nyx_space/propagators/
error_ctrl.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/*
    Nyx, blazing fast astrodynamics
    Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU Affero General Public License as published
    by the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Affero General Public License for more details.

    You should have received a copy of the GNU Affero General Public License
    along with this program.  If not, see <https://www.gnu.org/licenses/>.
*/

use serde::{Deserialize, Serialize};

use crate::linalg::allocator::Allocator;
use crate::linalg::{DefaultAllocator, DimName, OVector, U3};

// This determines when to take into consideration the magnitude of the state_delta and
// prevents dividing by too small of a number.
const REL_ERR_THRESH: f64 = 0.1;

/// The Error Control manages how a propagator computes the error in the current step.
#[derive(Copy, Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum ErrorControl {
    /// An RSS state error control which effectively for the provided vector composed of two vectors of the same unit, both of size 3 (e.g. position + velocity).
    RSSCartesianState,
    /// An RSS step error control which effectively for the provided vector composed of two vectors of the same unit, both of size 3 (e.g. position + velocity).
    RSSCartesianStep,
    /// An RSS state error control: when in doubt, use this error controller, especially for high accurracy.
    ///
    /// Here is the warning from GMAT R2016a on this error controller:
    /// > This is a more stringent error control method than [`rss_step`] that is often used as the default in other software such as STK.
    /// > If you set [the] accuracy to a very small number, 1e-13 for example, and set the error control to [`rss_step`], integrator
    /// > performance will be poor, for little if any improvement in the accuracy of the orbit integration.
    /// > For more best practices of these integrators (which clone those in GMAT), please refer to the
    /// > [GMAT reference](https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/doc/help/src/Resource_NumericalIntegrators.xml#L1292).
    /// > (Source)[https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/src/base/forcemodel/ODEModel.cpp#L3004]
    RSSState,
    /// An RSS step error control which effectively computes the L2 norm of the provided Vector of size 3
    ///
    /// Note that this error controller should be preferably be used only with slices of a state with the same units.
    /// For example, one should probably use this for position independently of using it for the velocity.
    /// (Source)[https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/src/base/forcemodel/ODEModel.cpp#L3045]
    RSSStep,
    /// A largest error control which effectively computes the largest error at each component
    ///
    /// This is a standard error computation algorithm, but it's arguably bad if the state's components have different units.
    /// It calculates the largest local estimate of the error from the integration (`error_est`)
    /// given the difference in the candidate state and the previous state (`state_delta`).
    /// This error estimator is from the physical model estimator of GMAT
    /// (Source)[https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/src/base/forcemodel/PhysicalModel.cpp#L987]
    LargestError,
    /// A largest state error control
    ///
    /// (Source)[https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/src/base/forcemodel/ODEModel.cpp#L3018]
    LargestState,

    /// A largest step error control which effectively computes the L1 norm of the provided Vector of size 3
    ///
    /// Note that this error controller should be preferably be used only with slices of a state with the same units.
    /// For example, one should probably use this for position independently of using it for the velocity.
    /// (Source)[https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/src/base/forcemodel/ODEModel.cpp#L3033]
    LargestStep,
}

