nyx_space/od/process/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use crate::linalg::allocator::Allocator;
use crate::linalg::{DefaultAllocator, DimName};
use crate::md::trajectory::{Interpolatable, Traj};
pub use crate::od::estimate::*;
pub use crate::od::ground_station::*;
pub use crate::od::snc::*;
pub use crate::od::*;
use crate::propagators::PropInstance;
pub use crate::time::{Duration, Unit};
use anise::prelude::Almanac;
use snafu::prelude::*;
mod conf;
pub use conf::{IterationConf, SmoothingArc};
mod trigger;
pub use trigger::EkfTrigger;
mod rejectcrit;
use self::msr::TrackingArc;
pub use self::rejectcrit::ResidRejectCrit;
use std::collections::BTreeMap;
use std::marker::PhantomData;
use std::ops::Add;
mod export;

/// An orbit determination process. Note that everything passed to this structure is moved.
#[allow(clippy::upper_case_acronyms)]
pub struct ODProcess<
    'a,
    D: Dynamics,
    Msr: Measurement,
    A: DimName,
    S: EstimateFrom<D::StateType, Msr> + Interpolatable,
    K: Filter<S, A, Msr::MeasurementSize>,
> where
    D::StateType: Interpolatable + Add<OVector<f64, <S as State>::Size>, Output = D::StateType>,
    <DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
    DefaultAllocator: Allocator<<D::StateType as State>::Size>
        + Allocator<<S as State>::Size>
        + Allocator<<S as State>::VecLength>
        + Allocator<<D::StateType as State>::VecLength>
        + Allocator<Msr::MeasurementSize>
        + Allocator<Msr::MeasurementSize, S::Size>
        + Allocator<S::Size>
        + Allocator<Msr::MeasurementSize, Msr::MeasurementSize>
        + Allocator<Msr::MeasurementSize, <D::StateType as State>::Size>
        + Allocator<<D::StateType as State>::Size, Msr::MeasurementSize>
        + Allocator<<D::StateType as State>::Size, <D::StateType as State>::Size>
        + Allocator<<S as State>::Size, <S as State>::Size>
        + Allocator<A>
        + Allocator<A, A>
        + Allocator<<D::StateType as State>::Size, A>
        + Allocator<A, <D::StateType as State>::Size>
        + Allocator<<S as State>::Size, A>
        + Allocator<A, <S as State>::Size>,
{
    /// PropInstance used for the estimation
    pub prop: PropInstance<'a, D>,
    /// Kalman filter itself
    pub kf: K,
    /// Vector of estimates available after a pass
    pub estimates: Vec<K::Estimate>,
    /// Vector of residuals available after a pass
    pub residuals: Vec<Option<Residual<Msr::MeasurementSize>>>,
    pub ekf_trigger: Option<EkfTrigger>,
    /// Residual rejection criteria allows preventing bad measurements from affecting the estimation.
    pub resid_crit: Option<ResidRejectCrit>,
    pub almanac: Arc<Almanac>,
    init_state: D::StateType,
    _marker: PhantomData<A>,
}

