nyx_space/polyfit/
polynomial.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

/* NOTE: This code is effectively a clone of bacon-sci, MIT License, by Wyatt Campbell. */
use serde_derive::{Deserialize, Serialize};
use std::fmt;
use std::ops;

use crate::NyxError;

/// Polynomial is a statically allocated polynomial.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Polynomial<const SIZE: usize> {
    /// Coefficients are orders by their power, e.g. index 0 is to the power 0, 1 is linear, 2 is quadratic, etc.
    pub coefficients: [f64; SIZE],
}

impl<const SIZE: usize> Polynomial<SIZE> {
    pub fn from_most_significant(mut coeffs: [f64; SIZE]) -> Self {
        coeffs.reverse();
        Self {
            coefficients: coeffs,
        }
    }

    /// Get the order of the polynomial
    pub const fn order(&self) -> usize {
        SIZE - 1
    }

    /// Evaluate the polynomial at the provided position
    pub fn eval(&self, x: f64) -> f64 {
        self.eval_n_deriv(x).0
    }

    /// Evaluate the derivative at the provided position
    pub fn deriv(&self, x: f64) -> f64 {
        self.eval_n_deriv(x).1
    }

    /// Evaluate the polynomial and its derivative at the provided position
    pub fn eval_n_deriv(&self, x: f64) -> (f64, f64) {
        if SIZE == 1 {
            return (self.coefficients[0], 0.0);
        }

        // Start with biggest coefficients
        let mut acc_eval = *self.coefficients.last().unwrap();
        let mut acc_deriv = *self.coefficients.last().unwrap();
        // For every coefficient except the constant and largest
        for val in self.coefficients.iter().skip(1).rev().skip(1) {
            acc_eval = acc_eval * x + *val;
            acc_deriv = acc_deriv * x + acc_eval;
        }
        // Do the constant for the polynomial evaluation
        acc_eval = x * acc_eval + self.coefficients[0];

        (acc_eval, acc_deriv)
    }

    /// Initializes a Polynomial with only zeros
    pub fn zeros() -> Self {
        Self {
            coefficients: [0.0; SIZE],
        }
    }

    /// Set the i-th power of this polynomial to zero (e.g. if i=0, set the x^0 coefficient to zero, i.e. the constant part goes to zero)
    pub fn zero_power(&mut self, i: usize) {
        if i < SIZE {
            self.coefficients[i] = 0.0;
        }
    }

    /// Set all of the coefficients below this tolerance to zero
    pub fn zero_below_tolerance(&mut self, tol: f64) {
        for i in 0..=self.order() {
            if self.coefficients[i].abs() < tol {
                self.zero_power(i);
            }
        }
    }

    /// Returns true if any of the coefficients are NaN
    pub fn is_nan(&self) -> bool {
        for c in self.coefficients {
            if c.is_nan() {
                return true;
            }
        }
        false
    }

    fn fmt_with_var(&self, f: &mut fmt::Formatter, var: String) -> fmt::Result {
        write!(f, "P({var}) = ")?;
        let mut data = Vec::with_capacity(SIZE);

        for (i, c) in self.coefficients.iter().enumerate().rev() {
            if c.abs() <= f64::EPSILON {
                continue;
            }

            let mut d;
            if c.abs() > 100.0 || c.abs() < 0.01 {
                // Use scientific notation
                if c > &0.0 {
                    d = format!("+{c:e}");
                } else {
                    d = format!("{c:e}");
                }
            } else if c > &0.0 {
                d = format!("+{c}");
            } else {
                d = format!("{c}");
            }
            // Add the power
            let p = i;
            match p {
                0 => {} // Show nothing for zero
                1 => d = format!("{d}{var}"),
                _ => d = format!("{d}{var}^{p}"),
            }
            data.push(d);
        }
        write!(f, "{}", data.join(" "))
    }
}

