nyx_space/od/filter/
kalman.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

pub use crate::errors::NyxError;
use crate::linalg::allocator::Allocator;
use crate::linalg::{DefaultAllocator, DimName, OMatrix, OVector, U3};
pub use crate::od::estimate::{Estimate, KfEstimate, Residual};
use crate::od::process::ResidRejectCrit;
pub use crate::od::snc::SNC;
use crate::od::{Filter, ODDynamicsSnafu, ODError, State};
pub use crate::time::{Epoch, Unit};
use snafu::prelude::*;

/// Defines both a Classical and an Extended Kalman filter (CKF and EKF)
/// T: Type of state
/// A: Acceleration size (for SNC)
/// M: Measurement size (used for the sensitivity matrix)
#[derive(Debug, Clone)]
#[allow(clippy::upper_case_acronyms)]
pub struct KF<T, A, M>
where
    A: DimName,
    M: DimName,
    T: State,
    DefaultAllocator: Allocator<M>
        + Allocator<<T as State>::Size>
        + Allocator<<T as State>::VecLength>
        + Allocator<A>
        + Allocator<M, M>
        + Allocator<M, <T as State>::Size>
        + Allocator<<T as State>::Size, <T as State>::Size>
        + Allocator<A, A>
        + Allocator<<T as State>::Size, A>
        + Allocator<A, <T as State>::Size>,
    <DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy,
    <DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,
{
    /// The previous estimate used in the KF computations.
    pub prev_estimate: KfEstimate<T>,
    /// A sets of process noise (usually noted Q), must be ordered chronologically
    pub process_noise: Vec<SNC<A>>,
    /// Determines whether this KF should operate as a Conventional/Classical Kalman filter or an Extended Kalman Filter.
    /// Recall that one should switch to an Extended KF only once the estimate is good (i.e. after a few good measurement updates on a CKF).
    pub ekf: bool,
    h_tilde: OMatrix<f64, M, <T as State>::Size>,
    h_tilde_updated: bool,
    prev_used_snc: usize,
}

impl<T, A, M> KF<T, A, M>
where
    A: DimName,
    M: DimName,
    T: State,
    DefaultAllocator: Allocator<M>
        + Allocator<<T as State>::Size>
        + Allocator<<T as State>::VecLength>
        + Allocator<A>
        + Allocator<M, M>
        + Allocator<M, <T as State>::Size>
        + Allocator<<T as State>::Size, M>
        + Allocator<<T as State>::Size, <T as State>::Size>
        + Allocator<A, A>
        + Allocator<<T as State>::Size, A>
        + Allocator<A, <T as State>::Size>,
    <DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy,
    <DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,
{
    /// Initializes this KF with an initial estimate, measurement noise, and one process noise
    pub fn new(initial_estimate: KfEstimate<T>, process_noise: SNC<A>) -> Self {
        assert_eq!(
            A::dim() % 3,
            0,
            "SNC can only be applied to accelerations multiple of 3"
        );

        // Set the initial epoch of the SNC
        let mut process_noise = process_noise;
        process_noise.init_epoch = Some(initial_estimate.epoch());

        Self {
            prev_estimate: initial_estimate,
            process_noise: vec![process_noise],
            ekf: false,
            h_tilde: OMatrix::<f64, M, <T as State>::Size>::zeros(),
            h_tilde_updated: false,
            prev_used_snc: 0,
        }
    }

    /// Initializes this KF with an initial estimate, measurement noise, and several process noise
    /// WARNING: SNCs MUST be ordered chronologically! They will be selected automatically by walking
    /// the list of SNCs backward until one can be applied!
    pub fn with_sncs(initial_estimate: KfEstimate<T>, process_noises: Vec<SNC<A>>) -> Self {
        assert_eq!(
            A::dim() % 3,
            0,
            "SNC can only be applied to accelerations multiple of 3"
        );
        let mut process_noises = process_noises;
        // Set the initial epoch of the SNC
        for snc in &mut process_noises {
            snc.init_epoch = Some(initial_estimate.epoch());
        }

        Self {
            prev_estimate: initial_estimate,
            process_noise: process_noises,
            ekf: false,
            h_tilde: OMatrix::<f64, M, <T as State>::Size>::zeros(),
            h_tilde_updated: false,
            prev_used_snc: 0,
        }
    }
}

