nyx_space/od/msr/trackingdata/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/
use super::{measurement::Measurement, MeasurementType};
use core::fmt;
use hifitime::prelude::{Duration, Epoch};
use indexmap::{IndexMap, IndexSet};
use std::collections::BTreeMap;
use std::ops::Bound::{Excluded, Included, Unbounded};
use std::ops::RangeBounds;

mod io_ccsds_tdm;
mod io_parquet;

/// Tracking data storing all of measurements as a B-Tree.
/// It inherently does NOT support multiple concurrent measurements from several trackers.
///
/// # Measurement Moduli, e.g. range modulus
///
/// In the case of ranging, and possibly other data types, a code is used to measure the range to the spacecraft. The length of this code
/// determines the ambiguity resolution, as per equation 9 in section 2.2.2.2 of the JPL DESCANSO, document 214, _Pseudo-Noise and Regenerative Ranging_.
/// For example, using the JPL Range Code and a frequency range clock of 1 MHz, the range ambiguity is 75,660 km. In other words,
/// as soon as the spacecraft is at a range of 75,660 + 1 km the JPL Range Code will report the vehicle to be at a range of 1 km.
/// This is simply because the range code overlaps with itself, effectively loosing track of its own reference:
/// it's due to the phase shift of the signal "lapping" the original signal length.
///
/// ```text
///             (Spacecraft)
///             ^
///             |    Actual Distance = 75,661 km
///             |
/// 0 km                                         75,660 km (Wrap-Around)
/// |-----------------------------------------------|
///   When the "code length" is exceeded,
///   measurements wrap back to 0.
///
/// So effectively:
///     Observed code range = Actual range (mod 75,660 km)
///     75,661 km → 1 km
///
/// ```
///
/// Nyx can only resolve the range ambiguity if the tracking data specifies a modulus for this specific measurement type.
/// For example, in the case of the JPL Range Code and a 1 MHz range clock, the ambiguity interval is 75,660 km.
///
/// The measurement used in the Orbit Determination Process then becomes the following, where `//` represents the [Euclidian division](https://doc.rust-lang.org/std/primitive.f64.html#method.div_euclid).
///
/// ```text
/// k = computed_obs // ambiguity_interval
/// real_obs = measured_obs + k * modulus
/// ```
///
/// Reference: JPL DESCANSO, document 214, _Pseudo-Noise and Regenerative Ranging_.
///
#[derive(Clone, Default)]
pub struct TrackingDataArc {
    /// All measurements in this data arc
    pub measurements: BTreeMap<Epoch, Measurement>, // BUG: Consider a map of tracking to epoch!
    /// Source file if loaded from a file or saved to a file.
    pub source: Option<String>,
    /// Optionally provide a map of modulos (e.g. the RANGE_MODULO of CCSDS TDM).
    pub moduli: Option<IndexMap<MeasurementType, f64>>,
}

impl TrackingDataArc {
    /// Set (or overwrites) the modulus of the provided measurement type.
    pub fn set_moduli(&mut self, msr_type: MeasurementType, modulus: f64) {
        if self.moduli.is_none() {
            self.moduli = Some(IndexMap::new());
        }

        self.moduli.as_mut().unwrap().insert(msr_type, modulus);
    }

    /// Applies the moduli to each measurement, if defined.
    pub fn apply_moduli(&mut self) {
        if let Some(moduli) = &self.moduli {
            for msr in self.measurements.values_mut() {
                for (msr_type, modulus) in moduli {
                    if let Some(msr_value) = msr.data.get_mut(msr_type) {
                        *msr_value %= *modulus;
                    }
                }
            }
        }
    }

    /// Returns the unique list of aliases in this tracking data arc
    pub fn unique_aliases(&self) -> IndexSet<String> {
        self.unique().0
    }

    /// Returns the unique measurement types in this tracking data arc
    pub fn unique_types(&self) -> IndexSet<MeasurementType> {
        self.unique().1
    }

    /// Returns the unique trackers and unique measurement types in this data arc
    pub fn unique(&self) -> (IndexSet<String>, IndexSet<MeasurementType>) {
        let mut aliases = IndexSet::new();
        let mut types = IndexSet::new();
        for msr in self.measurements.values() {
            aliases.insert(msr.tracker.clone());
            for k in msr.data.keys() {
                types.insert(*k);
            }
        }
        (aliases, types)
    }

    /// Returns the start epoch of this tracking arc
    pub fn start_epoch(&self) -> Option<Epoch> {
        self.measurements.first_key_value().map(|(k, _)| *k)
    }

    /// Returns the end epoch of this tracking arc
    pub fn end_epoch(&self) -> Option<Epoch> {
        self.measurements.last_key_value().map(|(k, _)| *k)
    }

    /// Returns the number of measurements in this data arc
    pub fn len(&self) -> usize {
        self.measurements.len()
    }

    /// Returns whether this arc has no measurements.
    pub fn is_empty(&self) -> bool {
        self.measurements.is_empty()
    }

    /// Returns the minimum duration between two subsequent measurements.
    /// This is important to correctly set up the propagator and not miss any measurement.
    pub fn min_duration_sep(&self) -> Option<Duration> {
        if self.is_empty() {
            None
        } else {
            let mut min_sep = Duration::MAX;
            let mut prev_epoch = self.start_epoch().unwrap();
            for (epoch, _) in self.measurements.iter().skip(1) {
                let this_sep = *epoch - prev_epoch;
                min_sep = min_sep.min(this_sep);
                prev_epoch = *epoch;
            }
            Some(min_sep)
        }
    }

