nyx_space/od/filter/kalman.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
pub use crate::errors::NyxError;
use crate::linalg::allocator::Allocator;
use crate::linalg::{DefaultAllocator, DimName, OMatrix, OVector, U3};
pub use crate::od::estimate::{Estimate, KfEstimate, Residual};
use crate::od::process::ResidRejectCrit;
pub use crate::od::snc::SNC;
use crate::od::{Filter, ODDynamicsSnafu, ODError, State};
pub use crate::time::{Epoch, Unit};
use snafu::prelude::*;
/// Defines both a Classical and an Extended Kalman filter (CKF and EKF)
/// T: Type of state
/// A: Acceleration size (for SNC)
/// M: Measurement size (used for the sensitivity matrix)
#[derive(Debug, Clone)]
#[allow(clippy::upper_case_acronyms)]
pub struct KF<T, A, M>
where
A: DimName,
M: DimName,
T: State,
DefaultAllocator: Allocator<M>
+ Allocator<<T as State>::Size>
+ Allocator<<T as State>::VecLength>
+ Allocator<A>
+ Allocator<M, M>
+ Allocator<M, <T as State>::Size>
+ Allocator<<T as State>::Size, <T as State>::Size>
+ Allocator<A, A>
+ Allocator<<T as State>::Size, A>
+ Allocator<A, <T as State>::Size>,
<DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy,
<DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,
{
/// The previous estimate used in the KF computations.
pub prev_estimate: KfEstimate<T>,
/// A sets of process noise (usually noted Q), must be ordered chronologically
pub process_noise: Vec<SNC<A>>,
/// Determines whether this KF should operate as a Conventional/Classical Kalman filter or an Extended Kalman Filter.
/// Recall that one should switch to an Extended KF only once the estimate is good (i.e. after a few good measurement updates on a CKF).
pub ekf: bool,
h_tilde: OMatrix<f64, M, <T as State>::Size>,
h_tilde_updated: bool,
prev_used_snc: usize,
}
impl<T, A, M> KF<T, A, M>
where
A: DimName,
M: DimName,
T: State,
DefaultAllocator: Allocator<M>
+ Allocator<<T as State>::Size>
+ Allocator<<T as State>::VecLength>
+ Allocator<A>
+ Allocator<M, M>
+ Allocator<M, <T as State>::Size>
+ Allocator<<T as State>::Size, M>
+ Allocator<<T as State>::Size, <T as State>::Size>
+ Allocator<A, A>
+ Allocator<<T as State>::Size, A>
+ Allocator<A, <T as State>::Size>,
<DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy,
<DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,
{
/// Initializes this KF with an initial estimate, measurement noise, and one process noise
pub fn new(initial_estimate: KfEstimate<T>, process_noise: SNC<A>) -> Self {
assert_eq!(
A::dim() % 3,
0,
"SNC can only be applied to accelerations multiple of 3"
);
// Set the initial epoch of the SNC
let mut process_noise = process_noise;
process_noise.init_epoch = Some(initial_estimate.epoch());
Self {
prev_estimate: initial_estimate,
process_noise: vec![process_noise],
ekf: false,
h_tilde: OMatrix::<f64, M, <T as State>::Size>::zeros(),
h_tilde_updated: false,
prev_used_snc: 0,
}
}
/// Initializes this KF with an initial estimate, measurement noise, and several process noise
/// WARNING: SNCs MUST be ordered chronologically! They will be selected automatically by walking
/// the list of SNCs backward until one can be applied!