impl<
        'a,
        D: Dynamics,
        Msr: Measurement,
        A: DimName,
        S: EstimateFrom<D::StateType, Msr> + Interpolatable,
        K: Filter<S, A, Msr::MeasurementSize>,
    > ODProcess<'a, D, Msr, A, S, K>
where
    D::StateType: Interpolatable + Add<OVector<f64, <S as State>::Size>, Output = D::StateType>,
    <DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
    DefaultAllocator: Allocator<<D::StateType as State>::Size>
        + Allocator<Msr::MeasurementSize>
        + Allocator<Msr::MeasurementSize, S::Size>
        + Allocator<S::Size>
        + Allocator<Msr::MeasurementSize, Msr::MeasurementSize>
        + Allocator<Msr::MeasurementSize, <D::StateType as State>::Size>
        + Allocator<Msr::MeasurementSize, <S as State>::Size>
        + Allocator<<D::StateType as State>::Size, Msr::MeasurementSize>
        + Allocator<<S as State>::Size, Msr::MeasurementSize>
        + Allocator<<D::StateType as State>::Size, <D::StateType as State>::Size>
        + Allocator<<D::StateType as State>::VecLength>
        + Allocator<A>
        + Allocator<A, A>
        + Allocator<<D::StateType as State>::Size, A>
        + Allocator<A, <D::StateType as State>::Size>
        + Allocator<<S as State>::Size>
        + Allocator<<S as State>::VecLength>
        + Allocator<<S as State>::Size, <S as State>::Size>
        + Allocator<<S as State>::Size, A>
        + Allocator<A, <S as State>::Size>,
{
    /// Initialize a new orbit determination process with an optional trigger to switch from a CKF to an EKF.
    pub fn new(
        prop: PropInstance<'a, D>,
        kf: K,
        ekf_trigger: Option<EkfTrigger>,
        resid_crit: Option<ResidRejectCrit>,
        almanac: Arc<Almanac>,
    ) -> Self {
        let init_state = prop.state;
        Self {
            prop: prop.quiet(),
            kf,
            estimates: Vec::with_capacity(10_000),
            residuals: Vec::with_capacity(10_000),
            ekf_trigger,
            resid_crit,
            almanac,
            init_state,
            _marker: PhantomData::<A>,
        }
    }

    /// Initialize a new orbit determination process with an Extended Kalman filter. The switch from a classical KF to an EKF is based on the provided trigger.
    pub fn ekf(
        prop: PropInstance<'a, D>,
        kf: K,
        trigger: EkfTrigger,
        resid_crit: Option<ResidRejectCrit>,
        almanac: Arc<Almanac>,
    ) -> Self {
        let init_state = prop.state;
        Self {
            prop: prop.quiet(),
            kf,
            estimates: Vec::with_capacity(10_000),
            residuals: Vec::with_capacity(10_000),
            ekf_trigger: Some(trigger),
            resid_crit,
            almanac,
            init_state,
            _marker: PhantomData::<A>,
        }
    }

    /// Allows to smooth the provided estimates. Returns the smoothed estimates or an error.
    ///
    /// Estimates must be ordered in chronological order. This function will smooth the
    /// estimates from the last in the list to the first one.
    pub fn smooth(&self, condition: SmoothingArc) -> Result<Vec<K::Estimate>, ODError> {
        let l = self.estimates.len() - 1;

        info!("Smoothing {} estimates until {}", l + 1, condition);
        let mut smoothed = Vec::with_capacity(self.estimates.len());
        // Set the first item of the smoothed estimates to the last estimate (we cannot smooth the very last estimate)
        smoothed.push(self.estimates.last().unwrap().clone());

        loop {
            let k = l - smoothed.len();
            // Borrow the previously smoothed estimate of the k+1 estimate
            let sm_est_kp1 = &self.estimates[k + 1];
            let x_kp1_l = sm_est_kp1.state_deviation();
            let p_kp1_l = sm_est_kp1.covar();
            // Borrow the k-th estimate, which we're smoothing with the next estimate
            let est_k = &self.estimates[k];
            // Borrow the k+1-th estimate, which we're smoothing with the next estimate
            let est_kp1 = &self.estimates[k + 1];

            // Check the smoother stopping condition
            match condition {
                SmoothingArc::Epoch(e) => {
                    // If the epoch of the next estimate is _before_ the stopping time, stop smoothing
                    if est_kp1.epoch() < e {
                        break;
                    }
                }
                SmoothingArc::TimeGap(gap_s) => {
                    if est_kp1.epoch() - est_k.epoch() > gap_s {
                        break;
                    }
                }
                SmoothingArc::Prediction => {
                    if est_kp1.predicted() {
                        break;
                    }
                }
                SmoothingArc::All => {}
            }

            // Compute the STM between both steps taken by the filter
            // The filter will reset the STM between each estimate it computes, time update or measurement update.
            // Therefore, the STM is simply the inverse of the one we used previously.
            // est_kp1 is the estimate that used the STM from time k to time k+1. So the STM stored there
            // is \Phi_{k \to k+1}. Let's invert that.
            let phi_kp1_k = &est_kp1
                .stm()
                .clone()
                .try_inverse()
                .ok_or(ODError::SingularStateTransitionMatrix)?;