impl<T, M> KF<T, U3, M>
where
    M: DimName,
    T: State,
    DefaultAllocator: Allocator<M>
        + Allocator<<T as State>::Size>
        + Allocator<<T as State>::VecLength>
        + Allocator<M, M>
        + Allocator<M, <T as State>::Size>
        + Allocator<<T as State>::Size, M>
        + Allocator<<T as State>::Size, <T as State>::Size>
        + Allocator<U3, U3>
        + Allocator<<T as State>::Size, U3>
        + Allocator<U3, <T as State>::Size>,
    <DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy,
    <DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,
{
    /// Initializes this KF without SNC
    pub fn no_snc(initial_estimate: KfEstimate<T>) -> Self {
        Self {
            prev_estimate: initial_estimate,
            process_noise: Vec::new(),
            ekf: false,
            h_tilde: OMatrix::<f64, M, <T as State>::Size>::zeros(),
            h_tilde_updated: false,
            prev_used_snc: 0,
        }
    }
}

impl<T, A, M> Filter<T, A, M> for KF<T, A, M>
where
    A: DimName,
    M: DimName,
    T: State,
    DefaultAllocator: Allocator<M>
        + Allocator<<T as State>::Size>
        + Allocator<<T as State>::VecLength>
        + Allocator<A>
        + Allocator<M, M>
        + Allocator<M, <T as State>::Size>
        + Allocator<<T as State>::Size, M>
        + Allocator<<T as State>::Size, <T as State>::Size>
        + Allocator<A, A>
        + Allocator<<T as State>::Size, A>
        + Allocator<A, <T as State>::Size>
        + Allocator<nalgebra::Const<1>, M>,
    <DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy,
    <DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,
{
    type Estimate = KfEstimate<T>;

    /// Returns the previous estimate
    fn previous_estimate(&self) -> &Self::Estimate {
        &self.prev_estimate
    }

    fn set_previous_estimate(&mut self, est: &Self::Estimate) {
        self.prev_estimate = *est;
    }

    /// Update the sensitivity matrix (or "H tilde"). This function **must** be called prior to each
    /// call to `measurement_update`.
    fn update_h_tilde(&mut self, h_tilde: OMatrix<f64, M, <T as State>::Size>) {
        self.h_tilde = h_tilde;
        self.h_tilde_updated = true;
    }

    /// Computes a time update/prediction (i.e. advances the filter estimate with the updated STM).
    ///
    /// May return a FilterError if the STM was not updated.
    fn time_update(&mut self, nominal_state: T) -> Result<Self::Estimate, ODError> {
        let stm = nominal_state.stm().context(ODDynamicsSnafu)?;
        let mut covar_bar = stm * self.prev_estimate.covar * stm.transpose();

        // Try to apply an SNC, if applicable
        for (i, snc) in self.process_noise.iter().enumerate().rev() {
            if let Some(snc_matrix) = snc.to_matrix(nominal_state.epoch()) {
                // Check if we're using another SNC than the one before
                if self.prev_used_snc != i {
                    info!("Switched to {}-th {}", i, snc);
                    self.prev_used_snc = i;
                }

                // Let's compute the Gamma matrix, an approximation of the time integral
                // which assumes that the acceleration is constant between these two measurements.
                let mut gamma = OMatrix::<f64, <T as State>::Size, A>::zeros();
                let delta_t = (nominal_state.epoch() - self.prev_estimate.epoch()).to_seconds();
                for blk in 0..A::dim() / 3 {
                    for i in 0..3 {
                        let idx_i = i + A::dim() * blk;
                        let idx_j = i + 3 * blk;
                        let idx_k = i + 3 + A::dim() * blk;
                        // For first block
                        // (0, 0) (1, 1) (2, 2) <=> \Delta t^2/2
                        // (3, 0) (4, 1) (5, 2) <=> \Delta t
                        // Second block
                        // (6, 3) (7, 4) (8, 5) <=> \Delta t^2/2
                        // (9, 3) (10, 4) (11, 5) <=> \Delta t
                        // * \Delta t^2/2
                        // (i, i) when blk = 0
                        // (i + A::dim() * blk, i + 3) when blk = 1
                        // (i + A::dim() * blk, i + 3 * blk)
                        // * \Delta t
                        // (i + 3, i) when blk = 0
                        // (i + 3, i + 9) when blk = 1 (and I think i + 12 + 3)
                        // (i + 3 + A::dim() * blk, i + 3 * blk)
                        gamma[(idx_i, idx_j)] = delta_t.powi(2) / 2.0;
                        gamma[(idx_k, idx_j)] = delta_t;
                    }
                }
                // Let's add the process noise
                covar_bar += &gamma * snc_matrix * &gamma.transpose();
                // And break so we don't add any more process noise
                break;
            }
        }

        let state_bar = if self.ekf {
            OVector::<f64, <T as State>::Size>::zeros()
        } else {
            stm * self.prev_estimate.state_deviation
        };
        let estimate = KfEstimate {
            nominal_state,
            state_deviation: state_bar,
            covar: covar_bar,
            covar_bar,
            stm,
            predicted: true,
        };
        self.prev_estimate = estimate;
        // Update the prev epoch for all SNCs
        for snc in &mut self.process_noise {
            snc.prev_epoch = Some(self.prev_estimate.epoch());
        }
        Ok(estimate)
    }