    /// Returns a new tracking arc that only contains measurements that fall within the given epoch range.
    pub fn filter_by_epoch<R: RangeBounds<Epoch>>(mut self, bound: R) -> Self {
        self.measurements = self
            .measurements
            .range(bound)
            .map(|(epoch, msr)| (*epoch, msr.clone()))
            .collect::<BTreeMap<Epoch, Measurement>>();
        self
    }

    /// Returns a new tracking arc that only contains measurements that fall within the given offset from the first epoch
    pub fn filter_by_offset<R: RangeBounds<Duration>>(self, bound: R) -> Self {
        if self.is_empty() {
            return self;
        }
        // Rebuild an epoch bound.
        let start = match bound.start_bound() {
            Unbounded => self.start_epoch().unwrap(),
            Included(offset) | Excluded(offset) => self.start_epoch().unwrap() + *offset,
        };

        let end = match bound.end_bound() {
            Unbounded => self.end_epoch().unwrap(),
            Included(offset) | Excluded(offset) => self.end_epoch().unwrap() - *offset,
        };

        self.filter_by_epoch(start..end)
    }

    /// Returns a new tracking arc that only contains measurements from the desired tracker.
    pub fn filter_by_tracker(mut self, tracker: String) -> Self {
        self.measurements = self
            .measurements
            .iter()
            .filter_map(|(epoch, msr)| {
                if msr.tracker == tracker {
                    Some((*epoch, msr.clone()))
                } else {
                    None
                }
            })
            .collect::<BTreeMap<Epoch, Measurement>>();
        self
    }

    /// Downsamples the tracking data to a lower frequency using a simple moving average low-pass filter followed by decimation,
    /// returning new `TrackingDataArc` with downsampled measurements.
    ///
    /// It provides a computationally efficient approach to reduce the sampling rate while mitigating aliasing effects.
    ///
    /// # Algorithm
    ///
    /// 1. A simple moving average filter is applied as a low-pass filter.
    /// 2. Decimation is performed by selecting every Nth sample after filtering.
    ///
    /// # Advantages
    ///
    /// - Computationally efficient, suitable for large datasets common in spaceflight applications.
    /// - Provides basic anti-aliasing, crucial for preserving signal integrity in orbit determination and tracking.
    /// - Maintains phase information, important for accurate timing in spacecraft state estimation.
    ///
    /// # Limitations
    ///
    /// - The frequency response is not as sharp as more sophisticated filters (e.g., FIR, IIR).
    /// - May not provide optimal stopband attenuation for high-precision applications.
    ///
    /// ## Considerations for Spaceflight Applications
    ///
    /// - Suitable for initial data reduction in ground station tracking pipelines.
    /// - Adequate for many orbit determination and tracking tasks where computational speed is prioritized.
    /// - For high-precision applications (e.g., interplanetary navigation), consider using more advanced filtering techniques.
    ///
    pub fn downsample(self, target_step: Duration) -> Self {
        if self.is_empty() {
            return self;
        }
        let current_step = self.min_duration_sep().unwrap();

        if current_step >= target_step {
            warn!("cannot downsample tracking data from {current_step} to {target_step} (that would be upsampling)");
            return self;
        }

        let current_hz = 1.0 / current_step.to_seconds();
        let target_hz = 1.0 / target_step.to_seconds();

        // Simple moving average as low-pass filter
        let window_size = (current_hz / target_hz).round() as usize;

        info!("downsampling tracking data from {current_step} ({current_hz:.6} Hz) to {target_step} ({target_hz:.6} Hz) (N = {window_size})");

        let mut result = TrackingDataArc {
            source: self.source.clone(),
            ..Default::default()
        };

        let measurements: Vec<_> = self.measurements.iter().collect();

        for (i, (epoch, _)) in measurements.iter().enumerate().step_by(window_size) {
            let start = if i >= window_size / 2 {
                i - window_size / 2
            } else {
                0
            };
            let end = (i + window_size / 2 + 1).min(measurements.len());
            let window = &measurements[start..end];

            let mut filtered_measurement = Measurement {
                tracker: window[0].1.tracker.clone(),
                epoch: **epoch,
                data: IndexMap::new(),
            };

            // Apply moving average filter for each measurement type
            for mtype in self.unique_types() {
                let sum: f64 = window.iter().filter_map(|(_, m)| m.data.get(&mtype)).sum();
                let count = window
                    .iter()
                    .filter(|(_, m)| m.data.contains_key(&mtype))
                    .count();

                if count > 0 {
                    filtered_measurement.data.insert(mtype, sum / count as f64);
                }
            }

            result.measurements.insert(**epoch, filtered_measurement);
        }
        result
    }
}

impl fmt::Display for TrackingDataArc {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        if self.is_empty() {
            write!(f, "Empty tracking arc")
        } else {
            let start = self.start_epoch().unwrap();
            let end = self.end_epoch().unwrap();
            let src = match &self.source {
                Some(src) => format!(" (source: {src})"),
                None => String::new(),
            };
            write!(
                f,
                "Tracking arc with {} measurements of type {:?} over {} (from {start} to {end}) with trackers {:?}{src}",
                self.len(),
                self.unique_types(),
                end - start,
                self.unique_aliases()
            )
        }
    }
}

impl fmt::Debug for TrackingDataArc {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{self} @ {self:p}")
    }
}

impl PartialEq for TrackingDataArc {
    fn eq(&self, other: &Self) -> bool {
        self.measurements == other.measurements
    }
}