nyx_space/propagators/instance.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
/*
Nyx, blazing fast astrodynamics
Copyright (C) 2018-onwards Christopher Rabotin <christopher.rabotin@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use super::{DynamicsSnafu, IntegrationDetails, PropagationError, Propagator};
use crate::dynamics::{Dynamics, DynamicsAlmanacSnafu};
use crate::linalg::allocator::Allocator;
use crate::linalg::{DefaultAllocator, OVector};
use crate::md::trajectory::{Interpolatable, Traj};
use crate::md::EventEvaluator;
use crate::propagators::TrajectoryEventSnafu;
use crate::time::{Duration, Epoch, Unit};
use crate::State;
use anise::almanac::Almanac;
use anise::errors::MathError;
use rayon::iter::ParallelBridge;
use rayon::prelude::ParallelIterator;
use snafu::ResultExt;
use std::f64;
use std::sync::mpsc::{channel, Sender};
use std::sync::Arc;
#[cfg(not(target_arch = "wasm32"))]
use std::time::Instant;
/// A Propagator allows propagating a set of dynamics forward or backward in time.
/// It is an EventTracker, without any event tracking. It includes the options, the integrator
/// details of the previous step, and the set of coefficients used for the monomorphic instance.
pub struct PropInstance<'a, D: Dynamics>
where
DefaultAllocator: Allocator<<D::StateType as State>::Size>
+ Allocator<<D::StateType as State>::Size, <D::StateType as State>::Size>
+ Allocator<<D::StateType as State>::VecLength>,
{
/// The state of this propagator instance
pub state: D::StateType,
/// The propagator setup (kind, stages, etc.)
pub prop: &'a Propagator<D>,
/// Stores the details of the previous integration step
pub details: IntegrationDetails,
/// Should progress reports be logged
pub log_progress: bool,
pub(crate) almanac: Arc<Almanac>,
pub(crate) step_size: Duration, // Stores the adapted step for the _next_ call
pub(crate) fixed_step: bool,
// Allows us to do pre-allocation of the ki vectors
pub(crate) k: Vec<OVector<f64, <D::StateType as State>::VecLength>>,
}
impl<D: Dynamics> PropInstance<'_, D>
where
DefaultAllocator: Allocator<<D::StateType as State>::Size>
+ Allocator<<D::StateType as State>::Size, <D::StateType as State>::Size>
+ Allocator<<D::StateType as State>::VecLength>,
{
/// Sets this instance to not log progress
pub fn quiet(mut self) -> Self {
self.log_progress = false;
self
}
/// Sets this instance to log progress
pub fn verbose(mut self) -> Self {
self.log_progress = true;
self
}
/// Allows setting the step size of the propagator
pub fn set_step(&mut self, step_size: Duration, fixed: bool) {
self.step_size = step_size;
self.fixed_step = fixed;
}
#[allow(clippy::erasing_op)]
fn for_duration_channel_option(
&mut self,
duration: Duration,
maybe_tx_chan: Option<Sender<D::StateType>>,
) -> Result<D::StateType, PropagationError> {
if duration == 0 * Unit::Second {
return Ok(self.state);
}
let stop_time = self.state.epoch() + duration;
if self.log_progress {
// Prevent the print spam for orbit determination cases
info!("Propagating for {} until {}", duration, stop_time);
}
// Call `finally` on the current state to set anything up
self.state = self
.prop
.dynamics
.finally(self.state, self.almanac.clone())
.context(DynamicsSnafu)?;
let backprop = duration.is_negative();
if backprop {
self.step_size = -self.step_size; // Invert the step size
}
// Transform the state if needed
let mut original_frame = None;
if let Some(integration_frame) = self.prop.opts.integration_frame {
if integration_frame != self.state.orbit().frame {
original_frame = Some(self.state.orbit().frame);
let mut new_orbit = self
.almanac
.transform_to(self.state.orbit(), integration_frame, None)
.context(DynamicsAlmanacSnafu {
action: "transforming state into desired integration frame",
})
.context(DynamicsSnafu)?;
// If the integration frame has parameters, we set them here.
