use super::{Estimate, State};
use crate::cosmic::AstroError;
use crate::linalg::allocator::Allocator;
use crate::linalg::{DefaultAllocator, DimName, Matrix, OMatrix, OVector};
use crate::mc::{MvnSpacecraft, StateDispersion};
use crate::md::prelude::OrbitDual;
use crate::md::StateParameter;
use crate::Spacecraft;
use nalgebra::Const;
use nalgebra::SMatrix;
use rand::SeedableRng;
use rand_distr::Distribution;
use rand_pcg::Pcg64Mcg;
use std::cmp::PartialEq;
use std::error::Error;
use std::fmt;
use std::ops::Mul;
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct KfEstimate<T: State>
where
DefaultAllocator: Allocator<<T as State>::Size>
+ Allocator<<T as State>::Size, <T as State>::Size>
+ Allocator<<T as State>::Size>
+ Allocator<<T as State>::VecLength>,
<DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy,
<DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,
{
pub nominal_state: T,
pub state_deviation: OVector<f64, <T as State>::Size>,
pub covar: OMatrix<f64, <T as State>::Size, <T as State>::Size>,
pub covar_bar: OMatrix<f64, <T as State>::Size, <T as State>::Size>,
pub predicted: bool,
pub stm: OMatrix<f64, <T as State>::Size, <T as State>::Size>,
}
impl<T: State> KfEstimate<T>
where
DefaultAllocator: Allocator<<T as State>::Size>
+ Allocator<<T as State>::Size, <T as State>::Size>
+ Allocator<<T as State>::Size>
+ Allocator<<T as State>::VecLength>,
<DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy,
<DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,
{
pub fn from_covar(
nominal_state: T,
covar: OMatrix<f64, <T as State>::Size, <T as State>::Size>,
) -> Self {
Self {
nominal_state,
state_deviation: OVector::<f64, <T as State>::Size>::zeros(),
covar,
covar_bar: covar,
predicted: true,
stm: OMatrix::<f64, <T as State>::Size, <T as State>::Size>::identity(),
}
}
pub fn from_diag(nominal_state: T, diag: OVector<f64, <T as State>::Size>) -> Self {
let covar = Matrix::from_diagonal(&diag);
Self {
nominal_state,
state_deviation: OVector::<f64, <T as State>::Size>::zeros(),
covar,
covar_bar: covar,
predicted: true,
stm: OMatrix::<f64, <T as State>::Size, <T as State>::Size>::identity(),
}
}
}
impl KfEstimate<Spacecraft> {
pub fn disperse_from_diag(
nominal_state: Spacecraft,
dispersions: Vec<StateDispersion>,
seed: Option<u128>,
) -> Result<Self, Box<dyn Error>> {
let generator = MvnSpacecraft::new(nominal_state, dispersions)?;
let mut rng = match seed {
Some(seed) => Pcg64Mcg::new(seed),
None => Pcg64Mcg::from_entropy(),
};
let dispersed_state = generator.sample(&mut rng);
let delta_orbit = (nominal_state.orbit - dispersed_state.state.orbit).unwrap();
let diag_data = [
(3.0 * delta_orbit.radius_km.x.abs()).powi(2),
(3.0 * delta_orbit.radius_km.y.abs()).powi(2),
(3.0 * delta_orbit.radius_km.z.abs()).powi(2),
(3.0 * delta_orbit.velocity_km_s.x.abs()).powi(2),
(3.0 * delta_orbit.velocity_km_s.y.abs()).powi(2),
(3.0 * delta_orbit.velocity_km_s.z.abs()).powi(2),
(3.0 * (nominal_state.srp.coeff_reflectivity
- dispersed_state.state.srp.coeff_reflectivity)
.abs())
.powi(2),
(3.0 * (nominal_state.drag.coeff_drag - dispersed_state.state.drag.coeff_drag).abs())
.powi(2),
(3.0 * (nominal_state.mass.prop_mass_kg - dispersed_state.state.mass.prop_mass_kg)
.abs())
.powi(2),
];
let diag = OVector::<f64, Const<9>>::from_iterator(diag_data);
