nyx_space/od/process/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use crate::linalg::allocator::Allocator;
use crate::linalg::{DefaultAllocator, DimName};
use crate::md::trajectory::{Interpolatable, Traj};
pub use crate::od::estimate::*;
pub use crate::od::ground_station::*;
pub use crate::od::snc::*;
pub use crate::od::*;
use crate::propagators::PropInstance;
pub use crate::time::{Duration, Unit};
use anise::prelude::Almanac;
use indexmap::IndexSet;
use msr::sensitivity::TrackerSensitivity;
use snafu::prelude::*;
mod conf;
pub use conf::{IterationConf, SmoothingArc};
mod trigger;
pub use trigger::EkfTrigger;
mod rejectcrit;
use self::msr::TrackingDataArc;
pub use self::rejectcrit::ResidRejectCrit;
use std::collections::BTreeMap;
use std::marker::PhantomData;
use std::ops::Add;
mod export;
/// An orbit determination process. Note that everything passed to this structure is moved.
#[allow(clippy::upper_case_acronyms)]
pub struct ODProcess<
'a,
D: Dynamics,
MsrSize: DimName,
Accel: DimName,
K: Filter<D::StateType, Accel, MsrSize>,
Trk: TrackerSensitivity<D::StateType, D::StateType>,
> where
D::StateType:
Interpolatable + Add<OVector<f64, <D::StateType as State>::Size>, Output = D::StateType>,
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
DefaultAllocator: Allocator<<D::StateType as State>::Size>
+ Allocator<<D::StateType as State>::VecLength>
+ Allocator<MsrSize>
+ Allocator<MsrSize, <D::StateType as State>::Size>
+ Allocator<MsrSize, MsrSize>
+ Allocator<<D::StateType as State>::Size, <D::StateType as State>::Size>
+ Allocator<Accel>
+ Allocator<Accel, Accel>
+ Allocator<<D::StateType as State>::Size, Accel>
+ Allocator<Accel, <D::StateType as State>::Size>,
{
/// PropInstance used for the estimation
pub prop: PropInstance<'a, D>,
/// Kalman filter itself
pub kf: K,
/// Tracking devices
pub devices: BTreeMap<String, Trk>,
/// Vector of estimates available after a pass
pub estimates: Vec<K::Estimate>,
/// Vector of residuals available after a pass
pub residuals: Vec<Option<Residual<MsrSize>>>,
pub ekf_trigger: Option<EkfTrigger>,
/// Residual rejection criteria allows preventing bad measurements from affecting the estimation.
pub resid_crit: Option<ResidRejectCrit>,
pub almanac: Arc<Almanac>,
init_state: D::StateType,
_marker: PhantomData<Accel>,
}
impl<
'a,
D: Dynamics,
MsrSize: DimName,
Accel: DimName,
K: Filter<D::StateType, Accel, MsrSize>,
Trk: TrackerSensitivity<D::StateType, D::StateType>,
> ODProcess<'a, D, MsrSize, Accel, K, Trk>
where
D::StateType:
Interpolatable + Add<OVector<f64, <D::StateType as State>::Size>, Output = D::StateType>,
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
DefaultAllocator: Allocator<<D::StateType as State>::Size>
+ Allocator<<D::StateType as State>::VecLength>
+ Allocator<MsrSize>
+ Allocator<MsrSize, <D::StateType as State>::Size>
+ Allocator<MsrSize, MsrSize>
+ Allocator<<D::StateType as State>::Size, <D::StateType as State>::Size>
+ Allocator<Accel>
+ Allocator<Accel, Accel>
+ Allocator<<D::StateType as State>::Size, Accel>
+ Allocator<Accel, <D::StateType as State>::Size>,
{
/// Initialize a new orbit determination process with an optional trigger to switch from a CKF to an EKF.
