pub struct Spacecraft {
pub orbit: Orbit,
pub dry_mass_kg: f64,
pub fuel_mass_kg: f64,
pub srp: SrpConfig,
pub drag: DragConfig,
pub thruster: Option<Thruster>,
pub mode: GuidanceMode,
pub stm: Option<OMatrix<f64, Const<9>, Const<9>>>,
}
Expand description
A spacecraft state, composed of its orbit, its dry and fuel (wet) masses (in kg), its SRP configuration, its drag configuration, its thruster configuration, and its guidance mode.
Optionally, the spacecraft state can also store the state transition matrix from the start of the propagation until the current time (i.e. trajectory STM, not step-size STM).
Fields§
§orbit: Orbit
Initial orbit the vehicle is in
dry_mass_kg: f64
Dry mass, i.e. mass without fuel, in kg
fuel_mass_kg: f64
Fuel mass (if fuel mass is negative, thrusting will fail, unless configured to break laws of physics)
srp: SrpConfig
Solar Radiation Pressure configuration for this spacecraft
drag: DragConfig
§thruster: Option<Thruster>
§mode: GuidanceMode
Any extra information or extension that is needed for specific guidance laws
stm: Option<OMatrix<f64, Const<9>, Const<9>>>
Optionally stores the state transition matrix from the start of the propagation until the current time (i.e. trajectory STM, not step-size STM) STM is contains position and velocity, Cr, Cd, fuel mass
Implementations§
Source§impl Spacecraft
impl Spacecraft
Sourcepub fn builder() -> SpacecraftBuilder<((), (), (), (), (), (), (), ())>
pub fn builder() -> SpacecraftBuilder<((), (), (), (), (), (), (), ())>
Create a builder for building Spacecraft
.
On the builder, call .orbit(...)
, .dry_mass_kg(...)
(optional), .fuel_mass_kg(...)
(optional), .srp(...)
(optional), .drag(...)
(optional), .thruster(...)
(optional), .mode(...)
(optional), .stm(...)
(optional) to set the values of the fields.
Finally, call .build()
to create the instance of Spacecraft
.
Examples found in repository?
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
fn main() -> Result<(), Box<dyn Error>> {
pel::init();
// Set up the dynamics like in the orbit raise.
let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
// Define the GEO orbit, and we're just going to maintain it very tightly.
let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
println!("{orbit:x}");
let sc = Spacecraft::builder()
.orbit(orbit)
.dry_mass_kg(1000.0) // 1000 kg of dry mass
.fuel_mass_kg(1000.0) // 1000 kg of fuel, totalling 2.0 tons
.srp(SrpConfig::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
.thruster(Thruster {
// "NEXT-STEP" row in Table 2
isp_s: 4435.0,
thrust_N: 0.472,
})
.mode(GuidanceMode::Thrust) // Start thrusting immediately.
.build();
// Set up the spacecraft dynamics like in the orbit raise example.
let prop_time = 30.0 * Unit::Day;
// Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
let objectives = &[
Objective::within_tolerance(StateParameter::SMA, 42_164.0, 5.0), // 5 km
Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
];
let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2)?;
println!("{ruggiero_ctrl}");
let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
let mut jgm3_meta = MetaFile {
uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
};
jgm3_meta.process(true)?;
let harmonics = Harmonics::from_stor(
almanac.frame_from_uid(IAU_EARTH_FRAME)?,
HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true)?,
);
orbital_dyn.accel_models.push(harmonics);
let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
.with_guidance_law(ruggiero_ctrl.clone());
println!("{sc_dynamics}");
// Finally, let's use the Monte Carlo framework built into Nyx to propagate spacecraft.
// Let's start by defining the dispersion.
// The MultivariateNormal structure allows us to define the dispersions in any of the orbital parameters, but these are applied directly in the Cartesian state space.
// Note that additional validation on the MVN is in progress -- https://github.com/nyx-space/nyx/issues/339.
let mc_rv = MultivariateNormal::new(
sc,
vec![StateDispersion::zero_mean(StateParameter::SMA, 3.0)],
)?;
let my_mc = MonteCarlo::new(
sc, // Nominal state
mc_rv,
"03_geo_sk".to_string(), // Scenario name
None, // No specific seed specified, so one will be drawn from the computer's entropy.
);
// Build the propagator setup.
let setup = Propagator::rk89(
sc_dynamics.clone(),
IntegratorOptions::builder()
.min_step(10.0_f64.seconds())
.error_ctrl(ErrorControl::RSSCartesianStep)
.build(),
);
let num_runs = 25;
let rslts = my_mc.run_until_epoch(setup, almanac.clone(), sc.epoch() + prop_time, num_runs);
assert_eq!(rslts.runs.len(), num_runs);
// For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
rslts.to_parquet(
"03_geo_sk.parquet",
Some(vec![
&EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
]),
ExportCfg::default(),
almanac,
)?;
Ok(())
}
More examples
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
fn main() -> Result<(), Box<dyn Error>> {
pel::init();
// Dynamics models require planetary constants and ephemerides to be defined.
// Let's start by grabbing those by using ANISE's latest MetaAlmanac.
// This will automatically download the DE440s planetary ephemeris,
// the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
// parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
// planetary constants kernels.
// For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
// Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
// references to many functions.
let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
// Fetch the EME2000 frame from the Almabac
let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
// Define the orbit epoch
let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
// Build the spacecraft itself.
// Using slide 6 of https://aerospace.org/sites/default/files/2018-11/Davis-Mayberry_HPSEP_11212018.pdf
// for the "next gen" SEP characteristics.
// GTO start
let orbit = Orbit::keplerian(24505.9, 0.725, 7.05, 0.0, 0.0, 0.0, epoch, eme2k);
let sc = Spacecraft::builder()
.orbit(orbit)
.dry_mass_kg(1000.0) // 1000 kg of dry mass
.fuel_mass_kg(1000.0) // 1000 kg of fuel, totalling 2.0 tons
.srp(SrpConfig::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
.thruster(Thruster {
// "NEXT-STEP" row in Table 2
isp_s: 4435.0,
thrust_N: 0.472,
})
.mode(GuidanceMode::Thrust) // Start thrusting immediately.
.build();
let prop_time = 180.0 * Unit::Day;
// Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
let objectives = &[
Objective::within_tolerance(StateParameter::SMA, 42_165.0, 20.0),
Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
];
// Ensure that we only thrust if we have more than 20% illumination.
let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2).unwrap();
println!("{ruggiero_ctrl}");
// Define the high fidelity dynamics
// Set up the spacecraft dynamics.
// Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
// The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
// We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
// We're using the JGM3 model here, which is the default in GMAT.
let mut jgm3_meta = MetaFile {
uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
};
// And let's download it if we don't have it yet.
jgm3_meta.process(true)?;
// Build the spherical harmonics.
// The harmonics must be computed in the body fixed frame.
