nyx_space/od/simulator/trackdata.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use std::sync::Arc;
use anise::almanac::Almanac;
use anise::errors::AlmanacResult;
use hifitime::Epoch;
use indexmap::IndexSet;
use nalgebra::{DimName, OMatrix, OVector};
use rand_pcg::Pcg64Mcg;
use crate::io::ConfigRepr;
use crate::linalg::allocator::Allocator;
use crate::linalg::DefaultAllocator;
use crate::md::prelude::{Frame, Traj};
use crate::md::trajectory::Interpolatable;
use crate::od::msr::measurement::Measurement as NewMeasurement;
use crate::od::msr::MeasurementType;
use crate::od::ODError;
use crate::Orbit;
/// Tracking device simulator.
pub trait TrackingDevice<MsrIn>: ConfigRepr
where
MsrIn: Interpolatable,
DefaultAllocator:
Allocator<MsrIn::Size> + Allocator<MsrIn::Size, MsrIn::Size> + Allocator<MsrIn::VecLength>,
{
/// Returns the name of this tracking data simulator
fn name(&self) -> String;
/// Returns the _enabled_ measurement types for thie device.
fn measurement_types(&self) -> &IndexSet<MeasurementType>;
/// Performs a measurement of the input trajectory at the provided epoch (with integration times if relevant), and returns a measurement from itself to the input state. Returns None of the object is not visible.
/// This trait function takes in a trajectory and epoch so it can properly simulate integration times for the measurements.
/// If the random number generator is provided, it shall be used to add noise to the measurement.
///
/// # Choice of the random number generator
/// The Pcg64Mcg is chosen because it is fast, space efficient, and has a good statistical distribution.
///
/// # Errors
/// + A specific measurement is requested but the noise on that measurement type is not configured.
///
fn measure(
&mut self,
epoch: Epoch,
traj: &Traj<MsrIn>,
rng: Option<&mut Pcg64Mcg>,
almanac: Arc<Almanac>,
) -> Result<Option<NewMeasurement>, ODError>;
/// Returns the device location at the given epoch and in the given frame.
fn location(&self, epoch: Epoch, frame: Frame, almanac: Arc<Almanac>) -> AlmanacResult<Orbit>;
// Perform an instantaneous measurement (without integration times, i.e. one-way). Returns None if the object is not visible, else returns the measurement.
fn measure_instantaneous(
&mut self,
rx: MsrIn,
rng: Option<&mut Pcg64Mcg>,
almanac: Arc<Almanac>,
) -> Result<Option<NewMeasurement>, ODError>;
// Return the noise statistics of this tracking device for the provided measurement type at the requested epoch.
fn measurement_covar(&self, msr_type: MeasurementType, epoch: Epoch) -> Result<f64, ODError>;
// Return the measurement bias for the provided measurement type at the requested epoch.
fn measurement_bias(&self, msr_type: MeasurementType, epoch: Epoch) -> Result<f64, ODError>;
fn measurement_covar_matrix<M: DimName>(
&self,
msr_types: &IndexSet<MeasurementType>,
epoch: Epoch,
) -> Result<OMatrix<f64, M, M>, ODError>
where
DefaultAllocator: Allocator<M, M>,
{
// Rebuild the R matrix of the measurement noise.
let mut r_mat = OMatrix::<f64, M, M>::zeros();
for (i, msr_type) in msr_types.iter().enumerate() {
if self.measurement_types().contains(msr_type) {
r_mat[(i, i)] = self.measurement_covar(*msr_type, epoch)?;
}
}
Ok(r_mat)
}
fn measurement_bias_vector<M: DimName>(
&self,
msr_types: &IndexSet<MeasurementType>,
epoch: Epoch,
) -> Result<OVector<f64, M>, ODError>
where
DefaultAllocator: Allocator<M>,
{
// Rebuild the R matrix of the measurement noise.
let mut b_vec = OVector::<f64, M>::zeros();
for (i, msr_type) in msr_types.iter().enumerate() {
if self.measurement_types().contains(msr_type) {
b_vec[i] = self.measurement_bias(*msr_type, epoch)?;
}
}
Ok(b_vec)
}
}