if let Some(mu_km3_s2) = integration_frame.mu_km3_s2 {
new_orbit.frame.mu_km3_s2 = Some(mu_km3_s2);
}
// If the integration frame has parameters, we set them here.
if let Some(shape) = integration_frame.shape {
new_orbit.frame.shape = Some(shape);
}
if self.log_progress {
info!("State transformed to the integration frame {integration_frame}");
}
self.state.set_orbit(new_orbit);
}
}
#[cfg(not(target_arch = "wasm32"))]
let tick = Instant::now();
#[cfg(not(target_arch = "wasm32"))]
let mut prev_tick = Instant::now();
loop {
let epoch = self.state.epoch();
if (!backprop && epoch + self.step_size > stop_time)
|| (backprop && epoch + self.step_size <= stop_time)
{
if stop_time == epoch {
// No propagation necessary
#[cfg(not(target_arch = "wasm32"))]
{
if self.log_progress {
let tock: Duration = tick.elapsed().into();
debug!("Done in {}", tock);
}
}
// Rotate back if needed
if let Some(original_frame) = original_frame {
let new_orbit = self
.almanac
.transform_to(self.state.orbit(), original_frame, None)
.context(DynamicsAlmanacSnafu {
action: "transforming state from desired integration frame",
})
.context(DynamicsSnafu)?;
self.state.set_orbit(new_orbit);
}
return Ok(self.state);
}
// Take one final step of exactly the needed duration until the stop time
let prev_step_size = self.step_size;
let prev_step_kind = self.fixed_step;
self.set_step(stop_time - epoch, true);
self.single_step()?;
// Publish to channel if provided
if let Some(ref chan) = maybe_tx_chan {
if let Err(e) = chan.send(self.state) {
warn!("{} when sending on channel", e)
}
}
// Restore the step size for subsequent calls
self.set_step(prev_step_size, prev_step_kind);
if backprop {
self.step_size = -self.step_size; // Restore to a positive step size
}
#[cfg(not(target_arch = "wasm32"))]
{
if self.log_progress {
let tock: Duration = tick.elapsed().into();
info!("\t... done in {}", tock);
}
}
// Rotate back if needed
if let Some(original_frame) = original_frame {
let new_orbit = self
.almanac
.transform_to(self.state.orbit(), original_frame, None)
.context(DynamicsAlmanacSnafu {
action: "transforming state from desired integration frame",
})
.context(DynamicsSnafu)?;
self.state.set_orbit(new_orbit);
}
return Ok(self.state);
} else {
#[cfg(not(target_arch = "wasm32"))]
{
if self.log_progress {
let tock: Duration = prev_tick.elapsed().into();
if tock.to_unit(Unit::Minute) > 1.0 {
// Report status every minute
let cur_epoch = self.state.epoch();
let dur_to_go = (stop_time - cur_epoch).floor(Unit::Second * 1);
info!(
"\t... current epoch {}, remaining {} (step size = {})",
cur_epoch, dur_to_go, self.details.step
);
prev_tick = Instant::now();
}
}
}
self.single_step()?;
// Publish to channel if provided
if let Some(ref chan) = maybe_tx_chan {
if let Err(e) = chan.send(self.state) {
warn!("{} when sending on channel", e)
}
}
}
}
}
/// This method propagates the provided Dynamics for the provided duration.
pub fn for_duration(&mut self, duration: Duration) -> Result<D::StateType, PropagationError> {
self.for_duration_channel_option(duration, None)
}
/// This method propagates the provided Dynamics for the provided duration and publishes each state on the channel.
pub fn for_duration_with_channel(
&mut self,
duration: Duration,
tx_chan: Sender<D::StateType>,
) -> Result<D::StateType, PropagationError> {
self.for_duration_channel_option(duration, Some(tx_chan))
}
/// Propagates the provided Dynamics until the provided epoch. Returns the end state.
pub fn until_epoch(&mut self, end_time: Epoch) -> Result<D::StateType, PropagationError> {
let duration: Duration = end_time - self.state.epoch();
self.for_duration(duration)
}
/// Propagates the provided Dynamics until the provided epoch and publishes states on the provided channel. Returns the end state.
pub fn until_epoch_with_channel(
&mut self,
end_time: Epoch,
tx_chan: Sender<D::StateType>,
) -> Result<D::StateType, PropagationError> {
let duration: Duration = end_time - self.state.epoch();
self.for_duration_with_channel(duration, tx_chan)
}
/// Propagates the provided Dynamics for the provided duration and generate the trajectory of these dynamics on its own thread.