// We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
let harmonics = Harmonics::from_stor(
almanac.frame_from_uid(IAU_EARTH_FRAME)?,
HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true).unwrap(),
);
// Include the spherical harmonics into the orbital dynamics.
orbital_dyn.accel_models.push(harmonics);
// We define the solar radiation pressure, using the default solar flux and accounting only
// for the eclipsing caused by the Earth.
let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
// Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
// acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
.with_guidance_law(ruggiero_ctrl.clone());
println!("{:x}", orbit);
// We specify a minimum step in the propagator because the Ruggiero control would otherwise drive this step very low.
let (final_state, traj) = Propagator::rk89(
sc_dynamics.clone(),
IntegratorOptions::builder()
.min_step(10.0_f64.seconds())
.error_ctrl(ErrorControl::RSSCartesianStep)
.build(),
)
.with(sc, almanac.clone())
.for_duration_with_traj(prop_time)?;
let fuel_usage = sc.fuel_mass_kg - final_state.fuel_mass_kg;
println!("{:x}", final_state.orbit);
println!("fuel usage: {:.3} kg", fuel_usage);
// Finally, export the results for analysis, including the penumbra percentage throughout the orbit raise.
traj.to_parquet(
"./03_geo_raise.parquet",
Some(vec![
&EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
]),
ExportCfg::default(),
almanac,
)?;
for status_line in ruggiero_ctrl.status(&final_state) {
println!("{status_line}");
}
ruggiero_ctrl
.achieved(&final_state)
.expect("objective not achieved");
Ok(())
}
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
fn main() -> Result<(), Box<dyn Error>> {
pel::init();
// Dynamics models require planetary constants and ephemerides to be defined.
// Let's start by grabbing those by using ANISE's latest MetaAlmanac.
// For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
// Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
// Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
let mut latest_jwst_ephem = MetaFile {
uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
crc32: None,
};
latest_jwst_ephem.process(true)?;
// Load this ephem in the general Almanac we're using for this analysis.
let almanac = Arc::new(
MetaAlmanac::latest()
.map_err(Box::new)?
.load_from_metafile(latest_jwst_ephem, true)?,
);
// By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
// in the BSP. We need this ID in order to query the ephemeris.
const JWST_NAIF_ID: i32 = -170;
// Let's build a frame in the J2000 orientation centered on the JWST.
const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);
// Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
println!("JWST defined from {earliest_epoch} to {latest_epoch}");
// Fetch the state, printing it in the Earth J2000 frame.
let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
println!("{jwst_orbit:x}");
// Build the spacecraft
// SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
// SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
let jwst = Spacecraft::builder()
.orbit(jwst_orbit)
.srp(SrpConfig {
area_m2: 21.197 * 14.162,
cr: 1.56,
})
.dry_mass_kg(6200.0)
.build();
// Build up the spacecraft uncertainty builder.
// We can use the spacecraft uncertainty structure to build this up.
// We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
// in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
// Nyx can also estimate the deviation of the spacecraft parameters.
let jwst_uncertainty = SpacecraftUncertainty::builder()
.nominal(jwst)
.frame(LocalFrame::RIC)
.x_km(0.5)
.y_km(0.3)
.z_km(1.5)
.vx_km_s(1e-4)
.vy_km_s(0.6e-3)
.vz_km_s(3e-3)
.build();
println!("{jwst_uncertainty}");
// Build the Kalman filter estimate.
// Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
// but this approach requires quite a bit more boilerplate code.
let jwst_estimate = jwst_uncertainty.to_estimate()?;
// Set up the spacecraft dynamics.
// We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
// We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.
let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
// Finalize setting up the dynamics.
let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
// Build the propagator set up to use for the whole analysis.
let setup = Propagator::default(dynamics);
// All of the analysis will use this duration.
let prediction_duration = 6.5 * Unit::Day;
// === Covariance mapping ===
// For the covariance mapping / prediction, we'll use the common orbit determination approach.
// This is done by setting up a spacecraft OD process, and predicting for the analysis duration.
let ckf = KF::no_snc(jwst_estimate);
// Build the propagation instance for the OD process.
let prop = setup.with(jwst.with_stm(), almanac.clone());
let mut odp = SpacecraftODProcess::ckf(prop, ckf, None, almanac.clone());
// Define the prediction step, i.e. how often we want to know the covariance.
let step = 1_i64.minutes();
// Finally, predict, and export the trajectory with covariance to a parquet file.
odp.predict_for(step, prediction_duration)?;
odp.to_parquet("./02_jwst_covar_map.parquet", ExportCfg::default())?;
// === Monte Carlo framework ===
// Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.
let my_mc = MonteCarlo::new(
jwst, // Nominal state
jwst_estimate.to_random_variable()?,
"02_jwst".to_string(), // Scenario name
None, // No specific seed specified, so one will be drawn from the computer's entropy.
);
let num_runs = 5_000;
let rslts = my_mc.run_until_epoch(
setup,
almanac.clone(),
jwst.epoch() + prediction_duration,
num_runs,
);
assert_eq!(rslts.runs.len(), num_runs);
// Finally, export these results, computing the eclipse percentage for all of these results.
// For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
let eclipse_loc = EclipseLocator::cislunar(almanac.clone());
let umbra_event = eclipse_loc.to_umbra_event();
let penumbra_event = eclipse_loc.to_penumbra_event();
rslts.to_parquet(
"02_jwst_monte_carlo.parquet",
Some(vec![&umbra_event, &penumbra_event]),
ExportCfg::default(),
almanac,
)?;
Ok(())
}
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
fn main() -> Result<(), Box<dyn Error>> {
pel::init();
// Dynamics models require planetary constants and ephemerides to be defined.
// Let's start by grabbing those by using ANISE's latest MetaAlmanac.
// This will automatically download the DE440s planetary ephemeris,
// the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
// parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
// planetary constants kernels.
// For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
// Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
// references to many functions.
let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
// Define the orbit epoch
let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
// Define the orbit.
// First we need to fetch the Earth J2000 from information from the Almanac.
// This allows the frame to include the gravitational parameters and the shape of the Earth,
// defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
// by loading a different set of planetary constants.
let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
// Placing this GEO bird just above Colorado.
// In theory, the eccentricity is zero, but in practice, it's about 1e-5 to 1e-6 at best.
let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
// Print in in Keplerian form.
println!("{orbit:x}");
let state_bf = almanac.transform_to(orbit, IAU_EARTH_FRAME, None)?;
let (orig_lat_deg, orig_long_deg, orig_alt_km) = state_bf.latlongalt()?;
// Nyx is used for high fidelity propagation, not Keplerian propagation as above.
// Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
// models such as solar radiation pressure.
// Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
let sc = Spacecraft::builder()
.orbit(orbit)
.dry_mass_kg(9.60)
.srp(SrpConfig {
area_m2: 10e-4,
cr: 1.1,
})
.build();
println!("{sc:x}");
// Set up the spacecraft dynamics.
// Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
// The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
// We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
// We're using the JGM3 model here, which is the default in GMAT.
let mut jgm3_meta = MetaFile {
uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
};
// And let's download it if we don't have it yet.
jgm3_meta.process(true)?;
// Build the spherical harmonics.
// The harmonics must be computed in the body fixed frame.
// We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
let harmonics_21x21 = Harmonics::from_stor(
almanac.frame_from_uid(IAU_EARTH_FRAME)?,
HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
);
// Include the spherical harmonics into the orbital dynamics.
orbital_dyn.accel_models.push(harmonics_21x21);
// We define the solar radiation pressure, using the default solar flux and accounting only
// for the eclipsing caused by the Earth and Moon.
let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
// Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
// acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
println!("{dynamics}");
// Finally, let's propagate this orbit to the same epoch as above.
// The first returned value is the spacecraft state at the final epoch.
// The second value is the full trajectory where the step size is variable step used by the propagator.
let (future_sc, trajectory) = Propagator::default(dynamics)
.with(sc, almanac.clone())
.until_epoch_with_traj(epoch + Unit::Century * 0.03)?;
println!("=== High fidelity propagation ===");
println!(
"SMA changed by {:.3} km",
orbit.sma_km()? - future_sc.orbit.sma_km()?
);
println!(
"ECC changed by {:.6}",
orbit.ecc()? - future_sc.orbit.ecc()?
);
println!(
"INC changed by {:.3e} deg",
orbit.inc_deg()? - future_sc.orbit.inc_deg()?
);
println!(
"RAAN changed by {:.3} deg",
orbit.raan_deg()? - future_sc.orbit.raan_deg()?
