Struct SRPData
pub struct SRPData {
pub area_m2: f64,
pub coeff_reflectivity: f64,
}Fields§
§area_m2: f64Solar radiation pressure area in m^2 – default 0.0
coeff_reflectivity: f64Solar radiation pressure coefficient of reflectivity (C_r) – default 1.8
Implementations§
§impl SRPData
impl SRPData
pub fn from_area(area_m2: f64) -> SRPData
pub fn from_area(area_m2: f64) -> SRPData
Examples found in repository?
examples/03_geo_analysis/stationkeeping.rs (line 42)
28fn main() -> Result<(), Box<dyn Error>> {
29 pel::init();
30 // Set up the dynamics like in the orbit raise.
31 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
32 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
33
34 // Define the GEO orbit, and we're just going to maintain it very tightly.
35 let earth_j2000 = almanac.frame_info(EARTH_J2000)?;
36 let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
37 println!("{orbit:x}");
38
39 let sc = Spacecraft::builder()
40 .orbit(orbit)
41 .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
42 .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
43 .thruster(Thruster {
44 // "NEXT-STEP" row in Table 2
45 isp_s: 4435.0,
46 thrust_N: 0.472,
47 })
48 .mode(GuidanceMode::Thrust) // Start thrusting immediately.
49 .build();
50
51 // Set up the spacecraft dynamics like in the orbit raise example.
52
53 let prop_time = 30.0 * Unit::Day;
54
55 // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
56 let objectives = &[
57 Objective::within_tolerance(
58 StateParameter::Element(OrbitalElement::SemiMajorAxis),
59 42_165.0,
60 20.0,
61 ),
62 Objective::within_tolerance(
63 StateParameter::Element(OrbitalElement::Eccentricity),
64 0.001,
65 5e-5,
66 ),
67 Objective::within_tolerance(
68 StateParameter::Element(OrbitalElement::Inclination),
69 0.05,
70 1e-2,
71 ),
72 ];
73
74 let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2)?;
75 println!("{ruggiero_ctrl}");
76
77 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
78
79 let mut jgm3_meta = MetaFile {
80 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
81 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
82 };
83 jgm3_meta.process(true)?;
84
85 let harmonics = Harmonics::from_stor(
86 almanac.frame_info(IAU_EARTH_FRAME)?,
87 HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true)?,
88 );
89 orbital_dyn.accel_models.push(harmonics);
90
91 let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
92 let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
93 .with_guidance_law(ruggiero_ctrl.clone());
94
95 println!("{sc_dynamics}");
96
97 // Finally, let's use the Monte Carlo framework built into Nyx to propagate spacecraft.
98
99 // Let's start by defining the dispersion.
100 // The MultivariateNormal structure allows us to define the dispersions in any of the orbital parameters, but these are applied directly in the Cartesian state space.
101 // Note that additional validation on the MVN is in progress -- https://github.com/nyx-space/nyx/issues/339.
102 let mc_rv = MvnSpacecraft::new(
103 sc,
104 vec![StateDispersion::zero_mean(
105 StateParameter::Element(OrbitalElement::SemiMajorAxis),
106 3.0,
107 )],
108 )?;
109
110 let my_mc = MonteCarlo::new(
111 sc, // Nominal state
112 mc_rv,
113 "03_geo_sk".to_string(), // Scenario name
114 None, // No specific seed specified, so one will be drawn from the computer's entropy.
115 );
116
117 // Build the propagator setup.
118 let setup = Propagator::rk89(
119 sc_dynamics.clone(),
120 IntegratorOptions::builder()
121 .min_step(10.0_f64.seconds())
122 .error_ctrl(ErrorControl::RSSCartesianStep)
123 .build(),
124 );
125
126 let num_runs = 25;
127 let rslts = my_mc.run_until_epoch(setup, almanac.clone(), sc.epoch() + prop_time, num_runs);
128
129 assert_eq!(rslts.runs.len(), num_runs);
130
131 rslts.to_parquet("03_geo_sk.parquet", ExportCfg::default())?;
132
133 Ok(())
134}More examples
examples/03_geo_analysis/raise.rs (line 55)
27fn main() -> Result<(), Box<dyn Error>> {
28 pel::init();
29
30 // Dynamics models require planetary constants and ephemerides to be defined.
31 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
32 // This will automatically download the DE440s planetary ephemeris,
33 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
34 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
35 // planetary constants kernels.
36 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
37 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
38 // references to many functions.
39 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
40 // Fetch the EME2000 frame from the Almabac
41 let eme2k = almanac.frame_info(EARTH_J2000).unwrap();
42 // Define the orbit epoch
43 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45 // Build the spacecraft itself.
46 // Using slide 6 of https://aerospace.org/sites/default/files/2018-11/Davis-Mayberry_HPSEP_11212018.pdf
47 // for the "next gen" SEP characteristics.
48
49 // GTO start
50 let orbit = Orbit::keplerian(24505.9, 0.725, 7.05, 0.0, 0.0, 0.0, epoch, eme2k);
51
52 let sc = Spacecraft::builder()
53 .orbit(orbit)
54 .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
55 .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
56 .thruster(Thruster {
57 // "NEXT-STEP" row in Table 2
58 isp_s: 4435.0,
59 thrust_N: 0.472,
60 })
61 .mode(GuidanceMode::Thrust) // Start thrusting immediately.