/// Returns the end state and the trajectory.
#[allow(clippy::map_clone)]
pub fn for_duration_with_traj(
&mut self,
duration: Duration,
) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>
where
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
D::StateType: Interpolatable,
{
let end_state;
let mut traj = Traj::new();
let start_state = self.state;
let rx = {
// Channels that have a single state for the propagator
let (tx, rx) = channel();
// Propagate the dynamics
// Note that the end state is also sent on the channel before the return of this function.
end_state = self.for_duration_with_channel(duration, tx)?;
rx
};
traj.states = rx.into_iter().par_bridge().collect();
// Push the start state -- will be reordered in the finalize call.
// For some reason, this must happen at the end -- can't figure out why.
traj.states.push(start_state);
traj.finalize();
Ok((end_state, traj))
}
/// Propagates the provided Dynamics until the provided epoch and generate the trajectory of these dynamics on its own thread.
/// Returns the end state and the trajectory.
/// Known bug #190: Cannot generate a valid trajectory when propagating backward
pub fn until_epoch_with_traj(
&mut self,
end_time: Epoch,
) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>
where
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
D::StateType: Interpolatable,
{
let duration: Duration = end_time - self.state.epoch();
self.for_duration_with_traj(duration)
}
/// Propagate until a specific event is found once.
/// Returns the state found and the trajectory until `max_duration`
pub fn until_event<F: EventEvaluator<D::StateType>>(
&mut self,
max_duration: Duration,
event: &F,
) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>
where
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
D::StateType: Interpolatable,
{
self.until_nth_event(max_duration, event, 0)
}
/// Propagate until a specific event is found `trigger` times.
/// Returns the state found and the trajectory until `max_duration`
pub fn until_nth_event<F: EventEvaluator<D::StateType>>(
&mut self,
max_duration: Duration,
event: &F,
trigger: usize,
) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>
where
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
D::StateType: Interpolatable,
{
info!("Searching for {}", event);
let (_, traj) = self.for_duration_with_traj(max_duration)?;
// Now, find the requested event
let events = traj
.find(event, self.almanac.clone())
.context(TrajectoryEventSnafu)?;
match events.get(trigger) {
Some(event_state) => Ok((event_state.state, traj)),
None => Err(PropagationError::NthEventError {
nth: trigger,
found: events.len(),
}),
}
}
/// Take a single propagator step and emit the result on the TX channel (if enabled)
pub fn single_step(&mut self) -> Result<(), PropagationError> {
let (t, state_vec) = self.derive()?;
self.state.set(self.state.epoch() + t, &state_vec);
self.state = self
.prop
.dynamics
.finally(self.state, self.almanac.clone())
.context(DynamicsSnafu)?;
Ok(())
}
/// This method integrates whichever function is provided as `d_xdt`. Everything passed to this function is in **seconds**.
///
/// This function returns the step sized used (as a Duration) and the new state as y_{n+1} = y_n + \frac{dy_n}{dt}.
/// To get the integration details, check `self.latest_details`.
fn derive(
&mut self,
) -> Result<(Duration, OVector<f64, <D::StateType as State>::VecLength>), PropagationError>
{
let state_vec = &self.state.to_vector();
let state_ctx = &self.state;
// Reset the number of attempts used (we don't reset the error because it's set before it's read)
self.details.attempts = 1;
// Convert the step size to seconds -- it's mutable because we may change it below
let mut step_size_s = self.step_size.to_seconds();
loop {
let ki = self
.prop
.dynamics
.eom(0.0, state_vec, state_ctx, self.almanac.clone())
.context(DynamicsSnafu)?;
self.k[0] = ki;
let mut a_idx: usize = 0;
for i in 0..(self.prop.method.stages() - 1) {
// Let's compute the c_i by summing the relevant items from the list of coefficients.