);
println!(
"AOP changed by {:.3} deg",
orbit.aop_deg()? - future_sc.orbit.aop_deg()?
);
println!(
"TA changed by {:.3} deg",
orbit.ta_deg()? - future_sc.orbit.ta_deg()?
);
// We also have access to the full trajectory throughout the propagation.
println!("{trajectory}");
println!("Spacecraft params after 3 years without active control:\n{future_sc:x}");
// With the trajectory, let's build a few data products.
// 1. Export the trajectory as a parquet file, which includes the Keplerian orbital elements.
let analysis_step = Unit::Minute * 5;
trajectory.to_parquet(
"./03_geo_hf_prop.parquet",
Some(vec![
&EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
]),
ExportCfg::builder().step(analysis_step).build(),
almanac.clone(),
)?;
// 2. Compute the latitude, longitude, and altitude throughout the trajectory by rotating the spacecraft position into the Earth body fixed frame.
// We iterate over the trajectory, grabbing a state every two minutes.
let mut offset_s = vec![];
let mut epoch_str = vec![];
let mut longitude_deg = vec![];
let mut latitude_deg = vec![];
let mut altitude_km = vec![];
for state in trajectory.every(analysis_step) {
// Convert the GEO bird state into the body fixed frame, and keep track of its latitude, longitude, and altitude.
// These define the GEO stationkeeping box.
let this_epoch = state.epoch();
offset_s.push((this_epoch - orbit.epoch).to_seconds());
epoch_str.push(this_epoch.to_isoformat());
let state_bf = almanac.transform_to(state.orbit, IAU_EARTH_FRAME, None)?;
let (lat_deg, long_deg, alt_km) = state_bf.latlongalt()?;
longitude_deg.push(long_deg);
latitude_deg.push(lat_deg);
altitude_km.push(alt_km);
}
println!(
"Longitude changed by {:.3} deg -- Box is 0.1 deg E-W",
orig_long_deg - longitude_deg.last().unwrap()
);
println!(
"Latitude changed by {:.3} deg -- Box is 0.05 deg N-S",
orig_lat_deg - latitude_deg.last().unwrap()
);
println!(
"Altitude changed by {:.3} km -- Box is 30 km",
orig_alt_km - altitude_km.last().unwrap()
);
// Build the station keeping data frame.
let mut sk_df = df!(
"Offset (s)" => offset_s.clone(),
"Epoch (UTC)" => epoch_str.clone(),
"Longitude E-W (deg)" => longitude_deg,
"Latitude N-S (deg)" => latitude_deg,
"Altitude (km)" => altitude_km,
)?;
// Create a file to write the Parquet to
let file = File::create("./03_geo_lla.parquet").expect("Could not create file");
// Create a ParquetWriter and write the DataFrame to the file
ParquetWriter::new(file).finish(&mut sk_df)?;
Ok(())
}
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
fn main() -> Result<(), Box<dyn Error>> {
pel::init();
// ====================== //
// === ALMANAC SET UP === //
// ====================== //
// Dynamics models require planetary constants and ephemerides to be defined.
// Let's start by grabbing those by using ANISE's MetaAlmanac.
let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
.iter()
.collect();
let meta = data_folder.join("lro-dynamics.dhall");
// Load this ephem in the general Almanac we're using for this analysis.
let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
.map_err(Box::new)?
.process(true)
.map_err(Box::new)?;
let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
moon_pc.mu_km3_s2 = 4902.74987;
almanac.planetary_data.set_by_id(MOON, moon_pc)?;
let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
earth_pc.mu_km3_s2 = 398600.436;
almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
// Save this new kernel for reuse.
// In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
almanac
.planetary_data
.save_as(&data_folder.join("lro-specific.pca"), true)?;
// Lock the almanac (an Arc is a read only structure).
let almanac = Arc::new(almanac);
// Orbit determination requires a Trajectory structure, which can be saved as parquet file.
// In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
// To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
// Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
let lro_frame = Frame::from_ephem_j2000(-85);
// To build the trajectory we need to provide a spacecraft template.
let sc_template = Spacecraft::builder()
.dry_mass_kg(1018.0) // Launch masses
.fuel_mass_kg(900.0)
.srp(SrpConfig {
// SRP configuration is arbitrary, but we will be estimating it anyway.
area_m2: 3.9 * 2.7,
cr: 0.96,
})
.orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
.build();
// Now we can build the trajectory from the BSP file.
// We'll arbitrarily set the tracking arc to 48 hours with a one minute time step.
let traj_as_flown = Traj::from_bsp(
lro_frame,
MOON_J2000,
almanac.clone(),
sc_template,
5.seconds(),
Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
Aberration::LT,
Some("LRO".to_string()),
)?;
println!("{traj_as_flown}");
// ====================== //
// === MODEL MATCHING === //
// ====================== //
// Set up the spacecraft dynamics.
// Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
// The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
// We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
// We're using the GRAIL JGGRX model.
let mut jggrx_meta = MetaFile {
uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
};
// And let's download it if we don't have it yet.
jggrx_meta.process(true)?;
// Build the spherical harmonics.
// The harmonics must be computed in the body fixed frame.
// We're using the long term prediction of the Moon principal axes frame.
let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
// let moon_pa_frame = IAU_MOON_FRAME;
let sph_harmonics = Harmonics::from_stor(
almanac.frame_from_uid(moon_pa_frame)?,
HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
);
// Include the spherical harmonics into the orbital dynamics.
orbital_dyn.accel_models.push(sph_harmonics);
// We define the solar radiation pressure, using the default solar flux and accounting only
// for the eclipsing caused by the Earth and Moon.
// Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
// Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
// acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
println!("{dynamics}");
// Now we can build the propagator.
let setup = Propagator::default_dp78(dynamics.clone());
// For reference, let's build the trajectory with Nyx's models from that LRO state.
let (sim_final, traj_as_sim) = setup
.with(*traj_as_flown.first(), almanac.clone())
.until_epoch_with_traj(traj_as_flown.last().epoch())?;
println!("SIM INIT: {:x}", traj_as_flown.first());
println!("SIM FINAL: {sim_final:x}");
// Compute RIC difference between SIM and LRO ephem
let sim_lro_delta = sim_final
.orbit
.ric_difference(&traj_as_flown.last().orbit)?;
println!("{traj_as_sim}");
println!(
"SIM v LRO - RIC Position (m): {:.3}",
sim_lro_delta.radius_km * 1e3
);
println!(
"SIM v LRO - RIC Velocity (m/s): {:.3}",
sim_lro_delta.velocity_km_s * 1e3
);
traj_as_sim.ric_diff_to_parquet(
&traj_as_flown,
"./04_lro_sim_truth_error.parquet",
ExportCfg::default(),
)?;
// ==================== //
// === OD SIMULATOR === //
// ==================== //
// After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
// and the truth LRO state.
// Therefore, we will actually run an estimation from a dispersed LRO state.
// The sc_seed is the true LRO state from the BSP.
let sc_seed = *traj_as_flown.first();
// Load the Deep Space Network ground stations.
// Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
let ground_station_file: PathBuf = [
env!("CARGO_MANIFEST_DIR"),
"examples",
"04_lro_od",
"dsn-network.yaml",
]
.iter()
.collect();
let devices = GroundStation::load_many(ground_station_file)?;
// Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
// Nyx can build a tracking schedule for you based on the first station with access.
let trkconfg_yaml: PathBuf = [
env!("CARGO_MANIFEST_DIR"),
"examples",
"04_lro_od",
"tracking-cfg.yaml",
]
.iter()
.collect();
let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
// Build the tracking arc simulation to generate a "standard measurement".
let mut trk = TrackingArcSim::<Spacecraft, RangeDoppler, _>::new(
devices,
traj_as_flown.clone(),
configs,
)?;
trk.build_schedule(almanac.clone())?;
let arc = trk.generate_measurements(almanac.clone())?;
// Save the simulated tracking data
arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
// We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
println!("{arc}");
// Now that we have simulated measurements, we'll run the orbit determination.