/// In-place multiplication of a polynomial with an f64
impl<const SIZE: usize> ops::Mul<f64> for Polynomial<SIZE> {
    type Output = Polynomial<SIZE>;

    fn mul(mut self, rhs: f64) -> Self::Output {
        for val in &mut self.coefficients {
            *val *= rhs;
        }
        self
    }
}

/// Clone current polynomial and then multiply it with an f64
impl<const SIZE: usize> ops::Mul<f64> for &Polynomial<SIZE> {
    type Output = Polynomial<SIZE>;

    fn mul(self, rhs: f64) -> Self::Output {
        *self * rhs
    }
}

/// In-place multiplication of a polynomial with an f64
impl<const SIZE: usize> ops::Mul<Polynomial<SIZE>> for f64 {
    type Output = Polynomial<SIZE>;

    fn mul(self, rhs: Polynomial<SIZE>) -> Self::Output {
        let mut me = rhs;
        for val in &mut me.coefficients {
            *val *= self;
        }
        me
    }
}

impl<const SIZE: usize> ops::AddAssign<f64> for Polynomial<SIZE> {
    fn add_assign(&mut self, rhs: f64) {
        self.coefficients[0] += rhs;
    }
}

impl<const SIZE: usize> fmt::Display for Polynomial<SIZE> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.fmt_with_var(f, "t".to_string())
    }
}

impl<const SIZE: usize> fmt::LowerHex for Polynomial<SIZE> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.fmt_with_var(f, "x".to_string())
    }
}

pub(crate) fn add<const S1: usize, const S2: usize>(
    p1: Polynomial<S1>,
    p2: Polynomial<S2>,
) -> Polynomial<S1> {
    if S1 < S2 {
        panic!();
    }
    let mut rtn = Polynomial::zeros();
    for (i, c1) in p1.coefficients.iter().enumerate() {
        rtn.coefficients[i] = match p2.coefficients.get(i) {
            Some(c2) => c1 + c2,
            None => *c1,
        };
    }
    rtn
}

impl<const S1: usize, const S2: usize> ops::Add<Polynomial<S1>> for Polynomial<S2> {
    type Output = Polynomial<S1>;
    /// Add Self and Other, _IF_ S2 >= S1 (else panic!)
    fn add(self, other: Polynomial<S1>) -> Self::Output {
        add(other, self)
    }
}

/// Subtracts p1 from p2 (p3 = p1 - p2)
pub(crate) fn sub<const S1: usize, const S2: usize>(
    p1: Polynomial<S1>,
    p2: Polynomial<S2>,
) -> Polynomial<S1> {
    if S1 < S2 {
        panic!();
    }
    let mut rtn = Polynomial::zeros();
    for (i, c1) in p1.coefficients.iter().enumerate() {
        rtn.coefficients[i] = match p2.coefficients.get(i) {
            Some(c2) => c1 - c2,
            None => *c1,
        };
    }
    rtn
}

impl<const S1: usize, const S2: usize> ops::Sub<Polynomial<S2>> for Polynomial<S1> {
    type Output = Polynomial<S1>;
    fn sub(self, other: Polynomial<S2>) -> Self::Output {
        sub(self, other)
    }
}

#[derive(Debug, Copy, Clone, PartialEq, Serialize, Deserialize)]
pub enum CommonPolynomial {
    Constant(f64),
    /// Linear(a, b) <=> f(x) = ax + b (order is FLIPPED from Polynomial<N> structure)
    Linear(f64, f64),
    /// Quadratic(a, b, c) <=> f(x) = ax^2 + bx + c (order is FLIPPED from Polynomial<N> structure)
    Quadratic(f64, f64, f64),
}

impl CommonPolynomial {
    pub fn eval(&self, x: f64) -> f64 {
        match *self {
            Self::Constant(a) => Polynomial::<1> { coefficients: [a] }.eval(x),
            Self::Linear(a, b) => Polynomial::<2> {
                coefficients: [b, a],
            }
            .eval(x),
            Self::Quadratic(a, b, c) => Polynomial::<3> {
                coefficients: [c, b, a],
            }
            .eval(x),
        }
    }