// \sum_{j=1}^{i-1} a_ij ∀ i ∈ [2, s]
let mut ci: f64 = 0.0;
// The wi stores the a_{s1} * k_1 + a_{s2} * k_2 + ... + a_{s, s-1} * k_{s-1} +
let mut wi = OVector::<f64, <D::StateType as State>::VecLength>::from_element(0.0);
for kj in &self.k[0..i + 1] {
let a_ij = self.prop.method.a_coeffs()[a_idx];
ci += a_ij;
wi += a_ij * kj;
a_idx += 1;
}
let ki = self
.prop
.dynamics
.eom(
ci * step_size_s,
&(state_vec + step_size_s * wi),
state_ctx,
self.almanac.clone(),
)
.context(DynamicsSnafu)?;
self.k[i + 1] = ki;
}
// Compute the next state and the error
let mut next_state = state_vec.clone();
// State error estimation from https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods#Adaptive_Runge%E2%80%93Kutta_methods
// This is consistent with GMAT https://github.com/ChristopherRabotin/GMAT/blob/37201a6290e7f7b941bc98ee973a527a5857104b/src/base/propagator/RungeKutta.cpp#L537
let mut error_est =
OVector::<f64, <D::StateType as State>::VecLength>::from_element(0.0);
for (i, ki) in self.k.iter().enumerate() {
let b_i = self.prop.method.b_coeffs()[i];
if !self.fixed_step {
let b_i_star = self.prop.method.b_coeffs()[i + self.prop.method.stages()];
error_est += step_size_s * (b_i - b_i_star) * ki;
}
next_state += step_size_s * b_i * ki;
}
if self.fixed_step {
// Using a fixed step, no adaptive step necessary
self.details.step = self.step_size;
return Ok(((self.details.step), next_state));
} else {
// Compute the error estimate.
self.details.error =
self.prop
.opts
.error_ctrl
.estimate(&error_est, &next_state, state_vec);
if self.details.error <= self.prop.opts.tolerance
|| step_size_s <= self.prop.opts.min_step.to_seconds()
|| self.details.attempts >= self.prop.opts.attempts
{
if next_state.iter().any(|x| x.is_nan()) {
return Err(PropagationError::PropMathError {
source: MathError::DomainError {
value: f64::NAN,
msg: "try another integration method, or decrease step size; part of state vector is",
},
});
}
if self.details.attempts >= self.prop.opts.attempts {
warn!(
"Could not further decrease step size: maximum number of attempts reached ({})",
self.details.attempts
);
}
self.details.step = step_size_s * Unit::Second;
if self.details.error < self.prop.opts.tolerance {
// Let's increase the step size for the next iteration.
// Error is less than tolerance, let's attempt to increase the step for the next iteration.
let proposed_step = 0.9
* step_size_s
* (self.prop.opts.tolerance / self.details.error)
.powf(1.0 / f64::from(self.prop.method.order()));
step_size_s = if proposed_step > self.prop.opts.max_step.to_seconds() {
self.prop.opts.max_step.to_seconds()
} else {
proposed_step
};
}
// In all cases, let's update the step size to whatever was the adapted step size
self.step_size = step_size_s * Unit::Second;
if self.step_size.abs() < self.prop.opts.min_step {
// Custom signum in case the step size becomes zero.
let signum = if self.step_size.is_negative() {
-1.0
} else {
1.0
};
self.step_size = self.prop.opts.min_step * signum;
}
return Ok((self.details.step, next_state));
} else {
// Error is too high and we aren't using the smallest step, and we haven't hit the max number of attempts.
// So let's adapt the step size.
self.details.attempts += 1;
let proposed_step_s = 0.9
* step_size_s
* (self.prop.opts.tolerance / self.details.error)
.powf(1.0 / f64::from(self.prop.method.order() - 1));
step_size_s = if proposed_step_s < self.prop.opts.min_step.to_seconds() {
self.prop.opts.min_step.to_seconds()
} else {
proposed_step_s
};
// Note that we don't set self.step_size, that will be updated right before we return
}
}
}
}
/// Copy the details of the latest integration step.
pub fn latest_details(&self) -> IntegrationDetails {
self.details
}
}