// ===================== //
// === OD ESTIMATION === //
// ===================== //
let sc = SpacecraftUncertainty::builder()
.nominal(sc_seed)
.frame(LocalFrame::RIC)
.x_km(0.5)
.y_km(0.5)
.z_km(0.5)
.vx_km_s(5e-3)
.vy_km_s(5e-3)
.vz_km_s(5e-3)
.build();
// Build the filter initial estimate, which we will reuse in the filter.
let initial_estimate = sc.to_estimate()?;
println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
let kf = KF::new(
// Increase the initial covariance to account for larger deviation.
initial_estimate,
// Until https://github.com/nyx-space/nyx/issues/351, we need to specify the SNC in the acceleration of the Moon J2000 frame.
SNC3::from_diagonal(10 * Unit::Minute, &[1e-11, 1e-11, 1e-11]),
);
// We'll set up the OD process to reject measurements whose residuals are mover than 4 sigmas away from what we expect.
let mut odp = ODProcess::ckf(
setup.with(initial_estimate.state().with_stm(), almanac.clone()),
kf,
Some(ResidRejectCrit::default()),
almanac.clone(),
);
odp.process_arc::<GroundStation>(&arc)?;
let ric_err = traj_as_flown
.at(odp.estimates.last().unwrap().epoch())?
.orbit
.ric_difference(&odp.estimates.last().unwrap().orbital_state())?;
println!("== RIC at end ==");
println!("RIC Position (m): {}", ric_err.radius_km * 1e3);
println!("RIC Velocity (m/s): {}", ric_err.velocity_km_s * 1e3);
odp.to_parquet("./04_lro_od_results.parquet", ExportCfg::default())?;
// In our case, we have the truth trajectory from NASA.
// So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
// Export the OD trajectory first.
let od_trajectory = odp.to_traj()?;
// Build the RIC difference.
od_trajectory.ric_diff_to_parquet(
&traj_as_flown,
"./04_lro_od_truth_error.parquet",
ExportCfg::default(),
)?;
Ok(())
}
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
fn main() -> Result<(), Box<dyn Error>> {
pel::init();
// Dynamics models require planetary constants and ephemerides to be defined.
// Let's start by grabbing those by using ANISE's latest MetaAlmanac.
// This will automatically download the DE440s planetary ephemeris,
// the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
// parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
// planetary constants kernels.
// For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
// Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
// references to many functions.
let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
// Define the orbit epoch
let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
// Define the orbit.
// First we need to fetch the Earth J2000 from information from the Almanac.
// This allows the frame to include the gravitational parameters and the shape of the Earth,
// defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
// by loading a different set of planetary constants.
let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
let orbit =
Orbit::try_keplerian_altitude(300.0, 0.015, 68.5, 65.2, 75.0, 0.0, epoch, earth_j2000)?;
// Print in in Keplerian form.
println!("{orbit:x}");
// There are two ways to propagate an orbit. We can make a quick approximation assuming only two-body
// motion. This is a useful first order approximation but it isn't used in real-world applications.
// This approach is a feature of ANISE.
let future_orbit_tb = orbit.at_epoch(epoch + Unit::Day * 3)?;
println!("{future_orbit_tb:x}");
// Two body propagation relies solely on Kepler's laws, so only the true anomaly will change.
println!(
"SMA changed by {:.3e} km",
orbit.sma_km()? - future_orbit_tb.sma_km()?
);
println!(
"ECC changed by {:.3e}",
orbit.ecc()? - future_orbit_tb.ecc()?
);
println!(
"INC changed by {:.3e} deg",
orbit.inc_deg()? - future_orbit_tb.inc_deg()?
);
println!(
"RAAN changed by {:.3e} deg",
orbit.raan_deg()? - future_orbit_tb.raan_deg()?
);
println!(
"AOP changed by {:.3e} deg",
orbit.aop_deg()? - future_orbit_tb.aop_deg()?
);
println!(
"TA changed by {:.3} deg",
orbit.ta_deg()? - future_orbit_tb.ta_deg()?
);
// Nyx is used for high fidelity propagation, not Keplerian propagation as above.
// Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
// models such as solar radiation pressure.
// Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
let sc = Spacecraft::builder()
.orbit(orbit)
.dry_mass_kg(9.60)
.srp(SrpConfig {
area_m2: 10e-4,
cr: 1.1,
})
.build();
println!("{sc:x}");
// Set up the spacecraft dynamics.
// Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
// The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
// We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
// We're using the JGM3 model here, which is the default in GMAT.
let mut jgm3_meta = MetaFile {
uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
};
// And let's download it if we don't have it yet.
jgm3_meta.process(true)?;
// Build the spherical harmonics.
// The harmonics must be computed in the body fixed frame.
// We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
let harmonics_21x21 = Harmonics::from_stor(
almanac.frame_from_uid(IAU_EARTH_FRAME)?,
HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
);
// Include the spherical harmonics into the orbital dynamics.
orbital_dyn.accel_models.push(harmonics_21x21);
// We define the solar radiation pressure, using the default solar flux and accounting only
// for the eclipsing caused by the Earth.
let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
// Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
// acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
println!("{dynamics}");
// Finally, let's propagate this orbit to the same epoch as above.
// The first returned value is the spacecraft state at the final epoch.
// The second value is the full trajectory where the step size is variable step used by the propagator.
let (future_sc, trajectory) = Propagator::default(dynamics)
.with(sc, almanac.clone())
.until_epoch_with_traj(future_orbit_tb.epoch)?;
println!("=== High fidelity propagation ===");
println!(
"SMA changed by {:.3} km",
orbit.sma_km()? - future_sc.orbit.sma_km()?
);
println!(
"ECC changed by {:.6}",
orbit.ecc()? - future_sc.orbit.ecc()?
);
println!(
"INC changed by {:.3e} deg",
orbit.inc_deg()? - future_sc.orbit.inc_deg()?
);
println!(
"RAAN changed by {:.3} deg",
orbit.raan_deg()? - future_sc.orbit.raan_deg()?
);
println!(
"AOP changed by {:.3} deg",
orbit.aop_deg()? - future_sc.orbit.aop_deg()?
);
println!(
"TA changed by {:.3} deg",
orbit.ta_deg()? - future_sc.orbit.ta_deg()?
);
// We also have access to the full trajectory throughout the propagation.
println!("{trajectory}");
// With the trajectory, let's build a few data products.
// 1. Export the trajectory as a CCSDS OEM version 2.0 file and as a parquet file, which includes the Keplerian orbital elements.
trajectory.to_oem_file(
"./01_cubesat_hf_prop.oem",
ExportCfg::builder().step(Unit::Minute * 2).build(),
)?;
trajectory.to_parquet_with_cfg(
"./01_cubesat_hf_prop.parquet",
ExportCfg::builder().step(Unit::Minute * 2).build(),
almanac.clone(),
)?;
// 2. Compare the difference in the radial-intrack-crosstrack frame between the high fidelity
// and Keplerian propagation. The RIC frame is commonly used to compute the difference in position
// and velocity of different spacecraft.