    pub fn deriv(&self, x: f64) -> f64 {
        match *self {
            Self::Constant(a) => Polynomial::<1> { coefficients: [a] }.deriv(x),
            Self::Linear(a, b) => Polynomial::<2> {
                coefficients: [b, a],
            }
            .deriv(x),
            Self::Quadratic(a, b, c) => Polynomial::<3> {
                coefficients: [c, b, a],
            }
            .deriv(x),
        }
    }

    pub fn coeff_in_order(&self, order: usize) -> Result<f64, NyxError> {
        match *self {
            Self::Constant(a) => {
                if order == 0 {
                    Ok(a)
                } else {
                    Err(NyxError::PolynomialOrderError { order })
                }
            }
            Self::Linear(a, b) => match order {
                0 => Ok(b),
                1 => Ok(a),
                _ => Err(NyxError::PolynomialOrderError { order }),
            },
            Self::Quadratic(a, b, c) => match order {
                0 => Ok(c),
                1 => Ok(b),
                2 => Ok(a),
                _ => Err(NyxError::PolynomialOrderError { order }),
            },
        }
    }

    pub fn with_val_in_order(self, new_val: f64, order: usize) -> Result<Self, NyxError> {
        match self {
            Self::Constant(_) => {
                if order != 0 {
                    Err(NyxError::PolynomialOrderError { order })
                } else {
                    Ok(Self::Constant(new_val))
                }
            }
            Self::Linear(x, y) => match order {
                0 => Ok(Self::Linear(new_val, y)),
                1 => Ok(Self::Linear(x, new_val)),
                _ => Err(NyxError::PolynomialOrderError { order }),
            },
            Self::Quadratic(x, y, z) => match order {
                0 => Ok(Self::Quadratic(new_val, y, z)),
                1 => Ok(Self::Quadratic(x, new_val, z)),
                2 => Ok(Self::Quadratic(x, y, new_val)),
                _ => Err(NyxError::PolynomialOrderError { order }),
            },
        }
    }

    pub fn add_val_in_order(self, new_val: f64, order: usize) -> Result<Self, NyxError> {
        match self {
            Self::Constant(x) => {
                if order != 0 {
                    Err(NyxError::PolynomialOrderError { order })
                } else {
                    Ok(Self::Constant(new_val + x))
                }
            }
            Self::Linear(x, y) => match order {
                0 => Ok(Self::Linear(new_val + x, y)),
                1 => Ok(Self::Linear(x, new_val + y)),
                _ => Err(NyxError::PolynomialOrderError { order }),
            },
            Self::Quadratic(x, y, z) => match order {
                0 => Ok(Self::Quadratic(new_val + x, y, z)),
                1 => Ok(Self::Quadratic(x, new_val + y, z)),
                2 => Ok(Self::Quadratic(x, y, new_val + z)),
                _ => Err(NyxError::PolynomialOrderError { order }),
            },
        }
    }
}

impl fmt::Display for CommonPolynomial {
    /// Prints the polynomial with the least significant coefficients first
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Self::Constant(a) => write!(f, "{}", Polynomial::<1> { coefficients: [a] }),
            Self::Linear(a, b) => write!(
                f,
                "{}",
                Polynomial::<2> {
                    coefficients: [b, a],
                }
            ),
            Self::Quadratic(a, b, c) => write!(
                f,
                "{}",
                Polynomial::<3> {
                    coefficients: [c, b, a],
                }
            ),
        }
    }
}

#[cfg(test)]
mod ut_poly {
    use crate::polyfit::{CommonPolynomial, Polynomial};

    #[test]
    fn poly_constant() {
        let c = CommonPolynomial::Constant(10.0);
        for i in -100..=100 {
            assert!(
                (c.eval(i as f64) - 10.0).abs() < f64::EPSILON,
                "Constant polynomial returned wrong value"
            );
        }
    }

