nyx_space/od/msr/
range_doppler.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use crate::cosmic::Orbit;
use crate::linalg::allocator::Allocator;
use crate::linalg::{DefaultAllocator, OMatrix, OVector, Vector2, U2};
use crate::od::msr::RangeMsr;
use crate::od::{EstimateFrom, Measurement};
use crate::{Spacecraft, TimeTagged};
use anise::astro::AzElRange;
use arrow::datatypes::{DataType, Field};
use hifitime::{Epoch, Unit};
use std::collections::HashMap;

/// A simultaneous range and Doppler measurement in units of km and km/s, available both in one way and two way measurement.
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct RangeDoppler {
    /// Epoch of the observation
    pub epoch: Epoch,
    /// Observation vector in km and km/s
    pub obs: Vector2<f64>,
}

impl RangeDoppler {
    /// Initialize a new one-way range and Doppler measurement from the provided states and the effective noises.
    ///
    /// # Panics
    /// + If the epochs of the two states differ.
    /// + If the frames of the two states differ.
    pub fn one_way(
        aer: AzElRange,
        timestamp_noise_s: f64,
        range_noise_km: f64,
        doppler_noise_km_s: f64,
    ) -> Self {
        Self {
            epoch: aer.epoch + timestamp_noise_s * Unit::Second,
            obs: Vector2::new(
                aer.range_km + range_noise_km,
                aer.range_rate_km_s + doppler_noise_km_s,
            ),
        }
    }

    /// Initialize a new two-way range and Doppler measurement from the provided states as times t_1 and t_2 and the effective noises.
    ///
    /// The measurement is time-tagged at realization, i.e. at the end of the integration time (plus timestamp noise).
    ///
    /// # Noise
    /// The measurements are not considered to be independent distributed variables. As such, the noises are reduced by a factor of sqrt(2).
    ///
    /// # Panics
    /// + If the epochs of the two states differ.
    /// + If the frames of the two states differ.
    /// + If both epochs are identical.
    pub fn two_way(
        aer_t0: AzElRange,
        aer_t1: AzElRange,
        timestamp_noise_s: f64,
        range_noise_km: f64,
        doppler_noise_km_s: f64,
    ) -> Self {
        if aer_t0.epoch == aer_t1.epoch {
            return Self::one_way(
                aer_t1,
                timestamp_noise_s,
                range_noise_km,
                doppler_noise_km_s,
            );
        }

        let range_km = (aer_t1.range_km + aer_t0.range_km) * 0.5;
        let doppler_km_s = (aer_t1.range_rate_km_s + aer_t0.range_rate_km_s) * 0.5;

        // Time tagged at the realization of this measurement, i.e. at the end of the integration time.
        let epoch = aer_t1.epoch + timestamp_noise_s * Unit::Second;

        let obs = Vector2::new(
            range_km + range_noise_km / 2.0_f64.sqrt(),
            doppler_km_s + doppler_noise_km_s / 2.0_f64.sqrt(),
        );

        debug!(
            "two way msr @ {epoch}:\naer_t0 = {}\naer_t1 = {}{obs}",
            aer_t0, aer_t1
        );

        Self { epoch, obs }
    }
}

impl TimeTagged for RangeDoppler {
    fn epoch(&self) -> Epoch {
        self.epoch
    }

    fn set_epoch(&mut self, epoch: Epoch) {
        self.epoch = epoch
    }
}

impl Measurement for RangeDoppler {
    type MeasurementSize = U2;

    /// Returns this measurement as a vector of Range and Range Rate
    ///
    /// **Units:** km, km/s
    fn observation(&self) -> Vector2<f64> {
        self.obs
    }

    fn fields() -> Vec<Field> {
        let mut meta = HashMap::new();
        meta.insert("unit".to_string(), "km/s".to_string());

        vec![
            RangeMsr::fields()[0].clone(),
            Field::new("Doppler (km/s)", DataType::Float64, false).with_metadata(meta),
        ]
    }

    fn from_observation(epoch: Epoch, obs: OVector<f64, Self::MeasurementSize>) -> Self {
        Self { epoch, obs }
    }
}

impl EstimateFrom<Spacecraft, RangeDoppler> for Spacecraft {
    fn extract(from: Spacecraft) -> Self {
        from
    }

    fn sensitivity(
        msr: &RangeDoppler,
        receiver: Self,
        transmitter: Orbit,
    ) -> OMatrix<f64, <RangeDoppler as Measurement>::MeasurementSize, Self::Size>
    where
        DefaultAllocator: Allocator<<RangeDoppler as Measurement>::MeasurementSize, Self::Size>,
    {
        let delta_r = receiver.orbit.radius_km - transmitter.radius_km;
        let delta_v = receiver.orbit.velocity_km_s - transmitter.velocity_km_s;
        let ρ = msr.observation()[0];
        let ρ_dot = msr.observation()[1];
        let m11 = delta_r.x / ρ;
        let m12 = delta_r.y / ρ;
        let m13 = delta_r.z / ρ;
        let m21 = delta_v.x / ρ - ρ_dot * delta_r.x / ρ.powi(2);
        let m22 = delta_v.y / ρ - ρ_dot * delta_r.y / ρ.powi(2);
        let m23 = delta_v.z / ρ - ρ_dot * delta_r.z / ρ.powi(2);

        let items = &[
            m11, m12, m13, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, m21, m22, m23, m11, m12, m13, 0.0, 0.0,
            0.0,
        ];

        OMatrix::<f64, <RangeDoppler as Measurement>::MeasurementSize, Self::Size>::from_row_slice(
            items,
        )
    }
}