pub fn with_sncs(initial_estimate: KfEstimate<T>, process_noises: Vec<SNC<A>>) -> Self {
assert_eq!(
A::dim() % 3,
0,
"SNC can only be applied to accelerations multiple of 3"
);
let mut process_noises = process_noises;
// Set the initial epoch of the SNC
for snc in &mut process_noises {
snc.init_epoch = Some(initial_estimate.epoch());
}
Self {
prev_estimate: initial_estimate,
process_noise: process_noises,
ekf: false,
h_tilde: OMatrix::<f64, M, <T as State>::Size>::zeros(),
h_tilde_updated: false,
prev_used_snc: 0,
}
}
}
impl<T, M> KF<T, U3, M>
where
M: DimName,
T: State,
DefaultAllocator: Allocator<M>
+ Allocator<<T as State>::Size>
+ Allocator<<T as State>::VecLength>
+ Allocator<M, M>
+ Allocator<M, <T as State>::Size>
+ Allocator<<T as State>::Size, M>
+ Allocator<<T as State>::Size, <T as State>::Size>
+ Allocator<U3, U3>
+ Allocator<<T as State>::Size, U3>
+ Allocator<U3, <T as State>::Size>,
<DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy,
<DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,
{
/// Initializes this KF without SNC
pub fn no_snc(initial_estimate: KfEstimate<T>) -> Self {
Self {
prev_estimate: initial_estimate,
process_noise: Vec::new(),
ekf: false,
h_tilde: OMatrix::<f64, M, <T as State>::Size>::zeros(),
h_tilde_updated: false,
prev_used_snc: 0,
}
}
}
impl<T, A, M> Filter<T, A, M> for KF<T, A, M>
where
A: DimName,
M: DimName,
T: State,
DefaultAllocator: Allocator<M>
+ Allocator<<T as State>::Size>
+ Allocator<<T as State>::VecLength>
+ Allocator<A>
+ Allocator<M, M>
+ Allocator<M, <T as State>::Size>
+ Allocator<<T as State>::Size, M>
+ Allocator<<T as State>::Size, <T as State>::Size>
+ Allocator<A, A>
+ Allocator<<T as State>::Size, A>
+ Allocator<A, <T as State>::Size>
+ Allocator<nalgebra::Const<1>, M>,
<DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy,
<DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,
{
type Estimate = KfEstimate<T>;
/// Returns the previous estimate
fn previous_estimate(&self) -> &Self::Estimate {
&self.prev_estimate
}
fn set_previous_estimate(&mut self, est: &Self::Estimate) {
self.prev_estimate = *est;
}
/// Update the sensitivity matrix (or "H tilde"). This function **must** be called prior to each
/// call to `measurement_update`.
fn update_h_tilde(&mut self, h_tilde: OMatrix<f64, M, <T as State>::Size>) {
self.h_tilde = h_tilde;
self.h_tilde_updated = true;
}
/// Computes a time update/prediction (i.e. advances the filter estimate with the updated STM).
///
/// May return a FilterError if the STM was not updated.
fn time_update(&mut self, nominal_state: T) -> Result<Self::Estimate, ODError> {
let stm = nominal_state.stm().context(ODDynamicsSnafu)?;
let mut covar_bar = stm * self.prev_estimate.covar * stm.transpose();
// Try to apply an SNC, if applicable
for (i, snc) in self.process_noise.iter().enumerate().rev() {
if let Some(snc_matrix) = snc.to_matrix(nominal_state.epoch()) {
// Check if we're using another SNC than the one before
if self.prev_used_snc != i {
info!("Switched to {}-th {}", i, snc);
self.prev_used_snc = i;
}
// Let's compute the Gamma matrix, an approximation of the time integral
// which assumes that the acceleration is constant between these two measurements.
let mut gamma = OMatrix::<f64, <T as State>::Size, A>::zeros();
let delta_t = (nominal_state.epoch() - self.prev_estimate.epoch()).to_seconds();
for blk in 0..A::dim() / 3 {
for i in 0..3 {
let idx_i = i + A::dim() * blk;
let idx_j = i + 3 * blk;
let idx_k = i + 3 + A::dim() * blk;
// For first block
// (0, 0) (1, 1) (2, 2) <=> \Delta t^2/2
// (3, 0) (4, 1) (5, 2) <=> \Delta t
// Second block
// (6, 3) (7, 4) (8, 5) <=> \Delta t^2/2
// (9, 3) (10, 4) (11, 5) <=> \Delta t
// * \Delta t^2/2
// (i, i) when blk = 0
// (i + A::dim() * blk, i + 3) when blk = 1
// (i + A::dim() * blk, i + 3 * blk)
// * \Delta t
// (i + 3, i) when blk = 0
// (i + 3, i + 9) when blk = 1 (and I think i + 12 + 3)
// (i + 3 + A::dim() * blk, i + 3 * blk)
gamma[(idx_i, idx_j)] = delta_t.powi(2) / 2.0;
gamma[(idx_k, idx_j)] = delta_t;
}
}
// Let's add the process noise
covar_bar += &gamma * snc_matrix * &gamma.transpose();
// And break so we don't add any more process noise
break;
}
}
let state_bar = if self.ekf {
OVector::<f64, <T as State>::Size>::zeros()
} else {
stm * self.prev_estimate.state_deviation
};
let estimate = KfEstimate {
nominal_state,
state_deviation: state_bar,
covar: covar_bar,
covar_bar,
stm,
predicted: true,
};
self.prev_estimate = estimate;
// Update the prev epoch for all SNCs
for snc in &mut self.process_noise {
snc.prev_epoch = Some(self.prev_estimate.epoch());
}
Ok(estimate)
}
/// Computes the measurement update with a provided real observation and computed observation.
