nyx_space/od/noise/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use crate::io::watermark::pq_writer;
use arrow::array::{ArrayRef, Float64Array, UInt32Array};
use arrow::datatypes::{DataType, Field, Schema};
use arrow::record_batch::RecordBatch;
use hifitime::{Epoch, TimeSeries, TimeUnits};
use parquet::arrow::ArrowWriter;
use rand::{Rng, SeedableRng};
use rand_pcg::Pcg64Mcg;
use serde_derive::{Deserialize, Serialize};
use std::error::Error;
use std::fs::File;
use std::path::Path;
use std::sync::Arc;

pub mod gauss_markov;
pub mod white;

pub use gauss_markov::GaussMarkov;
pub use white::WhiteNoise;

/// Trait for any kind of stochastic modeling, developing primarily for synthetic orbit determination measurements.
pub trait Stochastics {
    /// Return the variance of this stochastic noise model at a given time.
    fn covariance(&self, epoch: Epoch) -> f64;

    /// Returns a new sample of these stochastics
    fn sample<R: Rng>(&mut self, epoch: Epoch, rng: &mut R) -> f64;
}

/// Stochastic noise modeling used primarily for synthetic orbit determination measurements.
///
/// This implementation distinguishes between the white noise model and the bias model. It also includes a constant offset.
#[derive(Copy, Clone, Debug, Default, PartialEq, Serialize, Deserialize)]
pub struct StochasticNoise {
    pub white_noise: Option<WhiteNoise>,
    pub bias: Option<GaussMarkov>,
}

impl StochasticNoise {
    /// Zero noise stochastic process.
    pub const ZERO: Self = Self {
        white_noise: None,
        bias: None,
    };

    /// The minimum stochastic noise process with a zero mean white noise of 1e-6.
    pub const MIN: Self = Self {
        white_noise: Some(WhiteNoise {
            mean: 0.0,
            sigma: 1e-6,
        }),
        bias: None,
    };

    /// Default stochastic process of the Deep Space Network, as per DESCANSO Chapter 3, Table 3-3.
    /// Using the instrument bias as the white noise value, zero constant bias.
    pub fn default_range_km() -> Self {
        Self {
            white_noise: Some(WhiteNoise {
                sigma: 2.0e-3, // 2 m
                ..Default::default()
            }),
            bias: Some(GaussMarkov::default_range_km()),
        }
    }

    /// Default stochastic process of the Deep Space Network, using as per DESCANSO Chapter 3, Table 3-3 for the GM process.
    pub fn default_doppler_km_s() -> Self {
        Self {
            white_noise: Some(WhiteNoise {
                sigma: 3e-6, // 3 mm/s
                ..Default::default()
            }),
            bias: Some(GaussMarkov::default_doppler_km_s()),
        }
    }

    /// Sample these stochastics
    pub fn sample<R: Rng>(&mut self, epoch: Epoch, rng: &mut R) -> f64 {
        let mut sample = 0.0;
        if let Some(wn) = &mut self.white_noise {
            sample += wn.sample(epoch, rng)
        }
        if let Some(gm) = &mut self.bias {
            sample += gm.sample(epoch, rng);
        }
        sample
    }

    /// Return the covariance of these stochastics at a given time.
    pub fn covariance(&self, epoch: Epoch) -> f64 {
        let mut variance = 0.0;
        if let Some(wn) = &self.white_noise {
            variance += wn.covariance(epoch);
        }
        if let Some(gm) = &self.bias {
            variance += gm.covariance(epoch);
        }
        variance
    }

    /// Simulate the configured stochastic model and store the bias in a parquet file.
    /// Python: call as `simulate(path, runs=25, unit=None)` where the path is the output Parquet file, runs is the number of runs, and unit is the unit of the bias, reflected only in the headers of the parquet file.
    ///
    /// The unit is only used in the headers of the parquet file.
    ///
    /// This will simulate the model with "runs" different seeds, sampling the process 500 times for a duration of 5 times the time constant.
    pub fn simulate<P: AsRef<Path>>(
        self,
        path: P,
        runs: Option<u32>,
        unit: Option<String>,
    ) -> Result<Vec<StochasticState>, Box<dyn Error>> {
        let num_runs = runs.unwrap_or(25);

        let start = Epoch::now().unwrap();
        let (step, end) = (1.minutes(), start + 1.days());