            // Compute smoothed state deviation
            let x_k_l = phi_kp1_k * x_kp1_l;
            // Compute smoothed covariance
            let p_k_l = phi_kp1_k * p_kp1_l * phi_kp1_k.transpose();
            // Store into vector
            let mut smoothed_est_k = est_k.clone();
            // Compute the smoothed state deviation
            smoothed_est_k.set_state_deviation(x_k_l);
            // Compute the smoothed covariance
            smoothed_est_k.set_covar(p_k_l);

            // Move on
            smoothed.push(smoothed_est_k);
            if smoothed.len() == self.estimates.len() {
                break;
            }
        }

        // Note that we have yet to reverse the list, so we print them backward
        info!(
            "Smoothed {} estimates (from {} to {})",
            smoothed.len(),
            smoothed.last().unwrap().epoch(),
            smoothed[0].epoch(),
        );

        // Now, let's add all of the other estimates so that the same indexing can be done
        // between all the estimates and the smoothed estimates
        if smoothed.len() < self.estimates.len() {
            // Add the estimates that might have been skipped.
            let mut k = self.estimates.len() - smoothed.len();
            loop {
                smoothed.push(self.estimates[k].clone());
                if k == 0 {
                    break;
                }
                k -= 1;
            }
        }

        // And reverse to maintain the order of estimates
        smoothed.reverse();

        Ok(smoothed)
    }

    /// Returns the root mean square of the prefit residual ratios
    pub fn rms_residual_ratios(&self) -> f64 {
        let mut sum = 0.0;
        for residual in self.residuals.iter().flatten() {
            sum += residual.ratio.powi(2);
        }
        (sum / (self.residuals.len() as f64)).sqrt()
    }

    /// Allows iterating on the filter solution. Requires specifying a smoothing condition to know where to stop the smoothing.
    pub fn iterate<Dev>(
        &mut self,
        measurements: &[(String, Msr)],
        devices: &mut BTreeMap<String, Dev>,
        step_size: Duration,
        config: IterationConf,
    ) -> Result<(), ODError>
    where
        Dev: TrackingDeviceSim<S, Msr>,
    {
        // TODO: Add ExportCfg to iterate and to process so the data can be exported as we process it. Consider a thread writing with channel for faster serialization.

        let mut best_rms = self.rms_residual_ratios();
        let mut previous_rms = best_rms;
        let mut divergence_cnt = 0;
        let mut iter_cnt = 0;
        loop {
            if best_rms <= config.absolute_tol {
                info!("*****************");
                info!("*** CONVERGED ***");
                info!("*****************");

                info!(
                    "Filter converged to absolute tolerance ({:.2e} < {:.2e}) after {} iterations",
                    best_rms, config.absolute_tol, iter_cnt
                );
                break;
            }

            iter_cnt += 1;

            // Prevent infinite loop when iterating prior to turning on the EKF.
            if let Some(trigger) = &mut self.ekf_trigger {
                trigger.reset();
            }

            info!("***************************");
            info!("*** Iteration number {iter_cnt:02} ***");
            info!("***************************");

            // First, smooth the estimates
            let smoothed = self.smooth(config.smoother)?;
            // Reset the propagator
            self.prop.state = self.init_state;
            // Empty the estimates and add the first smoothed estimate as the initial estimate
            self.estimates = Vec::with_capacity(measurements.len().max(self.estimates.len()));
            self.residuals = Vec::with_capacity(measurements.len().max(self.estimates.len()));

            self.kf.set_previous_estimate(&smoothed[0]);
            // And re-run the filter
            self.process::<Dev>(measurements, devices, step_size)?;

