nyx_space/od/process/solution/
smooth.rs

1/*
2    Nyx, blazing fast astrodynamics
3    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
4
5    This program is free software: you can redistribute it and/or modify
6    it under the terms of the GNU Affero General Public License as published
7    by the Free Software Foundation either version 3 of the License, or
8    (at your option) any later version.
9
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU Affero General Public License for more details.
14
15    You should have received a copy of the GNU Affero General Public License
16    along with this program.  If not, see <https://www.gnu.org/licenses/>.
17*/
18
19use crate::linalg::allocator::Allocator;
20use crate::linalg::{DefaultAllocator, DimName};
21use crate::md::trajectory::Interpolatable;
22pub use crate::od::estimate::*;
23pub use crate::od::*;
24use anise::prelude::Almanac;
25use log::info;
26use msr::sensitivity::TrackerSensitivity;
27use std::ops::Add;
28
29use super::ODSolution;
30
31impl<StateType, EstType, MsrSize, Trk> ODSolution<StateType, EstType, MsrSize, Trk>
32where
33    StateType: Interpolatable + Add<OVector<f64, <StateType as State>::Size>, Output = StateType>,
34    EstType: Estimate<StateType>,
35    MsrSize: DimName,
36    Trk: TrackerSensitivity<StateType, StateType>,
37    <DefaultAllocator as Allocator<<StateType as State>::VecLength>>::Buffer<f64>: Send,
38    DefaultAllocator: Allocator<<StateType as State>::Size>
39        + Allocator<<StateType as State>::VecLength>
40        + Allocator<MsrSize>
41        + Allocator<MsrSize, <StateType as State>::Size>
42        + Allocator<MsrSize, MsrSize>
43        + Allocator<<StateType as State>::Size, <StateType as State>::Size>
44        + Allocator<<StateType as State>::Size, MsrSize>,
45{
46    /// Smoothes this OD solution, returning a new OD solution and the filter-smoother consistency ratios, with updated **postfit** residuals, and where the ratio now represents the filter-smoother consistency ratio.
47    ///
48    /// Notes:
49    ///  1. Gains will be scrubbed because the smoother process does not recompute the gain.
50    ///  2. Prefit residuals, ratios, and measurement covariances are not updated, as these depend on the filtering process.
51    ///  3. Note: this function consumes the current OD solution to prevent reusing the wrong one.
52    ///
53    ///
54    /// To assess whether the smoothing process improved the solution, compare the RMS of the postfit residuals from the filter and the smoother process.
55    ///
56    /// # Filter-Smoother consistency ratio
57    ///
58    /// The **filter-smoother consistency ratio** is used to evaluate the consistency between the state estimates produced by a filter (e.g., Kalman filter) and a smoother.
59    /// This ratio is called "filter smoother consistency test" in the ODTK MathSpec.
60    ///
61    /// It is computed as follows:
62    ///
63    /// #### 1. Define the State Estimates
64    /// **Filter state estimate**:
65    /// $ \hat{X}_{f,k} $
66    /// This is the state estimate at time step $ k $ from the filter.
67    ///
68    /// **Smoother state estimate**:
69    /// $ \hat{X}_{s,k} $
70    /// This is the state estimate at time step $ k $ from the smoother.
71    ///
72    /// #### 2. Define the Covariances
73    ///
74    /// **Filter covariance**:
75    /// $ P_{f,k} $
76    /// This is the covariance of the state estimate at time step $ k $ from the filter.
77    ///
78    /// **Smoother covariance**:
79    /// $ P_{s,k} $
80    /// This is the covariance of the state estimate at time step $ k $ from the smoother.
81    ///
82    /// #### 3. Compute the Differences
83    ///
84    /// **State difference**:
85    /// $ \Delta X_k = \hat{X}_{s,k} - \hat{X}_{f,k} $
86    ///
87    /// **Covariance difference**:
88    /// $ \Delta P_k = P_{s,k} - P_{f,k} $
89    ///
90    /// #### 4. Calculate the Consistency Ratio
91    /// For each element $ i $ of the state vector, compute the ratio:
92    ///
93    /// $$
94    /// R_{i,k} = \frac{\Delta X_{i,k}}{\sqrt{\Delta P_{i,k}}}
95    /// $$
96    ///
97    /// #### 5. Evaluate Consistency
98    /// - If $ |R_{i,k}| \leq 3 $ for all $ i $ and $ k $, the filter-smoother consistency test is satisfied, indicating good consistency.
99    /// - If $ |R_{i,k}| > 3 $ for any $ i $ or $ k $, the test fails, suggesting potential modeling inconsistencies or issues with the estimation process.