// 3. Compute the azimuth, elevation, range, and range-rate data of that spacecraft as seen from Boulder, CO, USA.
let boulder_station = GroundStation::from_point(
"Boulder, CO, USA".to_string(),
40.014984, // latitude in degrees
-105.270546, // longitude in degrees
1.6550, // altitude in kilometers
almanac.frame_from_uid(IAU_EARTH_FRAME)?,
);
// We iterate over the trajectory, grabbing a state every two minutes.
let mut offset_s = vec![];
let mut epoch_str = vec![];
let mut ric_x_km = vec![];
let mut ric_y_km = vec![];
let mut ric_z_km = vec![];
let mut ric_vx_km_s = vec![];
let mut ric_vy_km_s = vec![];
let mut ric_vz_km_s = vec![];
let mut azimuth_deg = vec![];
let mut elevation_deg = vec![];
let mut range_km = vec![];
let mut range_rate_km_s = vec![];
for state in trajectory.every(Unit::Minute * 2) {
// Try to compute the Keplerian/two body state just in time.
// This method occasionally fails to converge on an appropriate true anomaly
// from the mean anomaly. If that happens, we just skip this state.
// The high fidelity and Keplerian states diverge continuously, and we're curious
// about the divergence in this quick analysis.
let this_epoch = state.epoch();
match orbit.at_epoch(this_epoch) {
Ok(tb_then) => {
offset_s.push((this_epoch - orbit.epoch).to_seconds());
epoch_str.push(format!("{this_epoch}"));
// Compute the two body state just in time.
let ric = state.orbit.ric_difference(&tb_then)?;
ric_x_km.push(ric.radius_km.x);
ric_y_km.push(ric.radius_km.y);
ric_z_km.push(ric.radius_km.z);
ric_vx_km_s.push(ric.velocity_km_s.x);
ric_vy_km_s.push(ric.velocity_km_s.y);
ric_vz_km_s.push(ric.velocity_km_s.z);
// Compute the AER data for each state.
let aer = almanac.azimuth_elevation_range_sez(
state.orbit,
boulder_station.to_orbit(this_epoch, &almanac)?,
None,
None,
)?;
azimuth_deg.push(aer.azimuth_deg);
elevation_deg.push(aer.elevation_deg);
range_km.push(aer.range_km);
range_rate_km_s.push(aer.range_rate_km_s);
}
Err(e) => warn!("{} {e}", state.epoch()),
};
}
// Build the data frames.
let ric_df = df!(
"Offset (s)" => offset_s.clone(),
"Epoch" => epoch_str.clone(),
"RIC X (km)" => ric_x_km,
"RIC Y (km)" => ric_y_km,
"RIC Z (km)" => ric_z_km,
"RIC VX (km/s)" => ric_vx_km_s,
"RIC VY (km/s)" => ric_vy_km_s,
"RIC VZ (km/s)" => ric_vz_km_s,
)?;
println!("RIC difference at start\n{}", ric_df.head(Some(10)));
println!("RIC difference at end\n{}", ric_df.tail(Some(10)));
let aer_df = df!(
"Offset (s)" => offset_s.clone(),
"Epoch" => epoch_str.clone(),
"azimuth (deg)" => azimuth_deg,
"elevation (deg)" => elevation_deg,
"range (km)" => range_km,
"range rate (km/s)" => range_rate_km_s,
)?;
// Finally, let's see when the spacecraft is visible, assuming 15 degrees minimum elevation.
let mask = aer_df.column("elevation (deg)")?.gt(15.0)?;
let cubesat_visible = aer_df.filter(&mask)?;
println!("{cubesat_visible}");
Ok(())
}
Source§impl Spacecraft
impl Spacecraft
Sourcepub fn new(
orbit: Orbit,
dry_mass_kg: f64,
fuel_mass_kg: f64,
srp_area_m2: f64,
drag_area_m2: f64,
cr: f64,
cd: f64,
) -> Self
pub fn new( orbit: Orbit, dry_mass_kg: f64, fuel_mass_kg: f64, srp_area_m2: f64, drag_area_m2: f64, cr: f64, cd: f64, ) -> Self
Initialize a spacecraft state from all of its parameters
Sourcepub fn from_thruster(
orbit: Orbit,
dry_mass_kg: f64,
fuel_mass_kg: f64,
thruster: Thruster,
mode: GuidanceMode,
) -> Self
pub fn from_thruster( orbit: Orbit, dry_mass_kg: f64, fuel_mass_kg: f64, thruster: Thruster, mode: GuidanceMode, ) -> Self
Initialize a spacecraft state from only a thruster and mass. Use this when designing guidance laws while ignoring drag and SRP.
Sourcepub fn from_srp_defaults(
orbit: Orbit,
dry_mass_kg: f64,
srp_area_m2: f64,
) -> Self
pub fn from_srp_defaults( orbit: Orbit, dry_mass_kg: f64, srp_area_m2: f64, ) -> Self
Initialize a spacecraft state from the SRP default 1.8 for coefficient of reflectivity (fuel mass and drag parameters nullified!)
Sourcepub fn from_drag_defaults(
orbit: Orbit,
dry_mass_kg: f64,
drag_area_m2: f64,
) -> Self
pub fn from_drag_defaults( orbit: Orbit, dry_mass_kg: f64, drag_area_m2: f64, ) -> Self
Initialize a spacecraft state from the SRP default 1.8 for coefficient of drag (fuel mass and SRP parameters nullified!)
pub fn with_dv_km_s(self, dv_km_s: Vector3<f64>) -> Self
Sourcepub fn with_dry_mass(self, dry_mass_kg: f64) -> Self
pub fn with_dry_mass(self, dry_mass_kg: f64) -> Self
Returns a copy of the state with a new dry mass
Sourcepub fn with_fuel_mass(self, fuel_mass_kg: f64) -> Self
pub fn with_fuel_mass(self, fuel_mass_kg: f64) -> Self
Returns a copy of the state with a new fuel mass
Sourcepub fn with_srp(self, srp_area_m2: f64, cr: f64) -> Self
pub fn with_srp(self, srp_area_m2: f64, cr: f64) -> Self
Returns a copy of the state with a new SRP area and CR
Sourcepub fn with_srp_area(self, srp_area_m2: f64) -> Self
pub fn with_srp_area(self, srp_area_m2: f64) -> Self
Returns a copy of the state with a new SRP area
Sourcepub fn with_cr(self, cr: f64) -> Self
pub fn with_cr(self, cr: f64) -> Self
Returns a copy of the state with a new coefficient of reflectivity
Sourcepub fn with_drag(self, drag_area_m2: f64, cd: f64) -> Self
pub fn with_drag(self, drag_area_m2: f64, cd: f64) -> Self
Returns a copy of the state with a new drag area and CD
Sourcepub fn with_drag_area(self, drag_area_m2: f64) -> Self
pub fn with_drag_area(self, drag_area_m2: f64) -> Self
Returns a copy of the state with a new SRP area
Sourcepub fn with_cd(self, cd: f64) -> Self
pub fn with_cd(self, cd: f64) -> Self
Returns a copy of the state with a new coefficient of drag
Sourcepub fn with_orbit(self, orbit: Orbit) -> Self
pub fn with_orbit(self, orbit: Orbit) -> Self
Returns a copy of the state with a new orbit
Sourcepub fn rss(&self, other: &Self) -> PhysicsResult<(f64, f64, f64)>
pub fn rss(&self, other: &Self) -> PhysicsResult<(f64, f64, f64)>
Returns the root sum square error between this spacecraft and the other, in kilometers for the position, kilometers per second in velocity, and kilograms in fuel
Sourcepub fn enable_stm(&mut self)
pub fn enable_stm(&mut self)
Sets the STM of this state of identity, which also enables computation of the STM for spacecraft navigation
Sourcepub fn with_stm(self) -> Self
pub fn with_stm(self) -> Self
Copies the current state but sets the STM to identity
Examples found in repository?