            // Compute the new RMS
            let new_rms = self.rms_residual_ratios();
            let cur_rms_num = (new_rms - previous_rms).abs();
            let cur_rel_rms = cur_rms_num / previous_rms;
            if cur_rel_rms < config.relative_tol || cur_rms_num < config.absolute_tol * best_rms {
                if previous_rms < best_rms {
                    best_rms = previous_rms;
                }
                info!("*****************");
                info!("*** CONVERGED ***");
                info!("*****************");
                info!(
                    "New residual RMS: {:.5}\tPrevious RMS: {:.5}\tBest RMS: {:.5}",
                    new_rms, previous_rms, best_rms
                );
                if cur_rel_rms < config.relative_tol {
                    info!(
                        "Filter converged on relative tolerance ({:.2e} < {:.2e}) after {} iterations",
                        cur_rel_rms, config.relative_tol, iter_cnt
                    );
                } else {
                    info!(
                        "Filter converged on relative change ({:.2e} < {:.2e} * {:.2e}) after {} iterations",
                        cur_rms_num, config.absolute_tol, best_rms, iter_cnt
                    );
                }
                break;
            } else if new_rms > previous_rms {
                warn!(
                    "New residual RMS: {:.5}\tPrevious RMS: {:.5}\tBest RMS: {:.5} ({cur_rel_rms:.2e} > {:.2e})",
                    new_rms, previous_rms, best_rms, config.relative_tol
                );
                divergence_cnt += 1;
                previous_rms = new_rms;
                if divergence_cnt >= config.max_divergences {
                    let msg = format!(
                        "Filter iterations have continuously diverged {} times: {}",
                        config.max_divergences, config
                    );
                    if config.force_failure {
                        return Err(ODError::Diverged {
                            loops: config.max_divergences,
                        });
                    } else {
                        error!("{}", msg);
                        break;
                    }
                } else {
                    warn!("Filter iteration caused divergence {} of {} acceptable subsequent divergences", divergence_cnt, config.max_divergences);
                }
            } else {
                info!(
                    "New residual RMS: {:.5}\tPrevious RMS: {:.5}\tBest RMS: {:.5} ({cur_rel_rms:.2e} > {:.2e})",
                    new_rms, previous_rms, best_rms, config.relative_tol
                );
                // Reset the counter
                divergence_cnt = 0;
                previous_rms = new_rms;
                if previous_rms < best_rms {
                    best_rms = previous_rms;
                }
            }

            if iter_cnt >= config.max_iterations {
                let msg = format!(
                    "Filter has iterated {} times but failed to reach filter convergence criteria: {}",
                    config.max_iterations, config
                );
                if config.force_failure {
                    return Err(ODError::Diverged {
                        loops: config.max_divergences,
                    });
                } else {
                    error!("{}", msg);
                    break;
                }
            }
        }

        Ok(())
    }

    /// Allows iterating on the filter solution. Requires specifying a smoothing condition to know where to stop the smoothing.
    pub fn iterate_arc<Dev>(
        &mut self,
        arc: &TrackingArc<Msr>,
        config: IterationConf,
    ) -> Result<(), ODError>
    where
        Dev: TrackingDeviceSim<S, Msr>,
    {
        let mut devices = arc.rebuild_devices::<S, Dev>().context(ODConfigSnafu)?;

        let measurements = &arc.measurements;
        let step_size = match arc.min_duration_sep() {
            Some(step_size) => step_size,
            None => {
                return Err(ODError::TooFewMeasurements {
                    action: "determine the minimum step step",
                    need: 2,
                })
            }
        };

        self.iterate(measurements, &mut devices, step_size, config)
    }

    /// Process the provided tracking arc for this orbit determination process.
    #[allow(clippy::erasing_op)]
    pub fn process_arc<Dev>(&mut self, arc: &TrackingArc<Msr>) -> Result<(), ODError>
    where
        Dev: TrackingDeviceSim<S, Msr>,
    {
        let mut devices = arc.rebuild_devices::<S, Dev>().context(ODConfigSnafu)?;

        let measurements = &arc.measurements;
        let step_size = match arc.min_duration_sep() {
            Some(step_size) => step_size,
            None => {
                return Err(ODError::TooFewMeasurements {
                    action: "determining the minimum step size",
                    need: 2,
                })
            }
        };

