Skip to main content

Objective

Struct Objective 

Source
pub struct Objective {
    pub parameter: StateParameter,
    pub desired_value: f64,
    pub tolerance: f64,
    pub multiplicative_factor: f64,
    pub additive_factor: f64,
}
Expand description

Defines a state parameter event finder

Fields§

§parameter: StateParameter

The state parameter to target

§desired_value: f64

The desired self.desired_value, must be in the same units as the state parameter

§tolerance: f64

The precision on the desired value

§multiplicative_factor: f64

A multiplicative factor this parameter’s error in the targeting (defaults to 1.0)

§additive_factor: f64

An additive factor to this parameters’s error in the targeting (defaults to 0.0)

Implementations§

Source§

impl Objective

Source

pub fn new(parameter: StateParameter, desired_value: f64) -> Self

Match a specific value for the parameter. By default, the tolerance on the parameter is 0.1 times whatever unit is the default for that parameter. For example, a radius event will seek the requested value at the decimeter level, and an angle event will seek it at the tenth of a degree.

Source

pub fn within_tolerance( parameter: StateParameter, desired_value: f64, tolerance: f64, ) -> Self

Match a specific value for the parameter to hit the specified value with the provided tolerance on the value

Examples found in repository?
examples/03_geo_analysis/stationkeeping.rs (lines 57-61)
28fn main() -> Result<(), Box<dyn Error>> {
29    pel::init();
30    // Set up the dynamics like in the orbit raise.
31    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
32    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
33
34    // Define the GEO orbit, and we're just going to maintain it very tightly.
35    let earth_j2000 = almanac.frame_info(EARTH_J2000)?;
36    let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
37    println!("{orbit:x}");
38
39    let sc = Spacecraft::builder()
40        .orbit(orbit)
41        .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
42        .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
43        .thruster(Thruster {
44            // "NEXT-STEP" row in Table 2
45            isp_s: 4435.0,
46            thrust_N: 0.472,
47        })
48        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
49        .build();
50
51    // Set up the spacecraft dynamics like in the orbit raise example.
52
53    let prop_time = 30.0 * Unit::Day;
54
55    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
56    let objectives = &[
57        Objective::within_tolerance(
58            StateParameter::Element(OrbitalElement::SemiMajorAxis),
59            42_165.0,
60            20.0,
61        ),
62        Objective::within_tolerance(
63            StateParameter::Element(OrbitalElement::Eccentricity),
64            0.001,
65            5e-5,
66        ),
67        Objective::within_tolerance(
68            StateParameter::Element(OrbitalElement::Inclination),
69            0.05,
70            1e-2,
71        ),
72    ];
73
74    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2)?;
75    println!("{ruggiero_ctrl}");
76
77    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
78
79    let mut jgm3_meta = MetaFile {
80        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
81        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
82    };
83    jgm3_meta.process(true)?;
84
85    let harmonics = Harmonics::from_stor(
86        almanac.frame_info(IAU_EARTH_FRAME)?,
87        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true)?,
88    );
89    orbital_dyn.accel_models.push(harmonics);
90
91    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
92    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
93        .with_guidance_law(ruggiero_ctrl.clone());
94
95    println!("{sc_dynamics}");
96
97    // Finally, let's use the Monte Carlo framework built into Nyx to propagate spacecraft.
98
99    // Let's start by defining the dispersion.
100    // The MultivariateNormal structure allows us to define the dispersions in any of the orbital parameters, but these are applied directly in the Cartesian state space.
101    // Note that additional validation on the MVN is in progress -- https://github.com/nyx-space/nyx/issues/339.
102    let mc_rv = MvnSpacecraft::new(
103        sc,
104        vec![StateDispersion::zero_mean(
105            StateParameter::Element(OrbitalElement::SemiMajorAxis),
106            3.0,
107        )],
108    )?;
109
110    let my_mc = MonteCarlo::new(
111        sc, // Nominal state
112        mc_rv,
113        "03_geo_sk".to_string(), // Scenario name
114        None, // No specific seed specified, so one will be drawn from the computer's entropy.
115    );
116
117    // Build the propagator setup.
118    let setup = Propagator::rk89(
119        sc_dynamics.clone(),
120        IntegratorOptions::builder()
121            .min_step(10.0_f64.seconds())
122            .error_ctrl(ErrorControl::RSSCartesianStep)
123            .build(),
124    );
125
126    let num_runs = 25;
127    let rslts = my_mc.run_until_epoch(setup, almanac.clone(), sc.epoch() + prop_time, num_runs);
128
129    assert_eq!(rslts.runs.len(), num_runs);
130
131    rslts.to_parquet("03_geo_sk.parquet", ExportCfg::default())?;
132
133    Ok(())
134}
More examples
Hide additional examples
examples/03_geo_analysis/raise.rs (lines 68-72)
27fn main() -> Result<(), Box<dyn Error>> {
28    pel::init();
29
30    // Dynamics models require planetary constants and ephemerides to be defined.
31    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
32    // This will automatically download the DE440s planetary ephemeris,
33    // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
34    // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
35    // planetary constants kernels.
36    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
37    // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
38    // references to many functions.
