nyx_space/od/noise/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use crate::io::watermark::pq_writer;
use arrow::array::{ArrayRef, Float64Array, UInt32Array};
use arrow::datatypes::{DataType, Field, Schema};
use arrow::record_batch::RecordBatch;
use hifitime::{Epoch, TimeSeries, TimeUnits};
use parquet::arrow::ArrowWriter;
use rand::{Rng, SeedableRng};
use rand_pcg::Pcg64Mcg;
use serde_derive::{Deserialize, Serialize};
use std::error::Error;
use std::fs::File;
use std::ops::{Mul, MulAssign};
use std::path::Path;
use std::sync::Arc;
pub mod gauss_markov;
pub mod white;
pub use gauss_markov::GaussMarkov;
pub use white::WhiteNoise;
/// Trait for any kind of stochastic modeling, developing primarily for synthetic orbit determination measurements.
pub trait Stochastics {
/// Return the variance of this stochastic noise model at a given time.
fn covariance(&self, epoch: Epoch) -> f64;
/// Returns a new sample of these stochastics
fn sample<R: Rng>(&mut self, epoch: Epoch, rng: &mut R) -> f64;
}
/// Stochastic noise modeling used primarily for synthetic orbit determination measurements.
///
/// This implementation distinguishes between the white noise model and the bias model. It also includes a constant offset.
#[derive(Copy, Clone, Debug, Default, PartialEq, Serialize, Deserialize)]
pub struct StochasticNoise {
pub white_noise: Option<WhiteNoise>,
pub bias: Option<GaussMarkov>,
}
impl StochasticNoise {
/// Zero noise stochastic process.
pub const ZERO: Self = Self {
white_noise: None,
bias: None,
};
/// The minimum stochastic noise process with a zero mean white noise of 1e-6.
pub const MIN: Self = Self {
white_noise: Some(WhiteNoise {
mean: 0.0,
sigma: 1e-6,
}),
bias: None,
};
/// Default stochastic process of the Deep Space Network, as per DESCANSO Chapter 3, Table 3-3.
/// Using the instrument bias as the white noise value, zero constant bias.
pub fn default_range_km() -> Self {
Self {
white_noise: Some(WhiteNoise {
sigma: 2.0e-3, // 2 m
..Default::default()
}),
bias: Some(GaussMarkov::default_range_km()),
}
}
/// Default stochastic process of the Deep Space Network, using as per DESCANSO Chapter 3, Table 3-3 for the GM process.
pub fn default_doppler_km_s() -> Self {
Self {
white_noise: Some(WhiteNoise {
sigma: 3e-6, // 3 mm/s
..Default::default()
}),
bias: Some(GaussMarkov::default_doppler_km_s()),
}
}
/// Default stochastic process for an angle measurement (azimuth or elevation)
/// Using the instrument bias as the white noise value, zero constant bias.
pub fn default_angle_deg() -> Self {
Self {
white_noise: Some(WhiteNoise {
sigma: 1.0e-2, // 0.01 deg
..Default::default()
}),
bias: Some(GaussMarkov::default_range_km()),
}
}
/// Sample these stochastics
pub fn sample<R: Rng>(&mut self, epoch: Epoch, rng: &mut R) -> f64 {
let mut sample = 0.0;
if let Some(wn) = &mut self.white_noise {
sample += wn.sample(epoch, rng)
}
if let Some(gm) = &mut self.bias {
sample += gm.sample(epoch, rng);
}
sample
}
/// Return the covariance of these stochastics at a given time.
pub fn covariance(&self, epoch: Epoch) -> f64 {
let mut variance = 0.0;
if let Some(wn) = &self.white_noise {
variance += wn.covariance(epoch);
}
if let Some(gm) = &self.bias {
variance += gm.covariance(epoch);
}
variance
}
/// Simulate the configured stochastic model and store the bias in a parquet file.
/// Python: call as `simulate(path, runs=25, unit=None)` where the path is the output Parquet file, runs is the number of runs, and unit is the unit of the bias, reflected only in the headers of the parquet file.
///
/// The unit is only used in the headers of the parquet file.
