nyx_space/od/noise/gauss_markov.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use crate::io::{ConfigError, ConfigRepr};
use hifitime::{Duration, Epoch, TimeUnits};
use rand::Rng;
use rand_distr::Normal;
use serde_derive::{Deserialize, Serialize};
use std::fmt;
use std::ops::{Mul, MulAssign};
use super::Stochastics;
/// A first order Gauss-Markov process for modeling biases as described in section 5.2.4 of the NASA Best Practices for Navigation Filters (D'Souza et al.).
///
/// The process is defined by the following stochastic differential equation:
///
/// \dot{b(t)} = -1/τ * b(t) + w(t)
///
/// Programmatically, it's calculated by sampling from b(t) ~ 𝓝(0, p_b(t)), where
///
/// p_b(t) = exp((-2 / τ) * (t - t_0)) * p_b(t_0) + s(t - t_0)
///
/// s(t - t_0) = ((q * τ) / 2) * (1 - exp((-2 / τ) * (t - t_0)))
#[derive(Copy, Clone, Debug, Serialize, Deserialize, PartialEq)]
pub struct GaussMarkov {
/// The time constant, tau gives the correlation time, or the time over which the intensity of the time correlation will fade to 1/e of its prior value. (This is sometimes incorrectly referred to as the "half-life" of the process.)
pub tau: Duration,
pub process_noise: f64,
/// An optional constant offset on top of the noise, defaults to zero.
pub constant: Option<f64>,
/// Epoch of the previous realization, used to compute the time delta for the process noise.
#[serde(skip)]
pub prev_epoch: Option<Epoch>,
/// Sample of previous realization
#[serde(skip)]
pub init_sample: Option<f64>,
}
impl fmt::Display for GaussMarkov {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"First order Gauss-Markov process with τ = {}, σ = {}",
self.tau, self.process_noise
)
}
}
impl GaussMarkov {
/// Create a new first order Gauss-Markov process.
/// # Arguments
/// * `tau` - The time constant, tau gives the correlation time, or the time over which the intensity of the time correlation will fade to 1/e of its prior value.
/// * `process_noise` - process noise of the system.
pub fn new(tau: Duration, process_noise: f64) -> Result<Self, ConfigError> {
if tau <= Duration::ZERO {
return Err(ConfigError::InvalidConfig {
msg: format!("tau must be positive but got {tau}"),
});
}
Ok(Self {
tau,
process_noise,
constant: None,
init_sample: None,
prev_epoch: None,
})
}
/// Zero noise Gauss-Markov process.
pub const ZERO: Self = Self {
tau: Duration::MAX,
process_noise: 0.0,
constant: None,
init_sample: None,
prev_epoch: None,
};
/// Default Gauss Markov noise of the Deep Space Network, as per DESCANSO Chapter 3, Table 3-3.
/// Used the range value of 60 cm over a 60 second average.
pub fn default_range_km() -> Self {
Self {
tau: 1.minutes(),
process_noise: 60.0e-5,
constant: None,
init_sample: None,
prev_epoch: None,
}
}
/// Default Gauss Markov noise of the Deep Space Network, as per DESCANSO Chapter 3, Table 3-3.
/// Used the Doppler value of 0.03 mm/s over a 60 second average.
pub fn default_doppler_km_s() -> Self {
Self {
tau: 1.minutes(),
process_noise: 0.03e-6,
constant: None,
init_sample: None,
prev_epoch: None,
}
}
}
impl Stochastics for GaussMarkov {
fn covariance(&self, _epoch: Epoch) -> f64 {
self.process_noise.powi(2)
}
/// Return the next bias sample.
fn sample<R: Rng>(&mut self, epoch: Epoch, rng: &mut R) -> f64 {
// Compute the delta time in seconds between the previous epoch and the sample epoch.