62 .build();
63
64 let prop_time = 180.0 * Unit::Day;
65
66 // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
67 let objectives = &[
68 Objective::within_tolerance(
69 StateParameter::Element(OrbitalElement::SemiMajorAxis),
70 42_165.0,
71 20.0,
72 ),
73 Objective::within_tolerance(
74 StateParameter::Element(OrbitalElement::Eccentricity),
75 0.001,
76 5e-5,
77 ),
78 Objective::within_tolerance(
79 StateParameter::Element(OrbitalElement::Inclination),
80 0.05,
81 1e-2,
82 ),
83 ];
84
85 // Ensure that we only thrust if we have more than 20% illumination.
86 let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2).unwrap();
87 println!("{ruggiero_ctrl}");
88
89 // Define the high fidelity dynamics
90
91 // Set up the spacecraft dynamics.
92
93 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
94 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
95 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
96
97 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
98 // We're using the JGM3 model here, which is the default in GMAT.
99 let mut jgm3_meta = MetaFile {
100 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
101 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
102 };
103 // And let's download it if we don't have it yet.
104 jgm3_meta.process(true)?;
105
106 // Build the spherical harmonics.
107 // The harmonics must be computed in the body fixed frame.
108 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
109 let harmonics = Harmonics::from_stor(
110 almanac.frame_info(IAU_EARTH_FRAME)?,
111 HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true).unwrap(),
112 );
113
114 // Include the spherical harmonics into the orbital dynamics.
115 orbital_dyn.accel_models.push(harmonics);
116
117 // We define the solar radiation pressure, using the default solar flux and accounting only
118 // for the eclipsing caused by the Earth.
119 let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
120
121 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
122 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
123 let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
124 .with_guidance_law(ruggiero_ctrl.clone());
125
126 println!("{orbit:x}");
127
128 // We specify a minimum step in the propagator because the Ruggiero control would otherwise drive this step very low.
129 let (final_state, traj) = Propagator::rk89(
130 sc_dynamics.clone(),
131 IntegratorOptions::builder()
132 .min_step(10.0_f64.seconds())
133 .error_ctrl(ErrorControl::RSSCartesianStep)
134 .build(),
135 )
136 .with(sc, almanac.clone())
137 .for_duration_with_traj(prop_time)?;
138
139 let prop_usage = sc.mass.prop_mass_kg - final_state.mass.prop_mass_kg;
140 println!("{:x}", final_state.orbit);
141 println!("prop usage: {prop_usage:.3} kg");
142
143 // Finally, export the results for analysis, including the penumbra percentage throughout the orbit raise.
144 traj.to_parquet("./03_geo_raise.parquet", ExportCfg::default())?;
145
146 for status_line in ruggiero_ctrl.status(&final_state) {
147 println!("{status_line}");
148 }
149
150 ruggiero_ctrl
151 .achieved(&final_state)
152 .expect("objective not achieved");
153
154 Ok(())
155}Trait Implementations§
§impl<'de> Deserialize<'de> for SRPData
impl<'de> Deserialize<'de> for SRPData
§fn deserialize<__D>(
__deserializer: __D,
) -> Result<SRPData, <__D as Deserializer<'de>>::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(
__deserializer: __D,
) -> Result<SRPData, <__D as Deserializer<'de>>::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
§impl Encode for SRPData
impl Encode for SRPData
§fn encoded_len(&self) -> Result<Length, Error>
fn encoded_len(&self) -> Result<Length, Error>
Compute the length of this value in bytes when encoded as ASN.1 DER.
§fn encode(&self, encoder: &mut impl Writer) -> Result<(), Error>
fn encode(&self, encoder: &mut impl Writer) -> Result<(), Error>
Encode this value as ASN.1 DER using the provided [
Writer].§fn encode_to_slice<'a>(&self, buf: &'a mut [u8]) -> Result<&'a [u8], Error>
fn encode_to_slice<'a>(&self, buf: &'a mut [u8]) -> Result<&'a [u8], Error>
Encode this value to the provided byte slice, returning a sub-slice
containing the encoded message.
§fn encode_to_vec(&self, buf: &mut Vec<u8>) -> Result<Length, Error>
fn encode_to_vec(&self, buf: &mut Vec<u8>) -> Result<Length, Error>
Encode this message as ASN.1 DER, appending it to the provided
byte vector.
§impl Serialize for SRPData
impl Serialize for SRPData
§fn serialize<__S>(
&self,
__serializer: __S,
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
__S: Serializer,
fn serialize<__S>(
&self,
__serializer: __S,
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
__S: Serializer,
Serialize this value into the given Serde serializer. Read more
impl Copy for SRPData
impl StructuralPartialEq for SRPData
Auto Trait Implementations§
impl Freeze for SRPData
impl RefUnwindSafe for SRPData
impl Send for SRPData
impl Sync for SRPData
impl Unpin for SRPData
impl UnwindSafe for SRPData
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> FromDhall for Twhere
T: DeserializeOwned,
impl<T> FromDhall for Twhere
T: DeserializeOwned,
fn from_dhall(v: &Value) -> Result<T, Error>
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.