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
fn main() -> Result<(), Box<dyn Error>> {
pel::init();
// Dynamics models require planetary constants and ephemerides to be defined.
// Let's start by grabbing those by using ANISE's latest MetaAlmanac.
// For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
// Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
// Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
let mut latest_jwst_ephem = MetaFile {
uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
crc32: None,
};
latest_jwst_ephem.process(true)?;
// Load this ephem in the general Almanac we're using for this analysis.
let almanac = Arc::new(
MetaAlmanac::latest()
.map_err(Box::new)?
.load_from_metafile(latest_jwst_ephem, true)?,
);
// By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
// in the BSP. We need this ID in order to query the ephemeris.
const JWST_NAIF_ID: i32 = -170;
// Let's build a frame in the J2000 orientation centered on the JWST.
const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);
// Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
println!("JWST defined from {earliest_epoch} to {latest_epoch}");
// Fetch the state, printing it in the Earth J2000 frame.
let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
println!("{jwst_orbit:x}");
// Build the spacecraft
// SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
// SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
let jwst = Spacecraft::builder()
.orbit(jwst_orbit)
.srp(SrpConfig {
area_m2: 21.197 * 14.162,
cr: 1.56,
})
.dry_mass_kg(6200.0)
.build();
// Build up the spacecraft uncertainty builder.
// We can use the spacecraft uncertainty structure to build this up.
// We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
// in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
// Nyx can also estimate the deviation of the spacecraft parameters.
let jwst_uncertainty = SpacecraftUncertainty::builder()
.nominal(jwst)
.frame(LocalFrame::RIC)
.x_km(0.5)
.y_km(0.3)
.z_km(1.5)
.vx_km_s(1e-4)
.vy_km_s(0.6e-3)
.vz_km_s(3e-3)
.build();
println!("{jwst_uncertainty}");
// Build the Kalman filter estimate.
// Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
// but this approach requires quite a bit more boilerplate code.
let jwst_estimate = jwst_uncertainty.to_estimate()?;
// Set up the spacecraft dynamics.
// We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
// We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.
let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
// Finalize setting up the dynamics.
let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
// Build the propagator set up to use for the whole analysis.
let setup = Propagator::default(dynamics);
// All of the analysis will use this duration.
let prediction_duration = 6.5 * Unit::Day;
// === Covariance mapping ===
// For the covariance mapping / prediction, we'll use the common orbit determination approach.
// This is done by setting up a spacecraft OD process, and predicting for the analysis duration.
let ckf = KF::no_snc(jwst_estimate);
// Build the propagation instance for the OD process.
let prop = setup.with(jwst.with_stm(), almanac.clone());
let mut odp = SpacecraftODProcess::ckf(prop, ckf, None, almanac.clone());
// Define the prediction step, i.e. how often we want to know the covariance.
let step = 1_i64.minutes();
// Finally, predict, and export the trajectory with covariance to a parquet file.
odp.predict_for(step, prediction_duration)?;
odp.to_parquet("./02_jwst_covar_map.parquet", ExportCfg::default())?;
// === Monte Carlo framework ===
// Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.
let my_mc = MonteCarlo::new(
jwst, // Nominal state
jwst_estimate.to_random_variable()?,
"02_jwst".to_string(), // Scenario name
None, // No specific seed specified, so one will be drawn from the computer's entropy.
);
let num_runs = 5_000;
let rslts = my_mc.run_until_epoch(
setup,
almanac.clone(),
jwst.epoch() + prediction_duration,
num_runs,
);
assert_eq!(rslts.runs.len(), num_runs);
// Finally, export these results, computing the eclipse percentage for all of these results.
// For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
let eclipse_loc = EclipseLocator::cislunar(almanac.clone());
let umbra_event = eclipse_loc.to_umbra_event();
let penumbra_event = eclipse_loc.to_penumbra_event();
rslts.to_parquet(
"02_jwst_monte_carlo.parquet",
Some(vec![&umbra_event, &penumbra_event]),
ExportCfg::default(),
almanac,
)?;
Ok(())
}
More examples
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
fn main() -> Result<(), Box<dyn Error>> {
pel::init();
// ====================== //
// === ALMANAC SET UP === //
// ====================== //
// Dynamics models require planetary constants and ephemerides to be defined.
// Let's start by grabbing those by using ANISE's MetaAlmanac.
let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
.iter()
.collect();
let meta = data_folder.join("lro-dynamics.dhall");
// Load this ephem in the general Almanac we're using for this analysis.
let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
.map_err(Box::new)?
.process(true)
.map_err(Box::new)?;
let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
moon_pc.mu_km3_s2 = 4902.74987;
almanac.planetary_data.set_by_id(MOON, moon_pc)?;
let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
earth_pc.mu_km3_s2 = 398600.436;
almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
// Save this new kernel for reuse.
// In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
almanac
.planetary_data
.save_as(&data_folder.join("lro-specific.pca"), true)?;
// Lock the almanac (an Arc is a read only structure).
let almanac = Arc::new(almanac);
// Orbit determination requires a Trajectory structure, which can be saved as parquet file.
// In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
// To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
// Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
let lro_frame = Frame::from_ephem_j2000(-85);
// To build the trajectory we need to provide a spacecraft template.
let sc_template = Spacecraft::builder()
.dry_mass_kg(1018.0) // Launch masses
.fuel_mass_kg(900.0)
.srp(SrpConfig {
// SRP configuration is arbitrary, but we will be estimating it anyway.
area_m2: 3.9 * 2.7,
cr: 0.96,
})
.orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
.build();
// Now we can build the trajectory from the BSP file.
// We'll arbitrarily set the tracking arc to 48 hours with a one minute time step.
let traj_as_flown = Traj::from_bsp(
lro_frame,
MOON_J2000,
almanac.clone(),
sc_template,
5.seconds(),
Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
Aberration::LT,
Some("LRO".to_string()),
)?;
println!("{traj_as_flown}");
// ====================== //
// === MODEL MATCHING === //
// ====================== //
// Set up the spacecraft dynamics.
// Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
// The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
// We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
// We're using the GRAIL JGGRX model.
let mut jggrx_meta = MetaFile {
uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
};
// And let's download it if we don't have it yet.
jggrx_meta.process(true)?;
// Build the spherical harmonics.
// The harmonics must be computed in the body fixed frame.
// We're using the long term prediction of the Moon principal axes frame.
let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
// let moon_pa_frame = IAU_MOON_FRAME;
let sph_harmonics = Harmonics::from_stor(
almanac.frame_from_uid(moon_pa_frame)?,
HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
);
// Include the spherical harmonics into the orbital dynamics.
orbital_dyn.accel_models.push(sph_harmonics);
// We define the solar radiation pressure, using the default solar flux and accounting only
// for the eclipsing caused by the Earth and Moon.
// Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
// Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
// acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
println!("{dynamics}");
// Now we can build the propagator.
let setup = Propagator::default_dp78(dynamics.clone());
// For reference, let's build the trajectory with Nyx's models from that LRO state.
let (sim_final, traj_as_sim) = setup
.with(*traj_as_flown.first(), almanac.clone())
.until_epoch_with_traj(traj_as_flown.last().epoch())?;
println!("SIM INIT: {:x}", traj_as_flown.first());
println!("SIM FINAL: {sim_final:x}");
// Compute RIC difference between SIM and LRO ephem
let sim_lro_delta = sim_final
.orbit
.ric_difference(&traj_as_flown.last().orbit)?;
println!("{traj_as_sim}");
println!(
"SIM v LRO - RIC Position (m): {:.3}",
sim_lro_delta.radius_km * 1e3
);
println!(
"SIM v LRO - RIC Velocity (m/s): {:.3}",
sim_lro_delta.velocity_km_s * 1e3
);
traj_as_sim.ric_diff_to_parquet(
&traj_as_flown,
"./04_lro_sim_truth_error.parquet",
ExportCfg::default(),
)?;
// ==================== //
// === OD SIMULATOR === //
// ==================== //
// After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
// and the truth LRO state.