        self.process(measurements, &mut devices, step_size)
    }

    /// Process the provided measurements for this orbit determination process given the associated devices.
    ///
    /// # Argument details
    /// + The measurements must be a list mapping the name of the measurement device to the measurement itself.
    /// + The name of all measurement devices must be present in the provided devices, i.e. the key set of `devices` must be a superset of the measurement device names present in the list.
    /// + The maximum step size to ensure we don't skip any measurements.
    #[allow(clippy::erasing_op)]
    pub fn process<Dev>(
        &mut self,
        measurements: &[(String, Msr)],
        devices: &mut BTreeMap<String, Dev>,
        max_step: Duration,
    ) -> Result<(), ODError>
    where
        Dev: TrackingDeviceSim<S, Msr>,
    {
        ensure!(
            measurements.len() >= 2,
            TooFewMeasurementsSnafu {
                need: 2_usize,
                action: "running a Kalman filter"
            }
        );

        ensure!(
            !max_step.is_negative() && max_step != Duration::ZERO,
            StepSizeSnafu { step: max_step }
        );

        // Start by propagating the estimator (on the same thread).
        let num_msrs = measurements.len();

        // Update the step size of the navigation propagator if it isn't already fixed step
        if !self.prop.fixed_step {
            self.prop.set_step(max_step, false);
        }

        let prop_time = measurements[num_msrs - 1].1.epoch() - self.kf.previous_estimate().epoch();
        info!("Navigation propagating for a total of {prop_time} with step size {max_step}");

        let mut epoch = self.prop.state.epoch();

        let mut reported = [false; 11];
        reported[0] = true; // Prevent showing "0% done"
        info!("Processing {num_msrs} measurements with covariance mapping");

        // We'll build a trajectory of the estimated states. This will be used to compute the measurements.
        let mut traj: Traj<S> = Traj::new();

        let mut msr_accepted_cnt: usize = 0;
        let tick = Epoch::now().unwrap();

        for (msr_cnt, (device_name, msr)) in measurements.iter().enumerate() {
            let next_msr_epoch = msr.epoch();

            for val in msr.observation().iter() {
                ensure!(
                    val.is_finite(),
                    InvalidMeasurementSnafu {
                        epoch: next_msr_epoch,
                        val: *val
                    }
                );
            }

            // Advance the propagator
            loop {
                let delta_t = next_msr_epoch - epoch;

                // Propagator for the minimum time between the maximum step size, the next step size, and the duration to the next measurement.
                let next_step_size = delta_t.min(self.prop.step_size).min(max_step);

                // Remove old states from the trajectory
                // This is a manual implementation of `retaint` because we know it's a sorted vec, so no need to resort every time
                let mut index = traj.states.len();
                while index > 0 {
                    index -= 1;
                    if traj.states[index].epoch() >= epoch {
                        break;
                    }
                }
                traj.states.truncate(index);

                debug!("propagate for {next_step_size} (Δt to next msr: {delta_t})");
                let (_, traj_covar) = self
                    .prop
                    .for_duration_with_traj(next_step_size)
                    .context(ODPropSnafu)?;

                for state in traj_covar.states {
                    traj.states.push(S::extract(state));
                }

                // Now that we've advanced the propagator, let's see whether we're at the time of the next measurement.

                // Extract the state and update the STM in the filter.
                let nominal_state = S::extract(self.prop.state);
                // Get the datetime and info needed to compute the theoretical measurement according to the model
                epoch = nominal_state.epoch();

                // Perform a measurement update
                if nominal_state.epoch() == next_msr_epoch {
                    // Get the computed observations
                    match devices.get_mut(device_name) {
                        Some(device) => {
                            if let Some(computed_meas) =
                                device.measure(epoch, &traj, None, self.almanac.clone())?
                            {
                                // Grab the device location
                                let device_loc = device
                                    .location(epoch, nominal_state.frame(), self.almanac.clone())
                                    .unwrap();

