nyx_space/od/process/solution/
smooth.rs

1/*
2    Nyx, blazing fast astrodynamics
3    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
4
5    This program is free software: you can redistribute it and/or modify
6    it under the terms of the GNU Affero General Public License as published
7    by the Free Software Foundation either version 3 of the License, or
8    (at your option) any later version.
9
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU Affero General Public License for more details.
14
15    You should have received a copy of the GNU Affero General Public License
16    along with this program.  If not, see <https://www.gnu.org/licenses/>.
17*/
18
19use crate::linalg::allocator::Allocator;
20use crate::linalg::{DefaultAllocator, DimName};
21use crate::md::trajectory::Interpolatable;
22pub use crate::od::estimate::*;
23pub use crate::od::*;
24use anise::prelude::Almanac;
25use msr::sensitivity::TrackerSensitivity;
26use std::ops::Add;
27
28use super::ODSolution;
29
30impl<StateType, EstType, MsrSize, Trk> ODSolution<StateType, EstType, MsrSize, Trk>
31where
32    StateType: Interpolatable + Add<OVector<f64, <StateType as State>::Size>, Output = StateType>,
33    EstType: Estimate<StateType>,
34    MsrSize: DimName,
35    Trk: TrackerSensitivity<StateType, StateType>,
36    <DefaultAllocator as Allocator<<StateType as State>::VecLength>>::Buffer<f64>: Send,
37    DefaultAllocator: Allocator<<StateType as State>::Size>
38        + Allocator<<StateType as State>::VecLength>
39        + Allocator<MsrSize>
40        + Allocator<MsrSize, <StateType as State>::Size>
41        + Allocator<MsrSize, MsrSize>
42        + Allocator<<StateType as State>::Size, <StateType as State>::Size>
43        + Allocator<<StateType as State>::Size, MsrSize>,
44{
45    /// Smoothes this OD solution, returning a new OD solution and the filter-smoother consistency ratios, with updated **postfit** residuals, and where the ratio now represents the filter-smoother consistency ratio.
46    ///
47    /// Notes:
48    ///  1. Gains will be scrubbed because the smoother process does not recompute the gain.
49    ///  2. Prefit residuals, ratios, and measurement covariances are not updated, as these depend on the filtering process.
50    ///  3. Note: this function consumes the current OD solution to prevent reusing the wrong one.
51    ///
52    ///
53    /// To assess whether the smoothing process improved the solution, compare the RMS of the postfit residuals from the filter and the smoother process.
54    ///
55    /// # Filter-Smoother consistency ratio
56    ///
57    /// The **filter-smoother consistency ratio** is used to evaluate the consistency between the state estimates produced by a filter (e.g., Kalman filter) and a smoother.
58    /// This ratio is called "filter smoother consistency test" in the ODTK MathSpec.
59    ///
60    /// It is computed as follows:
61    ///
62    /// #### 1. Define the State Estimates
63    /// **Filter state estimate**:
64    /// $ \hat{X}_{f,k} $
65    /// This is the state estimate at time step $ k $ from the filter.
66    ///
67    /// **Smoother state estimate**:
68    /// $ \hat{X}_{s,k} $
69    /// This is the state estimate at time step $ k $ from the smoother.
70    ///
71    /// #### 2. Define the Covariances
72    ///
73    /// **Filter covariance**:
74    /// $ P_{f,k} $
75    /// This is the covariance of the state estimate at time step $ k $ from the filter.
76    ///
77    /// **Smoother covariance**:
78    /// $ P_{s,k} $
79    /// This is the covariance of the state estimate at time step $ k $ from the smoother.
80    ///
81    /// #### 3. Compute the Differences
82    ///
83    /// **State difference**:
84    /// $ \Delta X_k = \hat{X}_{s,k} - \hat{X}_{f,k} $
85    ///
86    /// **Covariance difference**:
87    /// $ \Delta P_k = P_{s,k} - P_{f,k} $
88    ///
89    /// #### 4. Calculate the Consistency Ratio
90    /// For each element $ i $ of the state vector, compute the ratio:
91    ///
92    /// $$
93    /// R_{i,k} = \frac{\Delta X_{i,k}}{\sqrt{\Delta P_{i,k}}}
94    /// $$
95    ///
96    /// #### 5. Evaluate Consistency
97    /// - If $ |R_{i,k}| \leq 3 $ for all $ i $ and $ k $, the filter-smoother consistency test is satisfied, indicating good consistency.
98    /// - If $ |R_{i,k}| > 3 $ for any $ i $ or $ k $, the test fails, suggesting potential modeling inconsistencies or issues with the estimation process.