///
/// This will simulate the model with "runs" different seeds, sampling the process 500 times for a duration of 5 times the time constant.
pub fn simulate<P: AsRef<Path>>(
self,
path: P,
runs: Option<u32>,
unit: Option<String>,
) -> Result<Vec<StochasticState>, Box<dyn Error>> {
let num_runs = runs.unwrap_or(25);
let start = Epoch::now().unwrap();
let (step, end) = (1.minutes(), start + 1.days());
let capacity = ((end - start).to_seconds() / step.to_seconds()).ceil() as usize;
let mut samples = Vec::with_capacity(capacity);
for run in 0..num_runs {
let mut rng = Pcg64Mcg::from_entropy();
let mut mdl = self;
for epoch in TimeSeries::inclusive(start, end, step) {
if epoch > start + 6.hours() && epoch < start + 12.hours() {
// Skip to see how the variance changes.
continue;
}
let variance = mdl.covariance(epoch);
let sample = mdl.sample(epoch, &mut rng);
samples.push(StochasticState {
run,
dt_s: (epoch - start).to_seconds(),
sample,
variance,
});
}
}
let bias_unit = match unit {
Some(unit) => format!("({unit})"),
None => "(unitless)".to_string(),
};
// Build the parquet file
let hdrs = vec![
Field::new("Run", DataType::UInt32, false),
Field::new("Delta Time (s)", DataType::Float64, false),
Field::new(format!("Bias {bias_unit}"), DataType::Float64, false),
Field::new(format!("Variance {bias_unit}"), DataType::Float64, false),
];
let schema = Arc::new(Schema::new(hdrs));
let record = vec![
Arc::new(UInt32Array::from(
samples.iter().map(|s| s.run).collect::<Vec<u32>>(),
)) as ArrayRef,
Arc::new(Float64Array::from(
samples.iter().map(|s| s.dt_s).collect::<Vec<f64>>(),
)) as ArrayRef,
Arc::new(Float64Array::from(
samples.iter().map(|s| s.sample).collect::<Vec<f64>>(),
)) as ArrayRef,
Arc::new(Float64Array::from(
samples.iter().map(|s| s.variance).collect::<Vec<f64>>(),
)) as ArrayRef,
];
let props = pq_writer(None);
let file = File::create(path)?;
let mut writer = ArrowWriter::try_new(file, schema.clone(), props).unwrap();
let batch = RecordBatch::try_new(schema, record)?;
writer.write(&batch)?;
writer.close()?;
Ok(samples)
}
}
impl Mul<f64> for StochasticNoise {
type Output = Self;
fn mul(mut self, rhs: f64) -> Self::Output {
if let Some(mut wn) = &mut self.white_noise {
wn *= rhs;
}
if let Some(mut gm) = &mut self.bias {
gm *= rhs;
}
self
}
}
impl MulAssign<f64> for StochasticNoise {
fn mul_assign(&mut self, rhs: f64) {
*self = *self * rhs;
}
}
pub struct StochasticState {
pub run: u32,
pub dt_s: f64,
pub sample: f64,
pub variance: f64,
}
#[cfg(test)]
mod ut_stochastics {
use std::path::PathBuf;
use super::{white::WhiteNoise, StochasticNoise};
#[test]
fn test_simulate_zero() {
let path: PathBuf = [
env!("CARGO_MANIFEST_DIR"),
"output_data",
"stochastics_zero.parquet",
]
.iter()
.collect();
let noise = StochasticNoise::default();
let rslts = noise.simulate(path, None, None).unwrap();
assert!(!rslts.is_empty());
assert!(rslts.iter().map(|rslt| rslt.sample).sum::<f64>().abs() < f64::EPSILON);
}
#[test]
fn test_simulate_constant() {
let path: PathBuf = [
env!("CARGO_MANIFEST_DIR"),
"output_data",
"stochastics_constant.parquet",
]
.iter()
.collect();
let noise = StochasticNoise {
white_noise: Some(WhiteNoise {
mean: 15.0,
sigma: 2.0,
}),
..Default::default()
};
noise.simulate(path, None, None).unwrap();
}
#[test]
fn test_simulate_dsn_range() {
let path: PathBuf = [
env!("CARGO_MANIFEST_DIR"),
"output_data",
"stochastics_dsn_range.parquet",
]
.iter()
.collect();
let noise = StochasticNoise::default_range_km();
noise
.simulate(path, None, Some("kilometer".to_string()))
.unwrap();
}
#[test]
fn test_simulate_dsn_range_gm_only() {
let path: PathBuf = [
env!("CARGO_MANIFEST_DIR"),
"output_data",
"stochastics_dsn_range_gm_only.parquet",
]
.iter()
.collect();
let mut noise = StochasticNoise::default_range_km();
noise.white_noise = None;
noise
.simulate(path, None, Some("kilometer".to_string()))
.unwrap();
}
}