                                // Switch back from extended if necessary
                                if let Some(trigger) = &mut self.ekf_trigger {
                                    if self.kf.is_extended() && trigger.disable_ekf(epoch) {
                                        self.kf.set_extended(false);
                                        info!("EKF disabled @ {epoch}");
                                    }
                                }

                                let h_tilde = S::sensitivity(msr, nominal_state, device_loc);

                                self.kf.update_h_tilde(h_tilde);

                                match self.kf.measurement_update(
                                    nominal_state,
                                    &msr.observation(),
                                    &computed_meas.observation(),
                                    device.measurement_covar(epoch)?,
                                    self.resid_crit,
                                ) {
                                    Ok((estimate, mut residual)) => {
                                        debug!("processed msr #{msr_cnt} @ {epoch}");

                                        residual.tracker = Some(device.name());

                                        if !residual.rejected {
                                            msr_accepted_cnt += 1;
                                        }

                                        // Switch to EKF if necessary, and update the dynamics and such
                                        // Note: we call enable_ekf first to ensure that the trigger gets
                                        // called in case it needs to save some information (e.g. the
                                        // StdEkfTrigger needs to store the time of the previous measurement).

                                        if let Some(trigger) = &mut self.ekf_trigger {
                                            if trigger.enable_ekf(&estimate)
                                                && !self.kf.is_extended()
                                            {
                                                self.kf.set_extended(true);
                                                if !estimate.within_3sigma() {
                                                    warn!("EKF enabled @ {epoch} but filter DIVERGING");
                                                } else {
                                                    info!("EKF enabled @ {epoch}");
                                                }
                                            }
                                            if self.kf.is_extended() {
                                                self.prop.state =
                                                    self.prop.state + estimate.state_deviation();
                                            }
                                        }

                                        self.prop.state.reset_stm();

                                        self.estimates.push(estimate);
                                        self.residuals.push(Some(residual));
                                    }
                                    Err(e) => return Err(e),
                                }
                            } else {
                                warn!("Real observation exists @ {epoch} but simulated {device_name} does not see it -- ignoring measurement");
                            }
                        }
                        None => {
                            error!("Tracking arc references {device_name} which is not in the list of configured devices")
                        }
                    }

                    let msr_prct = (10.0 * (msr_cnt as f64) / (num_msrs as f64)) as usize;
                    if !reported[msr_prct] {
                        let num_rejected = msr_cnt - msr_accepted_cnt.saturating_sub(1);
                        let msg = format!(
                            "{:>3}% done - {msr_accepted_cnt:.0} measurements accepted, {:.0} rejected",
                            10 * msr_prct, num_rejected
                        );
                        if msr_accepted_cnt < num_rejected {
                            warn!("{msg}");
                        } else {
                            info!("{msg}");
                        }
                        reported[msr_prct] = true;
                    }

                    break;
                } else {
                    // No measurement can be used here, let's just do a time update and continue advancing the propagator.
                    debug!("time update {epoch}");
                    match self.kf.time_update(nominal_state) {
                        Ok(est) => {
                            // State deviation is always zero for an EKF time update
                            // therefore we don't do anything different for an extended filter
                            self.estimates.push(est);
                            // We push None so that the residuals and estimates are aligned
                            self.residuals.push(None);
                        }
                        Err(e) => return Err(e),
                    }
                    self.prop.state.reset_stm();
                }
            }
        }

        // Always report the 100% mark
        if !reported[10] {
            let tock_time = Epoch::now().unwrap() - tick;
            info!(
                "100% done - {msr_accepted_cnt:.0} measurements accepted, {:.0} rejected (done in {tock_time})",
                num_msrs - msr_accepted_cnt
            );
        }

        Ok(())
    }

    /// Continuously predicts the trajectory until the provided end epoch, with covariance mapping at each step. In other words, this performs a time update.
    pub fn predict_until(&mut self, step: Duration, end_epoch: Epoch) -> Result<(), ODError> {
        let prop_time = end_epoch - self.kf.previous_estimate().epoch();
        info!("Mapping covariance for {prop_time} with {step} step");

        loop {
            let mut epoch = self.prop.state.epoch();
            if epoch + self.prop.details.step > end_epoch {
                self.prop.until_epoch(end_epoch).context(ODPropSnafu)?;
            } else {
                self.prop.for_duration(step).context(ODPropSnafu)?;
            }