pub fn new(
prop: PropInstance<'a, D>,
kf: K,
devices: BTreeMap<String, Trk>,
ekf_trigger: Option<EkfTrigger>,
resid_crit: Option<ResidRejectCrit>,
almanac: Arc<Almanac>,
) -> Self {
let init_state = prop.state;
Self {
prop: prop.quiet(),
kf,
devices,
estimates: Vec::with_capacity(10_000),
residuals: Vec::with_capacity(10_000),
ekf_trigger,
resid_crit,
almanac,
init_state,
_marker: PhantomData::<Accel>,
}
}
/// Initialize a new orbit determination process with an Extended Kalman filter. The switch from a classical KF to an EKF is based on the provided trigger.
pub fn ekf(
prop: PropInstance<'a, D>,
kf: K,
devices: BTreeMap<String, Trk>,
trigger: EkfTrigger,
resid_crit: Option<ResidRejectCrit>,
almanac: Arc<Almanac>,
) -> Self {
let init_state = prop.state;
Self {
prop: prop.quiet(),
kf,
devices,
estimates: Vec::with_capacity(10_000),
residuals: Vec::with_capacity(10_000),
ekf_trigger: Some(trigger),
resid_crit,
almanac,
init_state,
_marker: PhantomData::<Accel>,
}
}
/// Allows to smooth the provided estimates. Returns the smoothed estimates or an error.
///
/// Estimates must be ordered in chronological order. This function will smooth the
/// estimates from the last in the list to the first one.
pub fn smooth(&self, condition: SmoothingArc) -> Result<Vec<K::Estimate>, ODError> {
let l = self.estimates.len() - 1;
info!("Smoothing {} estimates until {}", l + 1, condition);
let mut smoothed = Vec::with_capacity(self.estimates.len());
// Set the first item of the smoothed estimates to the last estimate (we cannot smooth the very last estimate)
smoothed.push(self.estimates.last().unwrap().clone());
loop {
let k = l - smoothed.len();
// Borrow the previously smoothed estimate of the k+1 estimate
let sm_est_kp1 = &self.estimates[k + 1];
let x_kp1_l = sm_est_kp1.state_deviation();
let p_kp1_l = sm_est_kp1.covar();
// Borrow the k-th estimate, which we're smoothing with the next estimate
let est_k = &self.estimates[k];
// Borrow the k+1-th estimate, which we're smoothing with the next estimate
let est_kp1 = &self.estimates[k + 1];
// Check the smoother stopping condition
match condition {
SmoothingArc::Epoch(e) => {
// If the epoch of the next estimate is _before_ the stopping time, stop smoothing
if est_kp1.epoch() < e {
break;
}
}
SmoothingArc::TimeGap(gap_s) => {
if est_kp1.epoch() - est_k.epoch() > gap_s {
break;
}
}
SmoothingArc::Prediction => {
if est_kp1.predicted() {
break;
}
}
SmoothingArc::All => {}
}
// Compute the STM between both steps taken by the filter
// The filter will reset the STM between each estimate it computes, time update or measurement update.
// Therefore, the STM is simply the inverse of the one we used previously.
// est_kp1 is the estimate that used the STM from time k to time k+1. So the STM stored there
// is \Phi_{k \to k+1}. Let's invert that.
let phi_kp1_k = &est_kp1
.stm()
.clone()
.try_inverse()
.ok_or(ODError::SingularStateTransitionMatrix)?;
// Compute smoothed state deviation
let x_k_l = phi_kp1_k * x_kp1_l;
// Compute smoothed covariance
let p_k_l = phi_kp1_k * p_kp1_l * phi_kp1_k.transpose();
// Store into vector
let mut smoothed_est_k = est_k.clone();
// Compute the smoothed state deviation
smoothed_est_k.set_state_deviation(x_k_l);
// Compute the smoothed covariance
smoothed_est_k.set_covar(p_k_l);
// Move on
smoothed.push(smoothed_est_k);
if smoothed.len() == self.estimates.len() {
break;
}
}
// Note that we have yet to reverse the list, so we print them backward
info!(
"Smoothed {} estimates (from {} to {})",
smoothed.len(),
smoothed.last().unwrap().epoch(),
smoothed[0].epoch(),
);
// Now, let's add all of the other estimates so that the same indexing can be done
// between all the estimates and the smoothed estimates
if smoothed.len() < self.estimates.len() {
// Add the estimates that might have been skipped.