// Therefore, we will actually run an estimation from a dispersed LRO state.
// The sc_seed is the true LRO state from the BSP.
let sc_seed = *traj_as_flown.first();
// Load the Deep Space Network ground stations.
// Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
let ground_station_file: PathBuf = [
env!("CARGO_MANIFEST_DIR"),
"examples",
"04_lro_od",
"dsn-network.yaml",
]
.iter()
.collect();
let devices = GroundStation::load_many(ground_station_file)?;
// Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
// Nyx can build a tracking schedule for you based on the first station with access.
let trkconfg_yaml: PathBuf = [
env!("CARGO_MANIFEST_DIR"),
"examples",
"04_lro_od",
"tracking-cfg.yaml",
]
.iter()
.collect();
let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
// Build the tracking arc simulation to generate a "standard measurement".
let mut trk = TrackingArcSim::<Spacecraft, RangeDoppler, _>::new(
devices,
traj_as_flown.clone(),
configs,
)?;
trk.build_schedule(almanac.clone())?;
let arc = trk.generate_measurements(almanac.clone())?;
// Save the simulated tracking data
arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
// We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
println!("{arc}");
// Now that we have simulated measurements, we'll run the orbit determination.
// ===================== //
// === OD ESTIMATION === //
// ===================== //
let sc = SpacecraftUncertainty::builder()
.nominal(sc_seed)
.frame(LocalFrame::RIC)
.x_km(0.5)
.y_km(0.5)
.z_km(0.5)
.vx_km_s(5e-3)
.vy_km_s(5e-3)
.vz_km_s(5e-3)
.build();
// Build the filter initial estimate, which we will reuse in the filter.
let initial_estimate = sc.to_estimate()?;
println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
let kf = KF::new(
// Increase the initial covariance to account for larger deviation.
initial_estimate,
// Until https://github.com/nyx-space/nyx/issues/351, we need to specify the SNC in the acceleration of the Moon J2000 frame.
SNC3::from_diagonal(10 * Unit::Minute, &[1e-11, 1e-11, 1e-11]),
);
// We'll set up the OD process to reject measurements whose residuals are mover than 4 sigmas away from what we expect.
let mut odp = ODProcess::ckf(
setup.with(initial_estimate.state().with_stm(), almanac.clone()),
kf,
Some(ResidRejectCrit::default()),
almanac.clone(),
);
odp.process_arc::<GroundStation>(&arc)?;
let ric_err = traj_as_flown
.at(odp.estimates.last().unwrap().epoch())?
.orbit
.ric_difference(&odp.estimates.last().unwrap().orbital_state())?;
println!("== RIC at end ==");
println!("RIC Position (m): {}", ric_err.radius_km * 1e3);
println!("RIC Velocity (m/s): {}", ric_err.velocity_km_s * 1e3);
odp.to_parquet("./04_lro_od_results.parquet", ExportCfg::default())?;
// In our case, we have the truth trajectory from NASA.
// So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
// Export the OD trajectory first.
let od_trajectory = odp.to_traj()?;
// Build the RIC difference.
od_trajectory.ric_diff_to_parquet(
&traj_as_flown,
"./04_lro_od_truth_error.parquet",
ExportCfg::default(),
)?;
Ok(())
}
Sourcepub fn with_guidance_mode(self, mode: GuidanceMode) -> Self
pub fn with_guidance_mode(self, mode: GuidanceMode) -> Self
Returns a copy of the state with the provided guidance mode
pub fn mode(&self) -> GuidanceMode
pub fn mut_mode(&mut self, mode: GuidanceMode)
Trait Implementations§
Source§impl Add<Matrix<f64, Const<6>, Const<1>, <DefaultAllocator as Allocator<Const<6>>>::Buffer<f64>>> for Spacecraft
impl Add<Matrix<f64, Const<6>, Const<1>, <DefaultAllocator as Allocator<Const<6>>>::Buffer<f64>>> for Spacecraft
Source§impl Add<Matrix<f64, Const<9>, Const<1>, <DefaultAllocator as Allocator<Const<9>>>::Buffer<f64>>> for Spacecraft
impl Add<Matrix<f64, Const<9>, Const<1>, <DefaultAllocator as Allocator<Const<9>>>::Buffer<f64>>> for Spacecraft
Source§impl Clone for Spacecraft
impl Clone for Spacecraft
Source§fn clone(&self) -> Spacecraft
fn clone(&self) -> Spacecraft
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl ConfigRepr for Spacecraft
impl ConfigRepr for Spacecraft
Source§fn load<P>(path: P) -> Result<Self, ConfigError>
fn load<P>(path: P) -> Result<Self, ConfigError>
Source§fn load_many<P>(path: P) -> Result<Vec<Self>, ConfigError>
fn load_many<P>(path: P) -> Result<Vec<Self>, ConfigError>
Source§fn load_named<P>(path: P) -> Result<BTreeMap<String, Self>, ConfigError>
fn load_named<P>(path: P) -> Result<BTreeMap<String, Self>, ConfigError>
Source§fn loads_many(data: &str) -> Result<Vec<Self>, ConfigError>
fn loads_many(data: &str) -> Result<Vec<Self>, ConfigError>
Source§fn loads_named(data: &str) -> Result<BTreeMap<String, Self>, ConfigError>
fn loads_named(data: &str) -> Result<BTreeMap<String, Self>, ConfigError>
Source§impl Debug for Spacecraft
impl Debug for Spacecraft
Source§impl Default for Spacecraft
impl Default for Spacecraft
Source§impl<'de> Deserialize<'de> for Spacecraft
impl<'de> Deserialize<'de> for Spacecraft
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Source§impl Display for Spacecraft
impl Display for Spacecraft
Source§impl EstimateFrom<Spacecraft, RangeDoppler> for Spacecraft
impl EstimateFrom<Spacecraft, RangeDoppler> for Spacecraft
Source§fn extract(from: Spacecraft) -> Self
fn extract(from: Spacecraft) -> Self
Source§fn sensitivity(
msr: &RangeDoppler,
receiver: Self,
transmitter: Orbit,
) -> OMatrix<f64, <RangeDoppler as Measurement>::MeasurementSize, Self::Size>
fn sensitivity( msr: &RangeDoppler, receiver: Self, transmitter: Orbit, ) -> OMatrix<f64, <RangeDoppler as Measurement>::MeasurementSize, Self::Size>
Source§impl EventEvaluator<Spacecraft> for Event
impl EventEvaluator<Spacecraft> for Event
Source§fn eval(
&self,
state: &Spacecraft,
almanac: Arc<Almanac>,
) -> Result<f64, EventError>
fn eval( &self, state: &Spacecraft, almanac: Arc<Almanac>, ) -> Result<f64, EventError>
fn epoch_precision(&self) -> Duration
fn value_precision(&self) -> f64
Source§fn eval_string(
&self,
state: &Spacecraft,
_almanac: Arc<Almanac>,
) -> Result<String, EventError>
fn eval_string( &self, state: &Spacecraft, _almanac: Arc<Almanac>, ) -> Result<String, EventError>
fn eval_crossing( &self, prev_state: &S, next_state: &S, almanac: Arc<Almanac>, ) -> Result<bool, EventError>
Source§impl EventEvaluator<Spacecraft> for PenumbraEvent