            // Perform time update

            // Extract the state and update the STM in the filter.
            let prop_state = self.prop.state;
            let nominal_state = S::extract(prop_state);
            // Get the datetime and info needed to compute the theoretical measurement according to the model
            epoch = nominal_state.epoch();
            // No measurement can be used here, let's just do a time update
            debug!("time update {epoch}");
            match self.kf.time_update(nominal_state) {
                Ok(est) => {
                    // State deviation is always zero for an EKF time update
                    // therefore we don't do anything different for an extended filter
                    self.estimates.push(est);
                    self.residuals.push(None);
                }
                Err(e) => return Err(e),
            }
            self.prop.state.reset_stm();
            if epoch == end_epoch {
                break;
            }
        }

        Ok(())
    }

    /// Continuously predicts the trajectory for the provided duration, with covariance mapping at each step. In other words, this performs a time update.
    pub fn predict_for(&mut self, step: Duration, duration: Duration) -> Result<(), ODError> {
        let end_epoch = self.kf.previous_estimate().epoch() + duration;
        self.predict_until(step, end_epoch)
    }

    /// Builds the navigation trajectory for the estimated state only
    pub fn to_traj(&self) -> Result<Traj<S>, NyxError>
    where
        DefaultAllocator: Allocator<<S as State>::VecLength>,
        S: Interpolatable,
    {
        if self.estimates.is_empty() {
            Err(NyxError::NoStateData {
                msg: "No navigation trajectory to generate: run the OD process first".to_string(),
            })
        } else {
            Ok(Traj {
                states: self
                    .estimates
                    .iter()
                    .map(|est| est.nominal_state())
                    .collect(),
                name: None,
            })
        }
    }
}

impl<
        'a,
        D: Dynamics,
        Msr: Measurement,
        A: DimName,
        S: EstimateFrom<D::StateType, Msr> + Interpolatable,
        K: Filter<S, A, Msr::MeasurementSize>,
    > ODProcess<'a, D, Msr, A, S, K>
where
    D::StateType: Interpolatable + Add<OVector<f64, <S as State>::Size>, Output = D::StateType>,
    <DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
    DefaultAllocator: Allocator<<D::StateType as State>::Size>
        + Allocator<<D::StateType as State>::VecLength>
        + Allocator<Msr::MeasurementSize>
        + Allocator<Msr::MeasurementSize, S::Size>
        + Allocator<S::Size>
        + Allocator<Msr::MeasurementSize, Msr::MeasurementSize>
        + Allocator<Msr::MeasurementSize, <D::StateType as State>::Size>
        + Allocator<<D::StateType as State>::Size, Msr::MeasurementSize>
        + Allocator<<S as State>::Size, Msr::MeasurementSize>
        + Allocator<Msr::MeasurementSize, <S as State>::Size>
        + Allocator<<D::StateType as State>::Size, <D::StateType as State>::Size>
        + Allocator<<S as State>::Size>
        + Allocator<<S as State>::VecLength>
        + Allocator<<S as State>::Size, <S as State>::Size>
        + Allocator<A>
        + Allocator<A, A>
        + Allocator<<D::StateType as State>::Size, A>
        + Allocator<A, <D::StateType as State>::Size>
        + Allocator<<S as State>::Size, A>
        + Allocator<A, <S as State>::Size>,
{
    pub fn ckf(
        prop: PropInstance<'a, D>,
        kf: K,
        resid_crit: Option<ResidRejectCrit>,
        almanac: Arc<Almanac>,
    ) -> Self {
        let init_state = prop.state;
        Self {
            prop: prop.quiet(),
            kf,
            estimates: Vec::with_capacity(10_000),
            residuals: Vec::with_capacity(10_000),
            resid_crit,
            ekf_trigger: None,
            init_state,
            almanac,
            _marker: PhantomData::<A>,
        }
    }
}