let mut k = self.estimates.len() - smoothed.len();
loop {
smoothed.push(self.estimates[k].clone());
if k == 0 {
break;
}
k -= 1;
}
}
// And reverse to maintain the order of estimates
smoothed.reverse();
Ok(smoothed)
}
/// Returns the root mean square of the prefit residual ratios
pub fn rms_residual_ratios(&self) -> f64 {
let mut sum = 0.0;
for residual in self.residuals.iter().flatten() {
sum += residual.ratio.powi(2);
}
(sum / (self.residuals.len() as f64)).sqrt()
}
/// Allows iterating on the filter solution. Requires specifying a smoothing condition to know where to stop the smoothing.
pub fn iterate_arc(
&mut self,
arc: &TrackingDataArc,
config: IterationConf,
) -> Result<(), ODError> {
let mut best_rms = self.rms_residual_ratios();
let mut previous_rms = best_rms;
let mut divergence_cnt = 0;
let mut iter_cnt = 0;
loop {
if best_rms <= config.absolute_tol {
info!("*****************");
info!("*** CONVERGED ***");
info!("*****************");
info!(
"Filter converged to absolute tolerance ({:.2e} < {:.2e}) after {} iterations",
best_rms, config.absolute_tol, iter_cnt
);
break;
}
iter_cnt += 1;
// Prevent infinite loop when iterating prior to turning on the EKF.
if let Some(trigger) = &mut self.ekf_trigger {
trigger.reset();
}
info!("***************************");
info!("*** Iteration number {iter_cnt:02} ***");
info!("***************************");
// First, smooth the estimates
let smoothed = self.smooth(config.smoother)?;
// Reset the propagator
self.prop.state = self.init_state;
// Empty the estimates and add the first smoothed estimate as the initial estimate
self.estimates = Vec::with_capacity(arc.measurements.len().max(self.estimates.len()));
self.residuals = Vec::with_capacity(arc.measurements.len().max(self.estimates.len()));
self.kf.set_previous_estimate(&smoothed[0]);
// And re-run the filter
self.process_arc(arc)?;
// Compute the new RMS
let new_rms = self.rms_residual_ratios();
let cur_rms_num = (new_rms - previous_rms).abs();
let cur_rel_rms = cur_rms_num / previous_rms;
if cur_rel_rms < config.relative_tol || cur_rms_num < config.absolute_tol * best_rms {
if previous_rms < best_rms {
best_rms = previous_rms;
}
info!("*****************");
info!("*** CONVERGED ***");
info!("*****************");
info!(
"New residual RMS: {:.5}\tPrevious RMS: {:.5}\tBest RMS: {:.5}",
new_rms, previous_rms, best_rms
);
if cur_rel_rms < config.relative_tol {
info!(
"Filter converged on relative tolerance ({:.2e} < {:.2e}) after {} iterations",
cur_rel_rms, config.relative_tol, iter_cnt
);
} else {
info!(
"Filter converged on relative change ({:.2e} < {:.2e} * {:.2e}) after {} iterations",
cur_rms_num, config.absolute_tol, best_rms, iter_cnt
);
}
break;
} else if new_rms > previous_rms {
warn!(
"New residual RMS: {:.5}\tPrevious RMS: {:.5}\tBest RMS: {:.5} ({cur_rel_rms:.2e} > {:.2e})",
new_rms, previous_rms, best_rms, config.relative_tol
);
divergence_cnt += 1;
previous_rms = new_rms;
if divergence_cnt >= config.max_divergences {
let msg = format!(
"Filter iterations have continuously diverged {} times: {}",
config.max_divergences, config
);
if config.force_failure {
return Err(ODError::Diverged {
loops: config.max_divergences,
});
} else {
error!("{}", msg);
break;
}
} else {
warn!("Filter iteration caused divergence {} of {} acceptable subsequent divergences", divergence_cnt, config.max_divergences);
}
} else {
info!(
"New residual RMS: {:.5}\tPrevious RMS: {:.5}\tBest RMS: {:.5} ({cur_rel_rms:.2e} > {:.2e})",
new_rms, previous_rms, best_rms, config.relative_tol
);
// Reset the counter
divergence_cnt = 0;
previous_rms = new_rms;
if previous_rms < best_rms {
best_rms = previous_rms;
}
}
if iter_cnt >= config.max_iterations {
let msg = format!(
"Filter has iterated {} times but failed to reach filter convergence criteria: {}",
config.max_iterations, config
);
if config.force_failure {
return Err(ODError::Diverged {
loops: config.max_divergences,
});
} else {
error!("{}", msg);
break;
}
}
}
Ok(())
}
/// Process the provided measurements for this orbit determination process given the associated devices.