100    ///
101    pub fn smooth(self, almanac: Arc<Almanac>) -> Result<Self, ODError> {
102        let l = self.estimates.len() - 1;
103
104        let mut smoothed = Self {
105            estimates: Vec::with_capacity(self.estimates.len()),
106            residuals: Vec::with_capacity(self.residuals.len()),
107            gains: Vec::with_capacity(self.estimates.len()),
108            filter_smoother_ratios: Vec::with_capacity(self.estimates.len()),
109            devices: self.devices.clone(),
110            measurement_types: self.measurement_types.clone(),
111        };
112
113        // Set the first item of the smoothed estimates to the last estimate (we cannot smooth the very last estimate)
114        smoothed
115            .estimates
116            .push(self.estimates.last().unwrap().clone());
117        smoothed
118            .residuals
119            .push(self.residuals.last().unwrap().clone());
120        smoothed.gains.push(None);
121        smoothed.filter_smoother_ratios.push(None);
122
123        loop {
124            let k = l - smoothed.estimates.len();
125            // Borrow the previously smoothed estimate of the k+1 estimate
126            let sm_est_kp1 = &self.estimates[k + 1];
127            let x_kp1_l = sm_est_kp1.state_deviation();
128            let p_kp1_l = sm_est_kp1.covar();
129            // Borrow the k-th estimate, which we're smoothing with the next estimate
130            let est_k = &self.estimates[k];
131            // Borrow the k+1-th estimate, which we're smoothing with the next estimate
132            let est_kp1 = &self.estimates[k + 1];
133
134            // Compute the STM between both steps taken by the filter
135            // The filter will reset the STM between each estimate it computes, time update or measurement update.
136            // Therefore, the STM is simply the inverse of the one we used previously.
137            // est_kp1 is the estimate that used the STM from time k to time k+1. So the STM stored there
138            // is \Phi_{k \to k+1}. Let's invert that.
139            let phi_kp1_k = &est_kp1
140                .stm()
141                .clone()
142                .try_inverse()
143                .ok_or(ODError::SingularStateTransitionMatrix)?;
144
145            // Compute smoothed state deviation
146            let x_k_l = phi_kp1_k * x_kp1_l;
147            // Compute smoothed covariance
148            let p_k_l = phi_kp1_k * p_kp1_l * phi_kp1_k.transpose();
149            // Store into vector
150            let mut smoothed_est_k = est_k.clone();
151            // Compute the smoothed state deviation
152            smoothed_est_k.set_state_deviation(x_k_l);
153            // Compute the smoothed covariance
154            smoothed_est_k.set_covar(p_k_l);
155            // Recompute the residual if available.
156            if let Some(mut residual) = self.residuals[k + 1].clone() {
157                let tracker = residual
158                    .tracker
159                    .as_ref()
160                    .expect("tracker unset in smoother process");
161
162                let device = smoothed
163                    .devices
164                    .get_mut(tracker)
165                    .expect("unknown tracker in smoother process");
166
167                let new_state_est = smoothed_est_k.state();
168                let epoch = new_state_est.epoch();
169
170                if let Some(computed_meas) =
171                    device.measure_instantaneous(new_state_est, None, almanac.clone())?
172                {
173                    // Only recompute the computed observation from the update state estimate.
174                    residual.computed_obs = computed_meas
175                        .observation::<MsrSize>(&residual.msr_types)
176                        - device.measurement_bias_vector::<MsrSize>(&residual.msr_types, epoch)?;
177
178                    // Update the postfit residual.
179                    residual.postfit = &residual.real_obs - &residual.computed_obs;
180
181                    // Store the updated data.
182                    smoothed.residuals.push(Some(residual));
183                } else {
184                    smoothed.residuals.push(None);
185                }
186            } else {
187                smoothed.residuals.push(None);
188            }
189
190            // Compute the filter-smoother consistency ratio.
191            let delta_covar = est_k.covar() - smoothed_est_k.covar();
192            let delta_state =
193                est_k.state().to_state_vector() - smoothed_est_k.state().to_state_vector();
194
195            let fs_ratios = OVector::<f64, <StateType as State>::Size>::from_iterator(
196                delta_state
197                    .iter()
198                    .enumerate()
199                    .map(|(i, dx)| dx / delta_covar[(i, i)].sqrt()),
200            );
201
202            smoothed.estimates.push(smoothed_est_k);
203            smoothed.filter_smoother_ratios.push(Some(fs_ratios));
204            // Set all gains to None.
205            smoothed.gains.push(None);
206
207            if smoothed.estimates.len() == self.estimates.len() {
208                break;
209            }
210        }
211
212        // Note that we have yet to reverse the list, so we print them backward
213        info!(
214            "Smoothed {} estimates (from {} to {})",
215            smoothed.estimates.len(),
216            smoothed.estimates.last().unwrap().epoch(),
217            smoothed.estimates[0].epoch(),
218        );
219
220        // Now, let's add all of the other estimates so that the same indexing can be done
221        // between all the estimates and the smoothed estimates
222        if smoothed.estimates.len() < self.estimates.len() {
223            // Add the estimates that might have been skipped.
224            let mut k = self.estimates.len() - smoothed.estimates.len();
225            loop {
226                smoothed.estimates.push(self.estimates[k].clone());
227                if k == 0 {
228                    break;
229                }
230                k -= 1;
231            }
232        }
233
234        // And reverse to maintain the order of estimates
235        smoothed.estimates.reverse();
236        smoothed.residuals.reverse();
237        smoothed.filter_smoother_ratios.reverse();
238
239        Ok(smoothed)
240    }
241}