let covar = Matrix::from_diagonal(&diag);
Ok(Self {
nominal_state: dispersed_state.state,
state_deviation: OVector::<f64, Const<9>>::zeros(),
covar,
covar_bar: covar,
predicted: true,
stm: OMatrix::<f64, Const<9>, Const<9>>::identity(),
})
}
pub fn to_random_variable(&self) -> Result<MvnSpacecraft, Box<dyn Error>> {
MvnSpacecraft::from_spacecraft_cov(self.nominal_state, self.covar, self.state_deviation)
}
pub fn sigma_for(&self, param: StateParameter) -> Result<f64, AstroError> {
let mut rotmat = SMatrix::<f64, 1, 6>::zeros();
let orbit_dual = OrbitDual::from(self.nominal_state.orbit);
let xf_partial = orbit_dual.partial_for(param)?;
for (cno, val) in [
xf_partial.wtr_x(),
xf_partial.wtr_y(),
xf_partial.wtr_z(),
xf_partial.wtr_vx(),
xf_partial.wtr_vy(),
xf_partial.wtr_vz(),
]
.iter()
.copied()
.enumerate()
{
rotmat[(0, cno)] = val;
}
Ok((rotmat * self.covar.fixed_view::<6, 6>(0, 0) * rotmat.transpose())[(0, 0)].sqrt())
}
pub fn keplerian_covar(&self) -> SMatrix<f64, 6, 6> {
let mut rotmat = SMatrix::<f64, 6, 6>::zeros();
let orbit_dual = OrbitDual::from(self.nominal_state.orbit);
for (pno, param) in [
StateParameter::SMA,
StateParameter::Eccentricity,
StateParameter::Inclination,
StateParameter::RAAN,
StateParameter::AoP,
StateParameter::TrueAnomaly,
]
.iter()
.copied()
.enumerate()
{
let xf_partial = orbit_dual.partial_for(param).unwrap();
for (cno, val) in [
xf_partial.wtr_x(),
xf_partial.wtr_y(),
xf_partial.wtr_z(),
xf_partial.wtr_vx(),
xf_partial.wtr_vy(),
xf_partial.wtr_vz(),
]
.iter()
.copied()
.enumerate()
{
rotmat[(pno, cno)] = val;
}
}
rotmat * self.covar.fixed_view::<6, 6>(0, 0) * rotmat.transpose()
}
}
impl<T: State> Estimate<T> for KfEstimate<T>
where
DefaultAllocator: Allocator<<T as State>::Size>
+ Allocator<<T as State>::Size, <T as State>::Size>
+ Allocator<<T as State>::Size>
+ Allocator<<T as State>::VecLength>,
<DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy,
<DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,
{
fn zeros(nominal_state: T) -> Self {
Self {
nominal_state,
state_deviation: OVector::<f64, <T as State>::Size>::zeros(),
covar: OMatrix::<f64, <T as State>::Size, <T as State>::Size>::zeros(),
covar_bar: OMatrix::<f64, <T as State>::Size, <T as State>::Size>::zeros(),
predicted: true,
stm: OMatrix::<f64, <T as State>::Size, <T as State>::Size>::identity(),
}
}
fn nominal_state(&self) -> T {
self.nominal_state
}
fn state_deviation(&self) -> OVector<f64, <T as State>::Size> {
self.state_deviation
}
fn covar(&self) -> OMatrix<f64, <T as State>::Size, <T as State>::Size> {
self.covar
}
fn predicted_covar(&self) -> OMatrix<f64, <T as State>::Size, <T as State>::Size> {
self.covar_bar
}
fn predicted(&self) -> bool {
self.predicted
}
fn stm(&self) -> &OMatrix<f64, <T as State>::Size, <T as State>::Size> {
&self.stm
}
fn set_state_deviation(&mut self, new_state: OVector<f64, <T as State>::Size>) {
self.state_deviation = new_state;
}
fn set_covar(&mut self, new_covar: OMatrix<f64, <T as State>::Size, <T as State>::Size>) {
self.covar = new_covar;
}
}
impl<T: State> fmt::Display for KfEstimate<T>
where
DefaultAllocator: Allocator<<T as State>::Size>
+ Allocator<<T as State>::Size, <T as State>::Size>
+ Allocator<<T as State>::Size>
+ Allocator<<T as State>::VecLength>,
<DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy,
<DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let dim = <T as State>::Size::dim();
let word = if self.predicted {
"Prediction"
} else {
"Estimate"
};
let mut fmt_cov = Vec::with_capacity(dim);
for i in 0..dim {
let unit = if i < 3 {
"km"
} else if i < 6 {
"km/s"
} else {
""
};
fmt_cov.push(format!("{:.6} {unit}", &self.covar[(i, i)]));
}
write!(
f,
"=== {} @ {} -- within 3 sigma: {} ===\nstate {}\nsigmas [{}]\n",
word,
&self.epoch(),
self.within_3sigma(),
&self.state(),
fmt_cov.join(", ")
)
}
}
impl<T: State> fmt::LowerExp for KfEstimate<T>
where
DefaultAllocator: Allocator<<T as State>::Size>
+ Allocator<<T as State>::Size, <T as State>::Size>
+ Allocator<<T as State>::Size>
+ Allocator<<T as State>::VecLength>,
<DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy,
<DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"=== PREDICTED: {} ===\nEstState {:e} Covariance {:e}\n=====================",
&self.predicted, &self.state_deviation, &self.covar
)
}
}
impl<T: State> Mul<f64> for KfEstimate<T>
where
DefaultAllocator: Allocator<<T as State>::Size>
+ Allocator<<T as State>::Size, <T as State>::Size>
+ Allocator<<T as State>::Size>
+ Allocator<<T as State>::VecLength>,
<DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy,
<DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,
{
type Output = Self;
fn mul(mut self, rhs: f64) -> Self::Output {
self.covar *= rhs.powi(2);
self
}
}
#[cfg(test)]
mod ut_kfest {
use crate::{
mc::StateDispersion, md::StateParameter, od::estimate::KfEstimate, Spacecraft,
GMAT_EARTH_GM,
};
use anise::{constants::frames::EARTH_J2000, prelude::Orbit};
use hifitime::Epoch;
#[test]
fn test_estimate_from_disp() {
let eme2k = EARTH_J2000.with_mu_km3_s2(GMAT_EARTH_GM);
let dt = Epoch::from_gregorian_tai_at_midnight(2020, 1, 1);
let initial_state = Spacecraft::builder()
.orbit(Orbit::keplerian(
22000.0, 0.01, 30.0, 80.0, 40.0, 0.0, dt, eme2k,
))
.build();
let initial_estimate = KfEstimate::disperse_from_diag(
initial_state,
vec![
StateDispersion::builder()
.param(StateParameter::SMA)
.std_dev(1.1)
.build(),
StateDispersion::zero_mean(StateParameter::Inclination, 0.2),
StateDispersion::zero_mean(StateParameter::RAAN, 0.2),
StateDispersion::zero_mean(StateParameter::AoP, 0.2),
],
Some(0),
)
.unwrap();
let initial_state_dev = initial_estimate.nominal_state;
let (init_rss_pos_km, init_rss_vel_km_s, _) =
initial_state.rss(&initial_state_dev).unwrap();
let delta = (initial_state.orbit - initial_state_dev.orbit).unwrap();
println!("Truth initial state:\n{initial_state}\n{initial_state:x}");
println!("Filter initial state:\n{initial_state_dev}\n{initial_state_dev:x}");
println!(
"Initial state dev:\t{init_rss_pos_km:.6} km\t{init_rss_vel_km_s:.6} km/s\n{delta}",
);
println!("covariance: {:.6}", initial_estimate.covar);
assert!(delta.radius_km.x < initial_estimate.covar[(0, 0)].sqrt());
assert!(delta.radius_km.y < initial_estimate.covar[(1, 1)].sqrt());
assert!(delta.radius_km.z < initial_estimate.covar[(2, 2)].sqrt());
assert!(delta.velocity_km_s.x < initial_estimate.covar[(3, 3)].sqrt());
assert!(delta.velocity_km_s.y < initial_estimate.covar[(4, 4)].sqrt());
assert!(delta.velocity_km_s.z < initial_estimate.covar[(5, 5)].sqrt());
}
}