impl EventEvaluator<Spacecraft> for PenumbraEvent
Source§fn epoch_precision(&self) -> Duration
fn epoch_precision(&self) -> Duration
Stop searching when the time has converged to less than 0.1 seconds
Source§fn value_precision(&self) -> f64
fn value_precision(&self) -> f64
Finds the slightest penumbra within 2% (i.e. 98% in visibility)
Source§fn eval(
&self,
sc: &Spacecraft,
almanac: Arc<Almanac>,
) -> Result<f64, EventError>
fn eval( &self, sc: &Spacecraft, almanac: Arc<Almanac>, ) -> Result<f64, EventError>
Source§fn eval_string(
&self,
state: &Spacecraft,
almanac: Arc<Almanac>,
) -> Result<String, EventError>
fn eval_string( &self, state: &Spacecraft, almanac: Arc<Almanac>, ) -> Result<String, EventError>
fn eval_crossing( &self, prev_state: &S, next_state: &S, almanac: Arc<Almanac>, ) -> Result<bool, EventError>
Source§impl EventEvaluator<Spacecraft> for UmbraEvent
impl EventEvaluator<Spacecraft> for UmbraEvent
Source§fn epoch_precision(&self) -> Duration
fn epoch_precision(&self) -> Duration
Stop searching when the time has converged to less than 0.1 seconds
Source§fn value_precision(&self) -> f64
fn value_precision(&self) -> f64
Finds the darkest part of an eclipse within 2% of penumbra (i.e. 98% in shadow)
Source§fn eval(
&self,
sc: &Spacecraft,
almanac: Arc<Almanac>,
) -> Result<f64, EventError>
fn eval( &self, sc: &Spacecraft, almanac: Arc<Almanac>, ) -> Result<f64, EventError>
Source§fn eval_string(
&self,
state: &Spacecraft,
almanac: Arc<Almanac>,
) -> Result<String, EventError>
fn eval_string( &self, state: &Spacecraft, almanac: Arc<Almanac>, ) -> Result<String, EventError>
fn eval_crossing( &self, prev_state: &S, next_state: &S, almanac: Arc<Almanac>, ) -> Result<bool, EventError>
Source§impl From<CartesianState> for Spacecraft
impl From<CartesianState> for Spacecraft
Source§impl Interpolatable for Spacecraft
impl Interpolatable for Spacecraft
Source§fn interpolate(
self,
epoch: Epoch,
states: &[Self],
) -> Result<Self, InterpolationError>
fn interpolate( self, epoch: Epoch, states: &[Self], ) -> Result<Self, InterpolationError>
Source§fn export_params() -> Vec<StateParameter>
fn export_params() -> Vec<StateParameter>
Source§impl LowerExp for Spacecraft
impl LowerExp for Spacecraft
Source§impl LowerHex for Spacecraft
impl LowerHex for Spacecraft
fn orbital_state(&self) -> Orbit
Source§fn expected_state(&self) -> Orbit
fn expected_state(&self) -> Orbit
Source§impl PartialEq for Spacecraft
impl PartialEq for Spacecraft
Source§impl Serialize for Spacecraft
impl Serialize for Spacecraft
Source§impl State for Spacecraft
impl State for Spacecraft
Source§fn to_vector(&self) -> OVector<f64, Const<90>>
fn to_vector(&self) -> OVector<f64, Const<90>>
The vector is organized as such: [X, Y, Z, Vx, Vy, Vz, Cr, Cd, Fuel mass, STM(9x9)]
Source§fn set(&mut self, epoch: Epoch, vector: &OVector<f64, Const<90>>)
fn set(&mut self, epoch: Epoch, vector: &OVector<f64, Const<90>>)
Vector is expected to be organized as such: [X, Y, Z, Vx, Vy, Vz, Cr, Cd, Fuel mass, STM(9x9)]
Source§fn stm(&self) -> Result<OMatrix<f64, Self::Size, Self::Size>, DynamicsError>
fn stm(&self) -> Result<OMatrix<f64, Self::Size, Self::Size>, DynamicsError>
diag(STM) = [X,Y,Z,Vx,Vy,Vz,Cr,Cd,Fuel] WARNING: Currently the STM assumes that the fuel mass is constant at ALL TIMES!
type VecLength = Const<90>
Source§fn reset_stm(&mut self)
fn reset_stm(&mut self)
Source§fn zeros() -> Self
fn zeros() -> Self
Source§fn add(self, other: OVector<f64, Self::Size>) -> Self
fn add(self, other: OVector<f64, Self::Size>) -> Self
Source§fn value(&self, param: StateParameter) -> Result<f64, StateError>
fn value(&self, param: StateParameter) -> Result<f64, StateError>
Source§fn set_value(
&mut self,
param: StateParameter,
val: f64,
) -> Result<(), StateError>
fn set_value( &mut self, param: StateParameter, val: f64, ) -> Result<(), StateError>
value
is available CANNOT be also set for that parameter (it’s a much harder problem!)Source§impl TrackingDeviceSim<Spacecraft, RangeDoppler> for GroundStation
impl TrackingDeviceSim<Spacecraft, RangeDoppler> for GroundStation
Source§fn measure(
&mut self,
epoch: Epoch,
traj: &Traj<Spacecraft>,
rng: Option<&mut Pcg64Mcg>,
almanac: Arc<Almanac>,
) -> Result<Option<RangeDoppler>, ODError>
fn measure( &mut self, epoch: Epoch, traj: &Traj<Spacecraft>, rng: Option<&mut Pcg64Mcg>, almanac: Arc<Almanac>, ) -> Result<Option<RangeDoppler>, ODError>
Perform a measurement from the ground station to the receiver (rx).
Source§fn measurement_covar(
&mut self,
epoch: Epoch,
) -> Result<OMatrix<f64, <RangeDoppler as Measurement>::MeasurementSize, <RangeDoppler as Measurement>::MeasurementSize>, ODError>
fn measurement_covar( &mut self, epoch: Epoch, ) -> Result<OMatrix<f64, <RangeDoppler as Measurement>::MeasurementSize, <RangeDoppler as Measurement>::MeasurementSize>, ODError>
Returns the measurement noise of this ground station.
§Methodology
Noises are modeled using a StochasticNoise process, defined by the sigma on the turn-on bias and on the steady state noise. The measurement noise is computed assuming that all measurements are independent variables, i.e. the measurement matrix is a diagonal matrix. The first item in the diagonal is the range noise (in km), set to the square of the steady state sigma. The second item is the Doppler noise (in km/s), set to the square of the steady state sigma of that Gauss Markov process.
Source§fn location(
&self,
epoch: Epoch,
frame: Frame,
almanac: Arc<Almanac>,
) -> AlmanacResult<Orbit>
fn location( &self, epoch: Epoch, frame: Frame, almanac: Arc<Almanac>, ) -> AlmanacResult<Orbit>
fn measure_instantaneous( &mut self, rx: Spacecraft, rng: Option<&mut Pcg64Mcg>, almanac: Arc<Almanac>, ) -> Result<Option<RangeDoppler>, ODError>
Source§impl UpperHex for Spacecraft
impl UpperHex for Spacecraft
impl Copy for Spacecraft
Auto Trait Implementations§
impl Freeze for Spacecraft
impl RefUnwindSafe for Spacecraft
impl Send for Spacecraft
impl Sync for Spacecraft
impl Unpin for Spacecraft
impl UnwindSafe for Spacecraft
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> FromDhall for Twhere
T: DeserializeOwned,
impl<T> FromDhall for Twhere
T: DeserializeOwned,
fn from_dhall(v: &Value) -> Result<T, Error>
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.