///
/// # Argument details
/// + The measurements must be a list mapping the name of the measurement device to the measurement itself.
/// + The name of all measurement devices must be present in the provided devices, i.e. the key set of `devices` must be a superset of the measurement device names present in the list.
/// + The maximum step size to ensure we don't skip any measurements.
#[allow(clippy::erasing_op)]
pub fn process_arc(&mut self, arc: &TrackingDataArc) -> Result<(), ODError> {
let measurements = &arc.measurements;
ensure!(
measurements.len() >= 2,
TooFewMeasurementsSnafu {
need: 2_usize,
action: "running a Kalman filter"
}
);
let max_step = match arc.min_duration_sep() {
Some(step_size) => step_size,
None => {
return Err(ODError::TooFewMeasurements {
action: "determining the minimum step size",
need: 2,
})
}
};
ensure!(
!max_step.is_negative() && max_step != Duration::ZERO,
StepSizeSnafu { step: max_step }
);
// Check proper configuration.
if MsrSize::USIZE > arc.unique_types().len() {
error!("Filter misconfigured: expect high rejection count!");
error!(
"Arc only contains {} measurement types, but filter configured for {}.",
arc.unique_types().len(),
MsrSize::USIZE
);
error!("Filter should be configured for these numbers to match.");
error!("Consider running subsequent arcs if ground stations provide different measurements.")
}
// Start by propagating the estimator.
let num_msrs = measurements.len();
// Update the step size of the navigation propagator if it isn't already fixed step
if !self.prop.fixed_step {
self.prop.set_step(max_step, false);
}
// let prop_time = measurements[num_msrs - 1].1.epoch() - self.kf.previous_estimate().epoch();
let prop_time = arc.end_epoch().unwrap() - self.kf.previous_estimate().epoch();
info!("Navigation propagating for a total of {prop_time} with step size {max_step}");
let mut epoch = self.prop.state.epoch();
let mut reported = [false; 11];
reported[0] = true; // Prevent showing "0% done"
info!("Processing {num_msrs} measurements with covariance mapping");
// We'll build a trajectory of the estimated states. This will be used to compute the measurements.
let mut traj: Traj<D::StateType> = Traj::new();
let mut msr_accepted_cnt: usize = 0;
let tick = Epoch::now().unwrap();
for (msr_cnt, (epoch_ref, msr)) in measurements.iter().enumerate() {
let next_msr_epoch = *epoch_ref;
// Advance the propagator
loop {
let delta_t = next_msr_epoch - epoch;
// Propagator for the minimum time between the maximum step size, the next step size, and the duration to the next measurement.
let next_step_size = delta_t.min(self.prop.step_size).min(max_step);
// Remove old states from the trajectory
// This is a manual implementation of `retaint` because we know it's a sorted vec, so no need to resort every time
let mut index = traj.states.len();
while index > 0 {
index -= 1;
if traj.states[index].epoch() >= epoch {
break;
}
}
traj.states.truncate(index);
debug!("propagate for {next_step_size} (Δt to next msr: {delta_t})");
let (_, traj_covar) = self
.prop
.for_duration_with_traj(next_step_size)
.context(ODPropSnafu)?;
for state in traj_covar.states {
// NOTE: At the time being, only spacecraft estimation is possible, and the trajectory will always be the exact state
// that was propagated. Even once ground station biases are estimated, these won't go through the propagator.
traj.states.push(state);
}
// Now that we've advanced the propagator, let's see whether we're at the time of the next measurement.
