pub struct Normal<F>{ /* private fields */ }
Expand description
The Normal distribution N(μ, σ²)
.
The Normal distribution, also known as the Gaussian distribution or
bell curve, is a continuous probability distribution with mean
μ
(mu
) and standard deviation σ
(sigma
).
It is used to model continuous data that tend to cluster around a mean.
The Normal distribution is symmetric and characterized by its bell-shaped curve.
See StandardNormal
for an
optimised implementation for μ = 0
and σ = 1
.
§Density function
f(x) = (1 / sqrt(2π σ²)) * exp(-((x - μ)² / (2σ²)))
§Plot
The following diagram shows the Normal distribution with various values of μ
and σ
.
The blue curve is the StandardNormal
distribution, N(0, 1)
.
§Example
use rand_distr::{Normal, Distribution};
// mean 2, standard deviation 3
let normal = Normal::new(2.0, 3.0).unwrap();
let v = normal.sample(&mut rand::rng());
println!("{} is from a N(2, 9) distribution", v)
§Notes
Implemented via the ZIGNOR variant1 of the Ziggurat method.
Jurgen A. Doornik (2005). An Improved Ziggurat Method to Generate Normal Random Samples. Nuffield College, Oxford ↩
Implementations§
Source§impl<F> Normal<F>
impl<F> Normal<F>
Sourcepub fn new(mean: F, std_dev: F) -> Result<Normal<F>, Error>
pub fn new(mean: F, std_dev: F) -> Result<Normal<F>, Error>
Construct, from mean and standard deviation
Parameters:
- mean (
μ
, unrestricted) - standard deviation (
σ
, must be finite)
Sourcepub fn from_mean_cv(mean: F, cv: F) -> Result<Normal<F>, Error>
pub fn from_mean_cv(mean: F, cv: F) -> Result<Normal<F>, Error>
Construct, from mean and coefficient of variation
Parameters:
- mean (
μ
, unrestricted) - coefficient of variation (
cv = abs(σ / μ)
)
Sourcepub fn from_zscore(&self, zscore: F) -> F
pub fn from_zscore(&self, zscore: F) -> F
Sample from a z-score
This may be useful for generating correlated samples x1
and x2
from two different distributions, as follows.
let mut rng = rand::rng();
let z = StandardNormal.sample(&mut rng);
let x1 = Normal::new(0.0, 1.0).unwrap().from_zscore(z);
let x2 = Normal::new(2.0, -3.0).unwrap().from_zscore(z);
Trait Implementations§
Source§impl<F> Distribution<F> for Normal<F>
impl<F> Distribution<F> for Normal<F>
impl<F> Copy for Normal<F>
impl<F> StructuralPartialEq for Normal<F>
Auto Trait Implementations§
impl<F> Freeze for Normal<F>where
F: Freeze,
impl<F> RefUnwindSafe for Normal<F>where
F: RefUnwindSafe,
impl<F> Send for Normal<F>where
F: Send,
impl<F> Sync for Normal<F>where
F: Sync,
impl<F> Unpin for Normal<F>where
F: Unpin,
impl<F> UnwindSafe for Normal<F>where
F: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.