    /// Computes the measurement update with a provided real observation and computed observation.
    ///
    /// May return a FilterError if the STM or sensitivity matrices were not updated.
    fn measurement_update(
        &mut self,
        nominal_state: T,
        real_obs: &OVector<f64, M>,
        computed_obs: &OVector<f64, M>,
        r_k: OMatrix<f64, M, M>,
        resid_rejection: Option<ResidRejectCrit>,
    ) -> Result<(Self::Estimate, Residual<M>), ODError> {
        if !self.h_tilde_updated {
            return Err(ODError::SensitivityNotUpdated);
        }

        let stm = nominal_state.stm().context(ODDynamicsSnafu)?;

        let epoch = nominal_state.epoch();

        let covar_bar = stm * self.prev_estimate.covar * stm.transpose();

        let h_tilde_t = &self.h_tilde.transpose();
        let h_p_ht = &self.h_tilde * covar_bar * h_tilde_t;

        let s_k = &h_p_ht + &r_k;

        // Compute observation deviation (usually marked as y_i)
        let prefit = real_obs - computed_obs;

        // Compute the prefit ratio for the automatic rejection.
        // The measurement covariance is the square of the measurement itself.
        // So we compute its Cholesky decomposition to return to the non squared values.
        let r_k_chol = match s_k.clone().cholesky() {
            Some(r_k_clone) => r_k_clone.l(),
            None => {
                // In very rare case, when there isn't enough noise in the measurements,
                // the inverting of S_k fails. If so, we revert back to the nominal Kalman derivation.
                r_k.clone().cholesky().ok_or(ODError::SingularNoiseRk)?.l()
            }
        };

        // Compute the ratio as the average of each component of the prefit over the square root of the measurement
        // matrix r_k. Refer to ODTK MathSpec equation 4.10.
        let ratio = s_k
            .diagonal()
            .iter()
            .copied()
            .enumerate()
            .map(|(idx, r)| prefit[idx] / r.sqrt())
            .sum::<f64>()
            / (M::USIZE as f64);

        if let Some(resid_reject) = resid_rejection {
            if ratio.abs() > resid_reject.num_sigmas {
                // Reject this whole measurement and perform only a time update
                let pred_est = self.time_update(nominal_state)?;
                return Ok((
                    pred_est,
                    Residual::rejected(epoch, prefit, ratio, r_k_chol.diagonal()),
                ));
            }
        }

        // Compute the innovation matrix (S_k) but using the previously computed s_k.
        // This differs from the typical Kalman definition, but it allows constant inflating of the covariance.
        // In turn, this allows the filter to not be overly optimistic. In verification tests, using the nominal
        // Kalman formulation shows an error roughly 7 times larger with a smaller than expected covariance, despite
        // no difference in the truth and sim.
        let mut innovation_covar = h_p_ht + &s_k;
        if !innovation_covar.try_inverse_mut() {
            return Err(ODError::SingularKalmanGain);
        }

        let gain = covar_bar * h_tilde_t * &innovation_covar;

        // Compute the state estimate
        let (state_hat, res) = if self.ekf {
            let state_hat = &gain * &prefit;
            let postfit = &prefit - (&self.h_tilde * state_hat);
            (
                state_hat,
                Residual::accepted(epoch, prefit, postfit, ratio, r_k_chol.diagonal()),
            )
        } else {
            // Must do a time update first
            let state_bar = stm * self.prev_estimate.state_deviation;
            let postfit = &prefit - (&self.h_tilde * state_bar);
            (
                state_bar + &gain * &postfit,
                Residual::accepted(epoch, prefit, postfit, ratio, r_k_chol.diagonal()),
            )
        };

        // Compute covariance (Joseph update)
        let first_term = OMatrix::<f64, <T as State>::Size, <T as State>::Size>::identity()
            - &gain * &self.h_tilde;
        let covar =
            first_term * covar_bar * first_term.transpose() + &gain * &s_k * &gain.transpose();

        // And wrap up
        let estimate = KfEstimate {
            nominal_state,
            state_deviation: state_hat,
            covar,
            covar_bar,
            stm,
            predicted: false,
        };

        self.h_tilde_updated = false;
        self.prev_estimate = estimate;
        // Update the prev epoch for all SNCs
        for snc in &mut self.process_noise {
            snc.prev_epoch = Some(self.prev_estimate.epoch());
        }
        Ok((estimate, res))
    }

    fn is_extended(&self) -> bool {
        self.ekf
    }

    fn set_extended(&mut self, status: bool) {
        self.ekf = status;
    }

    /// Overwrites all of the process noises to the one provided
    fn set_process_noise(&mut self, snc: SNC<A>) {
        self.process_noise = vec![snc];
    }
}