// Extract the state and update the STM in the filter.
let nominal_state = self.prop.state;
// Get the datetime and info needed to compute the theoretical measurement according to the model
epoch = nominal_state.epoch();
// Perform a measurement update
if nominal_state.epoch() == next_msr_epoch {
// Get the computed observations
match self.devices.get_mut(&msr.tracker) {
Some(device) => {
if let Some(computed_meas) =
device.measure(epoch, &traj, None, self.almanac.clone())?
{
let msr_types = device.measurement_types();
// Switch back from extended if necessary
if let Some(trigger) = &mut self.ekf_trigger {
if self.kf.is_extended() && trigger.disable_ekf(epoch) {
self.kf.set_extended(false);
info!("EKF disabled @ {epoch}");
}
}
// Perform several measurement updates to ensure the desired dimensionality.
let windows = msr_types.len() / MsrSize::USIZE;
let mut msr_rejected = false;
for wno in 0..=windows {
let mut cur_msr_types = IndexSet::new();
for msr_type in msr_types
.iter()
.copied()
.skip(wno * MsrSize::USIZE)
.take(MsrSize::USIZE)
{
cur_msr_types.insert(msr_type);
}
if cur_msr_types.is_empty() {
// We've processed all measurements.
break;
}
// Check that the observation is valid.
for val in
msr.observation::<MsrSize>(&cur_msr_types).iter().copied()
{
ensure!(
val.is_finite(),
InvalidMeasurementSnafu {
epoch: next_msr_epoch,
val
}
);
}
let h_tilde = device
.h_tilde::<MsrSize>(
msr,
&cur_msr_types,
&nominal_state,
self.almanac.clone(),
)
.unwrap();
self.kf.update_h_tilde(h_tilde);
match self.kf.measurement_update(
nominal_state,
&msr.observation(&cur_msr_types),
&computed_meas.observation(&cur_msr_types),
device.measurement_covar_matrix(&cur_msr_types, epoch)?,
self.resid_crit,
) {
Ok((estimate, mut residual)) => {
debug!("processed measurement #{msr_cnt} for {cur_msr_types:?} @ {epoch} from {}", device.name());
residual.tracker = Some(device.name());
residual.msr_types = cur_msr_types;
if residual.rejected {
msr_rejected = true;
}
// Switch to EKF if necessary, and update the dynamics and such
// Note: we call enable_ekf first to ensure that the trigger gets
// called in case it needs to save some information (e.g. the
// StdEkfTrigger needs to store the time of the previous measurement).
if let Some(trigger) = &mut self.ekf_trigger {
if trigger.enable_ekf(&estimate)
&& !self.kf.is_extended()
{
self.kf.set_extended(true);
if !estimate.within_3sigma() {
warn!("EKF enabled @ {epoch} but filter DIVERGING");
} else {
info!("EKF enabled @ {epoch}");
}
}
if self.kf.is_extended() {
self.prop.state = self.prop.state
+ estimate.state_deviation();
}
}
self.prop.state.reset_stm();
self.estimates.push(estimate);
self.residuals.push(Some(residual));
}
Err(e) => return Err(e),
}
}
if !msr_rejected {
msr_accepted_cnt += 1;
}
} else {
warn!("Ignoring observation @ {epoch} because simulated {} does not expect it", msr.tracker);
}
}
None => {
error!(
"Tracker {} is not in the list of configured devices",
msr.tracker
)
}
}
let msr_prct = (10.0 * (msr_cnt as f64) / (num_msrs as f64)) as usize;
if !reported[msr_prct] {
let num_rejected = msr_cnt - msr_accepted_cnt.saturating_sub(1);
let msg = format!(
"{:>3}% done - {msr_accepted_cnt:.0} measurements accepted, {:.0} rejected",
10 * msr_prct, num_rejected
);
if msr_accepted_cnt < num_rejected {
warn!("{msg}");
} else {
info!("{msg}");
}
reported[msr_prct] = true;
}
break;
} else {
// No measurement can be used here, let's just do a time update and continue advancing the propagator.