99    ///
100    pub fn smooth(self, almanac: Arc<Almanac>) -> Result<Self, ODError> {
101        let l = self.estimates.len() - 1;
102
103        let mut smoothed = Self {
104            estimates: Vec::with_capacity(self.estimates.len()),
105            residuals: Vec::with_capacity(self.residuals.len()),
106            gains: Vec::with_capacity(self.estimates.len()),
107            filter_smoother_ratios: Vec::with_capacity(self.estimates.len()),
108            devices: self.devices.clone(),
109            measurement_types: self.measurement_types.clone(),
110        };
111
112        // Set the first item of the smoothed estimates to the last estimate (we cannot smooth the very last estimate)
113        smoothed
114            .estimates
115            .push(self.estimates.last().unwrap().clone());
116        smoothed
117            .residuals
118            .push(self.residuals.last().unwrap().clone());
119        smoothed.gains.push(None);
120        smoothed.filter_smoother_ratios.push(None);
121
122        loop {
123            let k = l - smoothed.estimates.len();
124            // Borrow the previously smoothed estimate of the k+1 estimate
125            let sm_est_kp1 = &self.estimates[k + 1];
126            let x_kp1_l = sm_est_kp1.state_deviation();
127            let p_kp1_l = sm_est_kp1.covar();
128            // Borrow the k-th estimate, which we're smoothing with the next estimate
129            let est_k = &self.estimates[k];
130            // Borrow the k+1-th estimate, which we're smoothing with the next estimate
131            let est_kp1 = &self.estimates[k + 1];
132
133            // Compute the STM between both steps taken by the filter
134            // The filter will reset the STM between each estimate it computes, time update or measurement update.
135            // Therefore, the STM is simply the inverse of the one we used previously.
136            // est_kp1 is the estimate that used the STM from time k to time k+1. So the STM stored there
137            // is \Phi_{k \to k+1}. Let's invert that.
138            let phi_kp1_k = &est_kp1
139                .stm()
140                .clone()
141                .try_inverse()
142                .ok_or(ODError::SingularStateTransitionMatrix)?;
143
144            // Compute smoothed state deviation
145            let x_k_l = phi_kp1_k * x_kp1_l;
146            // Compute smoothed covariance
147            let p_k_l = phi_kp1_k * p_kp1_l * phi_kp1_k.transpose();
148            // Store into vector
149            let mut smoothed_est_k = est_k.clone();
150            // Compute the smoothed state deviation
151            smoothed_est_k.set_state_deviation(x_k_l);
152            // Compute the smoothed covariance
153            smoothed_est_k.set_covar(p_k_l);
154            // Recompute the residual if available.
155            if let Some(mut residual) = self.residuals[k + 1].clone() {
156                let tracker = residual
157                    .tracker
158                    .as_ref()
159                    .expect("tracker unset in smoother process");
160
161                let device = smoothed
162                    .devices
163                    .get_mut(tracker)
164                    .expect("unknown tracker in smoother process");
165
166                let new_state_est = smoothed_est_k.state();
167                let epoch = new_state_est.epoch();
168
169                if let Some(computed_meas) =
170                    device.measure_instantaneous(new_state_est, None, almanac.clone())?
171                {
172                    // Only recompute the computed observation from the update state estimate.
173                    residual.computed_obs = computed_meas
174                        .observation::<MsrSize>(&residual.msr_types)
175                        - device.measurement_bias_vector::<MsrSize>(&residual.msr_types, epoch)?;
176
177                    // Update the postfit residual.
178                    residual.postfit = &residual.real_obs - &residual.computed_obs;
179
180                    // Store the updated data.
181                    smoothed.residuals.push(Some(residual));
182                } else {
183                    smoothed.residuals.push(None);
184                }
185            } else {
186                smoothed.residuals.push(None);
187            }
188
189            // Compute the filter-smoother consistency ratio.
190            let delta_covar = est_k.covar() - smoothed_est_k.covar();
191            let delta_state =
192                est_k.state().to_state_vector() - smoothed_est_k.state().to_state_vector();
193
194            let fs_ratios = OVector::<f64, <StateType as State>::Size>::from_iterator(
195                delta_state
196                    .iter()
197                    .enumerate()
198                    .map(|(i, dx)| dx / delta_covar[(i, i)].sqrt()),
199            );
200
201            smoothed.estimates.push(smoothed_est_k);
202            smoothed.filter_smoother_ratios.push(Some(fs_ratios));
203            // Set all gains to None.
204            smoothed.gains.push(None);
205
206            if smoothed.estimates.len() == self.estimates.len() {
207                break;
208            }
209        }
210
211        // Note that we have yet to reverse the list, so we print them backward
212        info!(
213            "Smoothed {} estimates (from {} to {})",
214            smoothed.estimates.len(),
215            smoothed.estimates.last().unwrap().epoch(),
216            smoothed.estimates[0].epoch(),
217        );
218
219        // Now, let's add all of the other estimates so that the same indexing can be done
220        // between all the estimates and the smoothed estimates
221        if smoothed.estimates.len() < self.estimates.len() {
222            // Add the estimates that might have been skipped.
223            let mut k = self.estimates.len() - smoothed.estimates.len();
224            loop {
225                smoothed.estimates.push(self.estimates[k].clone());
226                if k == 0 {
227                    break;
228                }
229                k -= 1;
230            }
231        }
232
233        // And reverse to maintain the order of estimates
234        smoothed.estimates.reverse();
235        smoothed.residuals.reverse();
236        smoothed.filter_smoother_ratios.reverse();
237
238        Ok(smoothed)
239    }
240}