impl ErrorControl {
    /// Computes the actual error of the current step.
    ///
    /// The `error_est` is the estimated error computed from the difference in the two stages of
    /// of the RK propagator. The `candidate` variable is the candidate state, and `cur_state` is
    /// the current state. This function must return the error.
    pub fn estimate<N: DimName>(
        self,
        error_est: &OVector<f64, N>,
        candidate: &OVector<f64, N>,
        cur_state: &OVector<f64, N>,
    ) -> f64
    where
        DefaultAllocator: Allocator<N>,
    {
        match self {
            ErrorControl::RSSCartesianState => {
                if N::dim() >= 6 {
                    let err_radius = RSSState::estimate::<U3>(
                        &error_est.fixed_rows::<3>(0).into_owned(),
                        &candidate.fixed_rows::<3>(0).into_owned(),
                        &cur_state.fixed_rows::<3>(0).into_owned(),
                    );
                    let err_velocity = RSSState::estimate::<U3>(
                        &error_est.fixed_rows::<3>(3).into_owned(),
                        &candidate.fixed_rows::<3>(3).into_owned(),
                        &cur_state.fixed_rows::<3>(3).into_owned(),
                    );
                    err_radius.max(err_velocity)
                } else {
                    RSSStep::estimate(error_est, candidate, cur_state)
                }
            }
            ErrorControl::RSSCartesianStep => {
                if N::dim() >= 6 {
                    let err_radius = RSSStep::estimate::<U3>(
                        &error_est.fixed_rows::<3>(0).into_owned(),
                        &candidate.fixed_rows::<3>(0).into_owned(),
                        &cur_state.fixed_rows::<3>(0).into_owned(),
                    );
                    let err_velocity = RSSStep::estimate::<U3>(
                        &error_est.fixed_rows::<3>(3).into_owned(),
                        &candidate.fixed_rows::<3>(3).into_owned(),
                        &cur_state.fixed_rows::<3>(3).into_owned(),
                    );
                    err_radius.max(err_velocity)
                } else {
                    RSSStep::estimate(error_est, candidate, cur_state)
                }
            }
            ErrorControl::RSSState => {
                let mag = 0.5 * (candidate + cur_state).norm();
                let err = error_est.norm();
                if mag > REL_ERR_THRESH {
                    err / mag
                } else {
                    err
                }
            }
            ErrorControl::RSSStep => {
                let mag = (candidate - cur_state).norm();
                let err = error_est.norm();
                if mag > REL_ERR_THRESH.sqrt() {
                    err / mag
                } else {
                    err
                }
            }
            ErrorControl::LargestError => {
                let state_delta = candidate - cur_state;
                let mut max_err = 0.0;
                for (i, prop_err_i) in error_est.iter().enumerate() {
                    let err = if state_delta[i] > REL_ERR_THRESH {
                        (prop_err_i / state_delta[i]).abs()
                    } else {
                        prop_err_i.abs()
                    };
                    if err > max_err {
                        max_err = err;
                    }
                }
                max_err
            }
            ErrorControl::LargestState => {
                let sum_state = candidate + cur_state;
                let mut mag = 0.0f64;
                let mut err = 0.0f64;
                for i in 0..N::dim() {
                    mag += 0.5 * sum_state[i].abs();
                    err += error_est[i].abs();
                }

                if mag > REL_ERR_THRESH {
                    err / mag
                } else {
                    err
                }
            }
            ErrorControl::LargestStep => {
                let state_delta = candidate - cur_state;
                let mut mag = 0.0f64;
                let mut err = 0.0f64;
                for i in 0..N::dim() {
                    mag += state_delta[i].abs();
                    err += error_est[i].abs();
                }

                if mag > REL_ERR_THRESH {
                    err / mag
                } else {
                    err
                }
            }
        }
    }
}

impl Default for ErrorControl {
    fn default() -> Self {
        Self::RSSCartesianStep
    }
}

/// An RSS step error control which effectively computes the L2 norm of the provided Vector of size 3
///
/// Note that this error controller should be preferably be used only with slices of a state with the same units.
/// For example, one should probably use this for position independently of using it for the velocity.
/// (Source)[https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/src/base/forcemodel/ODEModel.cpp#L3045]
#[derive(Clone, Copy)]
#[allow(clippy::upper_case_acronyms)]
struct RSSStep;
impl RSSStep {
    fn estimate<N: DimName>(
        error_est: &OVector<f64, N>,
        candidate: &OVector<f64, N>,
        cur_state: &OVector<f64, N>,
    ) -> f64
    where
        DefaultAllocator: Allocator<N>,
    {
        let mag = (candidate - cur_state).norm();
        let err = error_est.norm();
        if mag > REL_ERR_THRESH.sqrt() {
            err / mag
        } else {
            err
        }
    }
}

/// An RSS state error control: when in doubt, use this error controller, especially for high accurracy.
///
/// Here is the warning from GMAT R2016a on this error controller:
/// > This is a more stringent error control method than [`rss_step`] that is often used as the default in other software such as STK.
/// > If you set [the] accuracy to a very small number, 1e-13 for example, and set the error control to [`rss_step`], integrator
/// > performance will be poor, for little if any improvement in the accuracy of the orbit integration.
/// > For more best practices of these integrators (which clone those in GMAT), please refer to the
/// > [GMAT reference](https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/doc/help/src/Resource_NumericalIntegrators.xml#L1292).
/// > (Source)[https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/src/base/forcemodel/ODEModel.cpp#L3004]
#[derive(Clone, Copy)]
#[allow(clippy::upper_case_acronyms)]
struct RSSState;
impl RSSState {
    fn estimate<N: DimName>(
        error_est: &OVector<f64, N>,
        candidate: &OVector<f64, N>,
        cur_state: &OVector<f64, N>,
    ) -> f64
    where
        DefaultAllocator: Allocator<N>,
    {
        let mag = 0.5 * (candidate + cur_state).norm();
        let err = error_est.norm();
        if mag > REL_ERR_THRESH {
            err / mag
        } else {
            err
        }
    }
}