39    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
40    // Fetch the EME2000 frame from the Almabac
41    let eme2k = almanac.frame_info(EARTH_J2000).unwrap();
42    // Define the orbit epoch
43    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45    // Build the spacecraft itself.
46    // Using slide 6 of https://aerospace.org/sites/default/files/2018-11/Davis-Mayberry_HPSEP_11212018.pdf
47    // for the "next gen" SEP characteristics.
48
49    // GTO start
50    let orbit = Orbit::keplerian(24505.9, 0.725, 7.05, 0.0, 0.0, 0.0, epoch, eme2k);
51
52    let sc = Spacecraft::builder()
53        .orbit(orbit)
54        .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
55        .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
56        .thruster(Thruster {
57            // "NEXT-STEP" row in Table 2
58            isp_s: 4435.0,
59            thrust_N: 0.472,
60        })
61        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
62        .build();
63
64    let prop_time = 180.0 * Unit::Day;
65
66    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
67    let objectives = &[
68        Objective::within_tolerance(
69            StateParameter::Element(OrbitalElement::SemiMajorAxis),
70            42_165.0,
71            20.0,
72        ),
73        Objective::within_tolerance(
74            StateParameter::Element(OrbitalElement::Eccentricity),
75            0.001,
76            5e-5,
77        ),
78        Objective::within_tolerance(
79            StateParameter::Element(OrbitalElement::Inclination),
80            0.05,
81            1e-2,
82        ),
83    ];
84
85    // Ensure that we only thrust if we have more than 20% illumination.
86    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2).unwrap();
87    println!("{ruggiero_ctrl}");
88
89    // Define the high fidelity dynamics
90
91    // Set up the spacecraft dynamics.
92
93    // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
94    // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
95    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
96
97    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
98    // We're using the JGM3 model here, which is the default in GMAT.
99    let mut jgm3_meta = MetaFile {
100        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
101        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
102    };
103    // And let's download it if we don't have it yet.
104    jgm3_meta.process(true)?;
105
106    // Build the spherical harmonics.
107    // The harmonics must be computed in the body fixed frame.
108    // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
109    let harmonics = Harmonics::from_stor(
110        almanac.frame_info(IAU_EARTH_FRAME)?,
111        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true).unwrap(),
112    );
113
114    // Include the spherical harmonics into the orbital dynamics.
115    orbital_dyn.accel_models.push(harmonics);
116
117    // We define the solar radiation pressure, using the default solar flux and accounting only
118    // for the eclipsing caused by the Earth.
119    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
120
121    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
122    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
123    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
124        .with_guidance_law(ruggiero_ctrl.clone());
125
126    println!("{orbit:x}");
127
128    // We specify a minimum step in the propagator because the Ruggiero control would otherwise drive this step very low.
129    let (final_state, traj) = Propagator::rk89(
130        sc_dynamics.clone(),
131        IntegratorOptions::builder()
132            .min_step(10.0_f64.seconds())
133            .error_ctrl(ErrorControl::RSSCartesianStep)
134            .build(),
135    )
136    .with(sc, almanac.clone())
137    .for_duration_with_traj(prop_time)?;
138
139    let prop_usage = sc.mass.prop_mass_kg - final_state.mass.prop_mass_kg;
140    println!("{:x}", final_state.orbit);
141    println!("prop usage: {prop_usage:.3} kg");
142
143    // Finally, export the results for analysis, including the penumbra percentage throughout the orbit raise.
144    traj.to_parquet("./03_geo_raise.parquet", ExportCfg::default())?;
145
146    for status_line in ruggiero_ctrl.status(&final_state) {
147        println!("{status_line}");
148    }
149
150    ruggiero_ctrl
151        .achieved(&final_state)
152        .expect("objective not achieved");
153
154    Ok(())
155}
Source

pub fn assess(&self, achieved: &Spacecraft) -> Result<(bool, f64), StateError>

Returns whether this objective has been achieved, and the associated parameter error.

Source

pub fn assess_value(&self, achieved: f64) -> (bool, f64)

Returns whether this objective has been achieved, and the associated parameter error. Warning: the parameter achieved must be in the same unit as the objective.

Trait Implementations§

Source§

impl Clone for Objective

Source§

fn clone(&self) -> Objective

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for Objective

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<'de> Deserialize<'de> for Objective

Source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl Display for Objective

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl LowerHex for Objective

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl Serialize for Objective

Source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
Source§

impl Copy for Objective

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> FromDhall for T

Source§

fn from_dhall(v: &Value) -> Result<T, Error>

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToDhall for T
where T: Serialize,

Source§

fn to_dhall(&self, ty: Option<&SimpleType>) -> Result<Value, Error>

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T> Allocation for T
where T: RefUnwindSafe + Send + Sync,

Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,