nyx_space/od/noise/
gauss_markov.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use crate::io::{ConfigError, ConfigRepr};
use hifitime::{Duration, Epoch, TimeUnits};

use rand::Rng;
use rand_distr::Normal;
use serde_derive::{Deserialize, Serialize};
use std::fmt;
use std::ops::{Mul, MulAssign};

use super::Stochastics;

/// A first order Gauss-Markov process for modeling biases as described in section 5.2.4 of the NASA Best Practices for Navigation Filters (D'Souza et al.).
///
/// The process is defined by the following stochastic differential equation:
///
/// \dot{b(t)} = -1/τ * b(t) + w(t)
///
/// Programmatically, it's calculated by sampling from b(t) ~ 𝓝(0, p_b(t)), where
///
/// p_b(t) = exp((-2 / τ) * (t - t_0)) * p_b(t_0) + s(t - t_0)
///
/// s(t - t_0) = ((q * τ) / 2) * (1 - exp((-2 / τ) * (t - t_0)))
#[derive(Copy, Clone, Debug, Serialize, Deserialize, PartialEq)]
pub struct GaussMarkov {
    /// The time constant, tau gives the correlation time, or the time over which the intensity of the time correlation will fade to 1/e of its prior value. (This is sometimes incorrectly referred to as the "half-life" of the process.)
    pub tau: Duration,
    pub process_noise: f64,
    /// An optional constant offset on top of the noise, defaults to zero.
    pub constant: Option<f64>,
    /// Epoch of the previous realization, used to compute the time delta for the process noise.
    #[serde(skip)]
    pub prev_epoch: Option<Epoch>,
    /// Sample of previous realization
    #[serde(skip)]
    pub init_sample: Option<f64>,
}

impl fmt::Display for GaussMarkov {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> fmt::Result {
        write!(
            f,
            "First order Gauss-Markov process with τ = {}, σ = {}",
            self.tau, self.process_noise
        )
    }
}

impl GaussMarkov {
    /// Create a new first order Gauss-Markov process.
    /// # Arguments
    /// * `tau` - The time constant, tau gives the correlation time, or the time over which the intensity of the time correlation will fade to 1/e of its prior value.
    /// * `process_noise` - process noise of the system.
    pub fn new(tau: Duration, process_noise: f64) -> Result<Self, ConfigError> {
        if tau <= Duration::ZERO {
            return Err(ConfigError::InvalidConfig {
                msg: format!("tau must be positive but got {tau}"),
            });
        }

        Ok(Self {
            tau,
            process_noise,
            constant: None,
            init_sample: None,
            prev_epoch: None,
        })
    }

    /// Zero noise Gauss-Markov process.
    pub const ZERO: Self = Self {
        tau: Duration::MAX,
        process_noise: 0.0,
        constant: None,
        init_sample: None,
        prev_epoch: None,
    };

    /// Default Gauss Markov noise of the Deep Space Network, as per DESCANSO Chapter 3, Table 3-3.
    /// Used the range value of 60 cm over a 60 second average.
    pub fn default_range_km() -> Self {
        Self {
            tau: 1.minutes(),
            process_noise: 60.0e-5,
            constant: None,
            init_sample: None,
            prev_epoch: None,
        }
    }

    /// Default Gauss Markov noise of the Deep Space Network, as per DESCANSO Chapter 3, Table 3-3.
    /// Used the Doppler value of 0.03 mm/s over a 60 second average.
    pub fn default_doppler_km_s() -> Self {
        Self {
            tau: 1.minutes(),
            process_noise: 0.03e-6,
            constant: None,
            init_sample: None,
            prev_epoch: None,
        }
    }
}

impl Stochastics for GaussMarkov {
    fn covariance(&self, _epoch: Epoch) -> f64 {
        self.process_noise.powi(2)
    }

    /// Return the next bias sample.
    fn sample<R: Rng>(&mut self, epoch: Epoch, rng: &mut R) -> f64 {
        // Compute the delta time in seconds between the previous epoch and the sample epoch.
        let dt_s = (match self.prev_epoch {
            None => Duration::ZERO,
            Some(prev_epoch) => epoch - prev_epoch,
        })
        .to_seconds();
        self.prev_epoch = Some(epoch);