    #[test]
    fn poly_linear() {
        let c = CommonPolynomial::Linear(2.0, 10.0);
        for i in -100..=100 {
            let x = i as f64;
            let expect = 2.0 * x + 10.0;
            assert!(
                (c.eval(x) - expect).abs() < f64::EPSILON,
                "Constant polynomial returned wrong value"
            );
        }
    }

    #[test]
    fn poly_quadratic() {
        let p = Polynomial {
            coefficients: [101.0, -2.0, 3.0],
        };
        let p2 = 2.0 * p;
        let c = CommonPolynomial::Quadratic(3.0, -2.0, 101.0);
        for i in -100..=100 {
            let x = i as f64;
            let expect = 3.0 * x.powi(2) - 2.0 * x + 101.0;
            let expect_deriv = 6.0 * x - 2.0;
            assert!(
                (c.eval(x) - expect).abs() < f64::EPSILON,
                "Polynomial returned wrong value"
            );
            assert!(
                (p.deriv(x) - expect_deriv).abs() < f64::EPSILON,
                "Polynomial derivative returned wrong value"
            );

            assert!(
                (p.eval(x) - expect).abs() < f64::EPSILON,
                "Polynomial returned wrong value"
            );
            assert!(
                (p2.eval(x) - 2.0 * expect).abs() < f64::EPSILON,
                "Polynomial returned wrong value"
            );
        }
    }

    #[test]
    fn poly_print() {
        let p = Polynomial {
            coefficients: [101.0, -2.0, 3.0],
        };
        println!("{}", p);
        assert_eq!(
            format!("{}", p),
            format!("{}", CommonPolynomial::Quadratic(3.0, -2.0, 101.0))
        );
    }

    #[test]
    fn poly_add() {
        let p1 = Polynomial {
            coefficients: [4.0, -2.0, 3.0],
        };
        let p2 = Polynomial {
            coefficients: [0.0, -5.0, 0.0, 2.0],
        };
        //      P(x) = (3x^2 - 2x + 4) + (2x^3 - 5x)
        // <=>  P(x) = 2x^3 + 3x^2 -7x + 4
        let p_expected = Polynomial {
            coefficients: [4.0, -7.0, 3.0, 2.0],
        };

        // let p3 = add::<4, 3>(p2, p1);
        let p3 = p1 + p2;
        println!("p3 = {:x}\npe = {:x}", p3, p_expected);
        assert_eq!(p3, p_expected);
        // Check this is correct
        for i in -100..=100 {
            let x = i as f64;
            let expect = p1.eval(x) + p2.eval(x);
            assert!(
                (p3.eval(x) - expect).abs() < f64::EPSILON,
                "Constant polynomial returned wrong value"
            );
        }
    }

    #[test]
    fn poly_sub() {
        let p2 = Polynomial {
            coefficients: [4.0, -2.0, 3.0],
        };
        let p1 = Polynomial {
            coefficients: [0.0, -5.0, 0.0, 2.0],
        };
        //      P(x) = (3x^2 - 2x + 4) + (2x^3 - 5x)
        // <=>  P(x) = 2x^3 + 3x^2 -7x + 4
        let p_expected = Polynomial {
            coefficients: [-4.0, -3.0, -3.0, 2.0],
        };

        let p3 = p1 - p2;
        println!("p3 = {:x}\npe = {:x}", p3, p_expected);
        assert_eq!(p3, p_expected);
        // Check this is correct
        for i in -100..=100 {
            let x = i as f64;
            let expect = p1.eval(x) - p2.eval(x);
            assert!(
                (p3.eval(x) - expect).abs() < f64::EPSILON,
                "Constant polynomial returned wrong value"
            );
        }
    }

    #[test]
    fn poly_serde() {
        let c = CommonPolynomial::Quadratic(3.0, -2.0, 101.0);
        let c_yml = serde_yml::to_string(&c).unwrap();
        println!("{c_yml}");
        let c2 = serde_yml::from_str(&c_yml).unwrap();
        assert_eq!(c, c2);
    }
}