debug!("time update {epoch}");
match self.kf.time_update(nominal_state) {
Ok(est) => {
// State deviation is always zero for an EKF time update
// therefore we don't do anything different for an extended filter
self.estimates.push(est);
// We push None so that the residuals and estimates are aligned
self.residuals.push(None);
}
Err(e) => return Err(e),
}
self.prop.state.reset_stm();
}
}
}
// Always report the 100% mark
if !reported[10] {
let tock_time = Epoch::now().unwrap() - tick;
info!(
"100% done - {msr_accepted_cnt:.0} measurements accepted, {:.0} rejected (done in {tock_time})",
num_msrs - msr_accepted_cnt
);
}
Ok(())
}
/// Continuously predicts the trajectory until the provided end epoch, with covariance mapping at each step. In other words, this performs a time update.
pub fn predict_until(&mut self, step: Duration, end_epoch: Epoch) -> Result<(), ODError> {
let prop_time = end_epoch - self.kf.previous_estimate().epoch();
info!("Mapping covariance for {prop_time} with {step} step");
loop {
let mut epoch = self.prop.state.epoch();
if epoch + self.prop.details.step > end_epoch {
self.prop.until_epoch(end_epoch).context(ODPropSnafu)?;
} else {
self.prop.for_duration(step).context(ODPropSnafu)?;
}
// Perform time update
// Extract the state and update the STM in the filter.
let nominal_state = self.prop.state;
// Get the datetime and info needed to compute the theoretical measurement according to the model
epoch = nominal_state.epoch();
// No measurement can be used here, let's just do a time update
debug!("time update {epoch}");
match self.kf.time_update(nominal_state) {
Ok(est) => {
// State deviation is always zero for an EKF time update
// therefore we don't do anything different for an extended filter
self.estimates.push(est);
self.residuals.push(None);
}
Err(e) => return Err(e),
}
self.prop.state.reset_stm();
if epoch == end_epoch {
break;
}
}
Ok(())
}
/// Continuously predicts the trajectory for the provided duration, with covariance mapping at each step. In other words, this performs a time update.
pub fn predict_for(&mut self, step: Duration, duration: Duration) -> Result<(), ODError> {
let end_epoch = self.kf.previous_estimate().epoch() + duration;
self.predict_until(step, end_epoch)
}
/// Builds the navigation trajectory for the estimated state only
pub fn to_traj(&self) -> Result<Traj<D::StateType>, NyxError>
where
DefaultAllocator: Allocator<<D::StateType as State>::VecLength>,
{
if self.estimates.is_empty() {
Err(NyxError::NoStateData {
msg: "No navigation trajectory to generate: run the OD process first".to_string(),
})
} else {
Ok(Traj {
states: self
.estimates
.iter()
.map(|est| est.nominal_state())
.collect(),
name: None,
})
}
}
}
impl<
'a,
D: Dynamics,
MsrSize: DimName,
Accel: DimName,
K: Filter<D::StateType, Accel, MsrSize>,
Trk: TrackerSensitivity<D::StateType, D::StateType>,
> ODProcess<'a, D, MsrSize, Accel, K, Trk>
where
D::StateType:
Interpolatable + Add<OVector<f64, <D::StateType as State>::Size>, Output = D::StateType>,
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
DefaultAllocator: Allocator<<D::StateType as State>::Size>
+ Allocator<<D::StateType as State>::VecLength>
+ Allocator<MsrSize>
+ Allocator<MsrSize, <D::StateType as State>::Size>
+ Allocator<MsrSize, MsrSize>
+ Allocator<<D::StateType as State>::Size, <D::StateType as State>::Size>
+ Allocator<Accel>
+ Allocator<Accel, Accel>
+ Allocator<<D::StateType as State>::Size, Accel>
+ Allocator<Accel, <D::StateType as State>::Size>,
{
pub fn ckf(
prop: PropInstance<'a, D>,
kf: K,
devices: BTreeMap<String, Trk>,
resid_crit: Option<ResidRejectCrit>,
almanac: Arc<Almanac>,
) -> Self {
let init_state = prop.state;
Self {
prop: prop.quiet(),
kf,
devices,
estimates: Vec::with_capacity(10_000),
residuals: Vec::with_capacity(10_000),
resid_crit,
ekf_trigger: None,
init_state,
almanac,
_marker: PhantomData::<Accel>,
}
}
}