        let capacity = ((end - start).to_seconds() / step.to_seconds()).ceil() as usize;

        let mut samples = Vec::with_capacity(capacity);

        for run in 0..num_runs {
            let mut rng = Pcg64Mcg::from_entropy();

            let mut mdl = self;
            for epoch in TimeSeries::inclusive(start, end, step) {
                if epoch > start + 6.hours() && epoch < start + 12.hours() {
                    // Skip to see how the variance changes.
                    continue;
                }
                let variance = mdl.covariance(epoch);
                let sample = mdl.sample(epoch, &mut rng);
                samples.push(StochasticState {
                    run,
                    dt_s: (epoch - start).to_seconds(),
                    sample,
                    variance,
                });
            }
        }

        let bias_unit = match unit {
            Some(unit) => format!("({unit})"),
            None => "(unitless)".to_string(),
        };

        // Build the parquet file
        let hdrs = vec![
            Field::new("Run", DataType::UInt32, false),
            Field::new("Delta Time (s)", DataType::Float64, false),
            Field::new(format!("Bias {bias_unit}"), DataType::Float64, false),
            Field::new(format!("Variance {bias_unit}"), DataType::Float64, false),
        ];

        let schema = Arc::new(Schema::new(hdrs));
        let record = vec![
            Arc::new(UInt32Array::from(
                samples.iter().map(|s| s.run).collect::<Vec<u32>>(),
            )) as ArrayRef,
            Arc::new(Float64Array::from(
                samples.iter().map(|s| s.dt_s).collect::<Vec<f64>>(),
            )) as ArrayRef,
            Arc::new(Float64Array::from(
                samples.iter().map(|s| s.sample).collect::<Vec<f64>>(),
            )) as ArrayRef,
            Arc::new(Float64Array::from(
                samples.iter().map(|s| s.variance).collect::<Vec<f64>>(),
            )) as ArrayRef,
        ];

        let props = pq_writer(None);

        let file = File::create(path)?;
        let mut writer = ArrowWriter::try_new(file, schema.clone(), props).unwrap();

        let batch = RecordBatch::try_new(schema, record)?;
        writer.write(&batch)?;
        writer.close()?;

        Ok(samples)
    }
}

pub struct StochasticState {
    pub run: u32,
    pub dt_s: f64,
    pub sample: f64,
    pub variance: f64,
}

#[cfg(test)]
mod ut_stochastics {
    use std::path::PathBuf;

    use super::{white::WhiteNoise, StochasticNoise};

    #[test]
    fn test_simulate_zero() {
        let path: PathBuf = [
            env!("CARGO_MANIFEST_DIR"),
            "output_data",
            "stochastics_zero.parquet",
        ]
        .iter()
        .collect();

        let noise = StochasticNoise::default();

        let rslts = noise.simulate(path, None, None).unwrap();
        assert!(!rslts.is_empty());
        assert!(rslts.iter().map(|rslt| rslt.sample).sum::<f64>().abs() < f64::EPSILON);
    }

    #[test]
    fn test_simulate_constant() {
        let path: PathBuf = [
            env!("CARGO_MANIFEST_DIR"),
            "output_data",
            "stochastics_constant.parquet",
        ]
        .iter()
        .collect();

        let noise = StochasticNoise {
            white_noise: Some(WhiteNoise {
                mean: 15.0,
                sigma: 2.0,
            }),
            ..Default::default()
        };

        noise.simulate(path, None, None).unwrap();
    }

    #[test]
    fn test_simulate_dsn_range() {
        let path: PathBuf = [
            env!("CARGO_MANIFEST_DIR"),
            "output_data",
            "stochastics_dsn_range.parquet",
        ]
        .iter()
        .collect();

        let noise = StochasticNoise::default_range_km();

        noise
            .simulate(path, None, Some("kilometer".to_string()))
            .unwrap();
    }

    #[test]
    fn test_simulate_dsn_range_gm_only() {
        let path: PathBuf = [
            env!("CARGO_MANIFEST_DIR"),
            "output_data",
            "stochastics_dsn_range_gm_only.parquet",
        ]
        .iter()
        .collect();

        let mut noise = StochasticNoise::default_range_km();
        noise.white_noise = None;

        noise
            .simulate(path, None, Some("kilometer".to_string()))
            .unwrap();
    }
}