unwrap();

        // Note that the number of states has changed because we interpolated with a step similar to the original one but
        // we started with a different time.
        assert_eq!(traj_reloaded.states.len(), traj.states.len() - 1);
        assert_eq!(
            traj_reloaded.first().orbit.epoch,
            traj.first().orbit.epoch + 1.seconds()
        );
        // Note: because we used a fixed step, the last epoch is actually an offset of step size - end offset
        // from the original trajectory
        assert_eq!(
            traj_reloaded.last().orbit.epoch,
            traj.last().orbit.epoch - 19.seconds()
        );
    }

    #[test]
    fn test_moon_frame_long_prop() {
        use std::path::PathBuf;

        let manifest_dir =
            PathBuf::from(std::env::var("CARGO_MANIFEST_DIR").unwrap_or(".".to_string()));

        let almanac = Almanac::new(
            &manifest_dir
                .clone()
                .join("data/pck08.pca")
                .to_string_lossy(),
        )
        .unwrap()
        .load(&manifest_dir.join("data/de440s.bsp").to_string_lossy())
        .unwrap();

        let epoch = Epoch::from_str("2022-06-13T12:00:00").unwrap();
        let orbit = Orbit::try_keplerian_altitude(
            350.0,
            0.02,
            30.0,
            45.0,
            85.0,
            0.0,
            epoch,
            almanac.frame_from_uid(MOON_J2000).unwrap(),
        )
        .unwrap();

        let mut traj =
            Propagator::default_dp78(SpacecraftDynamics::new(OrbitalDynamics::two_body()))
                .with(orbit.into(), Arc::new(almanac))
                .for_duration_with_traj(45.days())
                .unwrap()
                .1;
        // Set the name of this object
        traj.name = Some("TEST_MOON_OBJ".to_string());

        // Export CCSDS OEM file
        let path: PathBuf = [env!("CARGO_MANIFEST_DIR"), "output_data", "moon_45days.oem"]
            .iter()
            .collect();

        let out_path = traj.to_oem_file(path, ExportCfg::default()).unwrap();

        // And reload
        let traj_reloaded: Traj<Spacecraft> = Traj::from_oem_file(out_path, None).unwrap();

        assert_eq!(traj, traj_reloaded);
    }
}