        // If there is no bias, generate one using the standard deviation of the bias
        if self.init_sample.is_none() {
            self.init_sample = Some(rng.sample(Normal::new(0.0, self.process_noise).unwrap()));
        }

        let decay = (-dt_s / self.tau.to_seconds()).exp();
        let anti_decay = 1.0 - decay;

        // The steady state contribution. This is the bias that the process will converge to as t approaches infinity.
        let steady_noise = 0.5 * self.process_noise * self.tau.to_seconds() * anti_decay;
        let ss_sample = rng.sample(Normal::new(0.0, steady_noise).unwrap());

        self.init_sample.unwrap() * decay + ss_sample + self.constant.unwrap_or(0.0)
    }
}

impl Mul<f64> for GaussMarkov {
    type Output = Self;

    /// Scale the Gauss Markov process by a constant, maintaining the same time constant.
    fn mul(mut self, rhs: f64) -> Self::Output {
        self.process_noise *= rhs;
        self.constant = None;
        self.init_sample = None;
        self.prev_epoch = None;
        self
    }
}

impl MulAssign<f64> for GaussMarkov {
    fn mul_assign(&mut self, rhs: f64) {
        *self = *self * rhs;
    }
}

impl ConfigRepr for GaussMarkov {}

#[cfg(test)]
mod ut_gm {

    use hifitime::{Duration, Epoch, TimeUnits};
    use rand_pcg::Pcg64Mcg;
    use rstats::{triangmat::Vecops, Stats};

    use crate::{
        io::ConfigRepr,
        od::noise::{GaussMarkov, Stochastics},
    };

    #[test]
    fn fogm_test() {
        let mut gm = GaussMarkov::new(24.hours(), 0.1).unwrap();

        let mut biases = Vec::with_capacity(1000);
        let epoch = Epoch::now().unwrap();

        let mut rng = Pcg64Mcg::new(0);
        for seconds in 0..1000 {
            biases.push(gm.sample(epoch + seconds.seconds(), &mut rng));
        }

        // Result was inspected visually with the test_gauss_markov.py Python script
        // I'm not sure how to correctly test this and open to ideas.
        let min_max = biases.minmax();

        assert_eq!(biases.amean().unwrap(), 0.09373233290645445);
        assert_eq!(min_max.max, 0.24067114622652647);
        assert_eq!(min_max.min, -0.045552031890295525);
    }

    #[test]
    fn zero_noise_test() {
        use rstats::{triangmat::Vecops, Stats};

        let mut gm = GaussMarkov::ZERO;

        let mut biases = Vec::with_capacity(1000);
        let epoch = Epoch::now().unwrap();

        let mut rng = Pcg64Mcg::new(0);
        for seconds in 0..1000 {
            biases.push(gm.sample(epoch + seconds.seconds(), &mut rng));
        }

        let min_max = biases.minmax();

        assert_eq!(biases.amean().unwrap(), 0.0);
        assert_eq!(min_max.min, 0.0);
        assert_eq!(min_max.max, 0.0);
    }

    #[test]
    fn serde_test() {
        use serde_yml;
        use std::env;
        use std::path::PathBuf;

        // Note that we set the initial bias to zero because it is not serialized.
        let gm = GaussMarkov::new(Duration::MAX, 0.1).unwrap();
        let serialized = serde_yml::to_string(&gm).unwrap();
        println!("{serialized}");
        let gm_deser: GaussMarkov = serde_yml::from_str(&serialized).unwrap();
        assert_eq!(gm_deser, gm);

        let test_data: PathBuf = [
            env::var("CARGO_MANIFEST_DIR").unwrap(),
            "data".to_string(),
            "tests".to_string(),
            "config".to_string(),
            "high-prec-network.yaml".to_string(),
        ]
        .iter()
        .collect();

        let models = <GaussMarkov as ConfigRepr>::load_named(test_data).unwrap();
        assert_eq!(models.len(), 2);
        assert_eq!(
            models["range_noise_model"].tau,
            12.hours() + 159.milliseconds()
        );
        assert_eq!(models["range_noise_model"].process_noise, 5.0e-3);

        assert_eq!(models["doppler_noise_model"].tau, 11.hours() + 59.minutes());
        assert_eq!(models["doppler_noise_model"].process_noise, 50.0e-6);
    }
}