///
/// May return a FilterError if the STM or sensitivity matrices were not updated.
fn measurement_update(
&mut self,
nominal_state: T,
real_obs: &OVector<f64, M>,
computed_obs: &OVector<f64, M>,
r_k: OMatrix<f64, M, M>,
resid_rejection: Option<ResidRejectCrit>,
) -> Result<(Self::Estimate, Residual<M>), ODError> {
if !self.h_tilde_updated {
return Err(ODError::SensitivityNotUpdated);
}
let stm = nominal_state.stm().context(ODDynamicsSnafu)?;
let epoch = nominal_state.epoch();
let covar_bar = stm * self.prev_estimate.covar * stm.transpose();
let h_tilde_t = &self.h_tilde.transpose();
let h_p_ht = &self.h_tilde * covar_bar * h_tilde_t;
let s_k = &h_p_ht + &r_k;
// Compute observation deviation (usually marked as y_i)
let prefit = real_obs - computed_obs;
// Compute the prefit ratio for the automatic rejection.
// The measurement covariance is the square of the measurement itself.
// So we compute its Cholesky decomposition to return to the non squared values.
let r_k_chol = s_k.clone().cholesky().ok_or(ODError::SingularNoiseRk)?.l();
// Compute the ratio as the average of each component of the prefit over the square root of the measurement
// matrix r_k. Refer to ODTK MathSpec equation 4.10.
let ratio = s_k
.diagonal()
.iter()
.copied()
.enumerate()
.map(|(idx, r)| prefit[idx] / r.sqrt())
.sum::<f64>()
/ (M::USIZE as f64);
if let Some(resid_reject) = resid_rejection {
if ratio.abs() > resid_reject.num_sigmas {
// Reject this whole measurement and perform only a time update
let pred_est = self.time_update(nominal_state)?;
return Ok((
pred_est,
Residual::rejected(epoch, prefit, ratio, r_k_chol.diagonal()),
));
}
}
// Compute the innovation matrix (S_k) but using the previously computed s_k.
// This differs from the typical Kalman definition, but it allows constant inflating of the covariance.
// In turn, this allows the filter to not be overly optimistic. In verification tests, using the nominal
// Kalman formulation shows an error roughly 7 times larger with a smaller than expected covariance, despite
// no difference in the truth and sim.
let mut innovation_covar = h_p_ht + &s_k;
if !innovation_covar.try_inverse_mut() {
return Err(ODError::SingularKalmanGain);
}
let gain = covar_bar * h_tilde_t * &innovation_covar;
// Compute the state estimate
let (state_hat, res) = if self.ekf {
let state_hat = &gain * &prefit;
let postfit = &prefit - (&self.h_tilde * state_hat);
(
state_hat,
Residual::accepted(epoch, prefit, postfit, ratio, r_k_chol.diagonal()),
)
} else {
// Must do a time update first
let state_bar = stm * self.prev_estimate.state_deviation;
let postfit = &prefit - (&self.h_tilde * state_bar);
(
state_bar + &gain * &postfit,
Residual::accepted(epoch, prefit, postfit, ratio, r_k_chol.diagonal()),
)
};
// Compute covariance (Joseph update)
let first_term = OMatrix::<f64, <T as State>::Size, <T as State>::Size>::identity()
- &gain * &self.h_tilde;
let covar =
first_term * covar_bar * first_term.transpose() + &gain * &s_k * &gain.transpose();
// And wrap up
let estimate = KfEstimate {
nominal_state,
state_deviation: state_hat,
covar,
covar_bar,
stm,
predicted: false,
};
self.h_tilde_updated = false;
self.prev_estimate = estimate;
// Update the prev epoch for all SNCs
for snc in &mut self.process_noise {
snc.prev_epoch = Some(self.prev_estimate.epoch());
}
Ok((estimate, res))
}
fn is_extended(&self) -> bool {
self.ekf
}
fn set_extended(&mut self, status: bool) {
self.ekf = status;
}
/// Overwrites all of the process noises to the one provided
fn set_process_noise(&mut self, snc: SNC<A>) {
self.process_noise = vec![snc];
}
}