let dt_s = (match self.prev_epoch {
None => Duration::ZERO,
Some(prev_epoch) => epoch - prev_epoch,
})
.to_seconds();
self.prev_epoch = Some(epoch);
// If there is no bias, generate one using the standard deviation of the bias
if self.init_sample.is_none() {
self.init_sample = Some(rng.sample(Normal::new(0.0, self.process_noise).unwrap()));
}
let decay = (-dt_s / self.tau.to_seconds()).exp();
let anti_decay = 1.0 - decay;
// The steady state contribution. This is the bias that the process will converge to as t approaches infinity.
let steady_noise = 0.5 * self.process_noise * self.tau.to_seconds() * anti_decay;
let ss_sample = rng.sample(Normal::new(0.0, steady_noise).unwrap());
self.init_sample.unwrap() * decay + ss_sample + self.constant.unwrap_or(0.0)
}
}
impl Mul<f64> for GaussMarkov {
type Output = Self;
/// Scale the Gauss Markov process by a constant, maintaining the same time constant.
fn mul(mut self, rhs: f64) -> Self::Output {
self.process_noise *= rhs;
self.constant = None;
self.init_sample = None;
self.prev_epoch = None;
self
}
}
impl MulAssign<f64> for GaussMarkov {
fn mul_assign(&mut self, rhs: f64) {
*self = *self * rhs;
}
}
impl ConfigRepr for GaussMarkov {}
#[cfg(test)]
mod ut_gm {
use hifitime::{Duration, Epoch, TimeUnits};
use rand_pcg::Pcg64Mcg;
use rstats::{triangmat::Vecops, Stats};
use crate::{
io::ConfigRepr,
od::noise::{GaussMarkov, Stochastics},
};
#[test]
fn fogm_test() {
let mut gm = GaussMarkov::new(24.hours(), 0.1).unwrap();
let mut biases = Vec::with_capacity(1000);
let epoch = Epoch::now().unwrap();
let mut rng = Pcg64Mcg::new(0);
for seconds in 0..1000 {
biases.push(gm.sample(epoch + seconds.seconds(), &mut rng));
}
// Result was inspected visually with the test_gauss_markov.py Python script
// I'm not sure how to correctly test this and open to ideas.
let min_max = biases.minmax();
assert_eq!(biases.amean().unwrap(), 0.09373233290645445);
assert_eq!(min_max.max, 0.24067114622652647);
assert_eq!(min_max.min, -0.045552031890295525);
}
#[test]
fn zero_noise_test() {
use rstats::{triangmat::Vecops, Stats};
let mut gm = GaussMarkov::ZERO;
let mut biases = Vec::with_capacity(1000);
let epoch = Epoch::now().unwrap();
let mut rng = Pcg64Mcg::new(0);
for seconds in 0..1000 {
biases.push(gm.sample(epoch + seconds.seconds(), &mut rng));
}
let min_max = biases.minmax();
assert_eq!(biases.amean().unwrap(), 0.0);
assert_eq!(min_max.min, 0.0);
assert_eq!(min_max.max, 0.0);
}
#[test]
fn serde_test() {
use serde_yml;
use std::env;
use std::path::PathBuf;
// Note that we set the initial bias to zero because it is not serialized.
let gm = GaussMarkov::new(Duration::MAX, 0.1).unwrap();
let serialized = serde_yml::to_string(&gm).unwrap();
println!("{serialized}");
let gm_deser: GaussMarkov = serde_yml::from_str(&serialized).unwrap();
assert_eq!(gm_deser, gm);
let test_data: PathBuf = [
env::var("CARGO_MANIFEST_DIR").unwrap(),
"data".to_string(),
"tests".to_string(),
"config".to_string(),
"high-prec-network.yaml".to_string(),
]
.iter()
.collect();
let models = <GaussMarkov as ConfigRepr>::load_named(test_data).unwrap();
assert_eq!(models.len(), 2);
assert_eq!(
models["range_noise_model"].tau,
12.hours() + 159.milliseconds()
);
assert_eq!(models["range_noise_model"].process_noise, 5.0e-3);
assert_eq!(models["doppler_noise_model"].tau, 11.hours() + 59.minutes());
assert_eq!(models["doppler_noise_model"].process_noise, 50.0e-6);
}
}