pub struct LambertSolution {
pub v_init_km_s: Vector3<f64>,
pub v_final_km_s: Vector3<f64>,
pub phi_rad: f64,
pub input: LambertInput,
}Expand description
A solution to the Lambert problem.
Fields§
§v_init_km_s: Vector3<f64>§v_final_km_s: Vector3<f64>§phi_rad: f64Turn angle ONLY computed with Godding method
input: LambertInputImplementations§
Source§impl LambertSolution
impl LambertSolution
Sourcepub fn v_inf_outgoing_km_s(&self) -> Vector3<f64>
pub fn v_inf_outgoing_km_s(&self) -> Vector3<f64>
Return the v infinity vector at departure, in km/s
Sourcepub fn v_inf_incoming_km_s(&self) -> Vector3<f64>
pub fn v_inf_incoming_km_s(&self) -> Vector3<f64>
Return v infinity vector at arrival, in km/s
Sourcepub fn transfer_orbit(self) -> Orbit
pub fn transfer_orbit(self) -> Orbit
Return the transfer orbit computed from setting the departure velocity to the initial state.
Sourcepub fn arrival_orbit(self) -> Orbit
pub fn arrival_orbit(self) -> Orbit
Return the arrival orbit computed from setting the arrival velocity to the final state.
Sourcepub fn v_inf_outgoing_declination_deg(&self) -> f64
pub fn v_inf_outgoing_declination_deg(&self) -> f64
Return the declination of the departure v infinity (i.e. the outgoing asymptote velocity vector), in degrees
Sourcepub fn v_inf_outgoing_right_ascension_deg(&self) -> f64
pub fn v_inf_outgoing_right_ascension_deg(&self) -> f64
Return the right ascention of the departure v infinity (i.e. the outgoing asymptote velocity vector), in degrees
Trait Implementations§
Source§impl Clone for LambertSolution
impl Clone for LambertSolution
Source§fn clone(&self) -> LambertSolution
fn clone(&self) -> LambertSolution
Returns a duplicate of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source. Read moreSource§impl Debug for LambertSolution
impl Debug for LambertSolution
impl Copy for LambertSolution
Auto Trait Implementations§
impl Freeze for LambertSolution
impl RefUnwindSafe for LambertSolution
impl Send for LambertSolution
impl Sync for LambertSolution
impl Unpin for LambertSolution
impl UnwindSafe for LambertSolution
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.