nyx_space/od/msr/range_doppler.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use crate::cosmic::Orbit;
use crate::linalg::allocator::Allocator;
use crate::linalg::{DefaultAllocator, OMatrix, OVector, Vector2, U2};
use crate::od::msr::RangeMsr;
use crate::od::{EstimateFrom, Measurement};
use crate::{Spacecraft, TimeTagged};
use anise::astro::AzElRange;
use arrow::datatypes::{DataType, Field};
use hifitime::{Epoch, Unit};
use std::collections::HashMap;
/// A simultaneous range and Doppler measurement in units of km and km/s, available both in one way and two way measurement.
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct RangeDoppler {
/// Epoch of the observation
pub epoch: Epoch,
/// Observation vector in km and km/s
pub obs: Vector2<f64>,
}
impl RangeDoppler {
/// Initialize a new one-way range and Doppler measurement from the provided states and the effective noises.
///
/// # Panics
/// + If the epochs of the two states differ.
/// + If the frames of the two states differ.
pub fn one_way(
aer: AzElRange,
timestamp_noise_s: f64,
range_noise_km: f64,
doppler_noise_km_s: f64,
) -> Self {
Self {
epoch: aer.epoch + timestamp_noise_s * Unit::Second,
obs: Vector2::new(
aer.range_km + range_noise_km,
aer.range_rate_km_s + doppler_noise_km_s,
),
}
}
/// Initialize a new two-way range and Doppler measurement from the provided states as times t_1 and t_2 and the effective noises.
///
/// The measurement is time-tagged at realization, i.e. at the end of the integration time (plus timestamp noise).
///
/// # Noise
/// The measurements are not considered to be independent distributed variables. As such, the noises are reduced by a factor of sqrt(2).
///
/// # Panics
/// + If the epochs of the two states differ.
/// + If the frames of the two states differ.
/// + If both epochs are identical.
pub fn two_way(
aer_t0: AzElRange,
aer_t1: AzElRange,
timestamp_noise_s: f64,
range_noise_km: f64,
doppler_noise_km_s: f64,
) -> Self {
if aer_t0.epoch == aer_t1.epoch {
return Self::one_way(
aer_t1,
timestamp_noise_s,
range_noise_km,
doppler_noise_km_s,
);
}
let range_km = (aer_t1.range_km + aer_t0.range_km) * 0.5;
let doppler_km_s = (aer_t1.range_rate_km_s + aer_t0.range_rate_km_s) * 0.5;
// Time tagged at the realization of this measurement, i.e. at the end of the integration time.
let epoch = aer_t1.epoch + timestamp_noise_s * Unit::Second;
let obs = Vector2::new(
range_km + range_noise_km / 2.0_f64.sqrt(),
doppler_km_s + doppler_noise_km_s / 2.0_f64.sqrt(),
);
debug!(
"two way msr @ {epoch}:\naer_t0 = {}\naer_t1 = {}{obs}",
aer_t0, aer_t1
);
Self { epoch, obs }
}
}
impl TimeTagged for RangeDoppler {
fn epoch(&self) -> Epoch {
self.epoch
}
fn set_epoch(&mut self, epoch: Epoch) {
self.epoch = epoch
}
}
impl Measurement for RangeDoppler {
type MeasurementSize = U2;
/// Returns this measurement as a vector of Range and Range Rate
///
/// **Units:** km, km/s
fn observation(&self) -> Vector2<f64> {
self.obs
}
fn fields() -> Vec<Field> {
let mut meta = HashMap::new();
meta.insert("unit".to_string(), "km/s".to_string());
vec![
RangeMsr::fields()[0].clone(),
Field::new("Doppler (km/s)", DataType::Float64, false).with_metadata(meta),
]
}
fn from_observation(epoch: Epoch, obs: OVector<f64, Self::MeasurementSize>) -> Self {
Self { epoch, obs }
}
}
impl EstimateFrom<Spacecraft, RangeDoppler> for Spacecraft {
fn extract(from: Spacecraft) -> Self {
from
}
fn sensitivity(
msr: &RangeDoppler,
receiver: Self,
transmitter: Orbit,
) -> OMatrix<f64, <RangeDoppler as Measurement>::MeasurementSize, Self::Size>
where
DefaultAllocator: Allocator<<RangeDoppler as Measurement>::MeasurementSize, Self::Size>,
{
let delta_r = receiver.orbit.radius_km - transmitter.radius_km;
let delta_v = receiver.orbit.velocity_km_s - transmitter.velocity_km_s;
let ρ = msr.observation()[0];
let ρ_dot = msr.observation()[1];
let m11 = delta_r.x / ρ;
let m12 = delta_r.y / ρ;
let m13 = delta_r.z / ρ;
let m21 = delta_v.x / ρ - ρ_dot * delta_r.x / ρ.powi(2);
let m22 = delta_v.y / ρ - ρ_dot * delta_r.y / ρ.powi(2);
let m23 = delta_v.z / ρ - ρ_dot * delta_r.z / ρ.powi(2);
let items = &[
m11, m12, m13, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, m21, m22, m23, m11, m12, m13, 0.0, 0.0,
0.0,
];
OMatrix::<f64, <RangeDoppler as Measurement>::MeasurementSize, Self::Size>::from_row_slice(
items,
)
}
}