pub struct Traj<S: Interpolatable>{
pub name: Option<String>,
pub states: Vec<S>,
}
Expand description
Store a trajectory of any State.
Fields§
§name: Option<String>
Optionally name this trajectory
states: Vec<S>
We use a vector because we know that the states are produced in a chronological manner (the direction does not matter).
Implementations§
Source§impl Traj<Spacecraft>
impl Traj<Spacecraft>
Sourcepub fn from_bsp(
target_frame: Frame,
observer_frame: Frame,
almanac: Arc<Almanac>,
sc_template: Spacecraft,
step: Duration,
start_epoch: Option<Epoch>,
end_epoch: Option<Epoch>,
ab_corr: Option<Aberration>,
name: Option<String>,
) -> Result<Self, AlmanacError>
pub fn from_bsp( target_frame: Frame, observer_frame: Frame, almanac: Arc<Almanac>, sc_template: Spacecraft, step: Duration, start_epoch: Option<Epoch>, end_epoch: Option<Epoch>, ab_corr: Option<Aberration>, name: Option<String>, ) -> Result<Self, AlmanacError>
Builds a new trajectory built from the SPICE BSP (SPK) file loaded in the provided Almanac, provided the start and stop epochs.
If the start and stop epochs are not provided, then the full domain of the trajectory will be used.
Examples found in repository?
34fn main() -> Result<(), Box<dyn Error>> {
35 pel::init();
36
37 // ====================== //
38 // === ALMANAC SET UP === //
39 // ====================== //
40
41 // Dynamics models require planetary constants and ephemerides to be defined.
42 // Let's start by grabbing those by using ANISE's MetaAlmanac.
43
44 let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
45 .iter()
46 .collect();
47
48 let meta = data_folder.join("lro-dynamics.dhall");
49
50 // Load this ephem in the general Almanac we're using for this analysis.
51 let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
52 .map_err(Box::new)?
53 .process(true)
54 .map_err(Box::new)?;
55
56 let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
57 moon_pc.mu_km3_s2 = 4902.74987;
58 almanac.planetary_data.set_by_id(MOON, moon_pc)?;
59
60 let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
61 earth_pc.mu_km3_s2 = 398600.436;
62 almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
63
64 // Save this new kernel for reuse.
65 // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
66 almanac
67 .planetary_data
68 .save_as(&data_folder.join("lro-specific.pca"), true)?;
69
70 // Lock the almanac (an Arc is a read only structure).
71 let almanac = Arc::new(almanac);
72
73 // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
74 // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
75 // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
76 // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
77 let lro_frame = Frame::from_ephem_j2000(-85);
78
79 // To build the trajectory we need to provide a spacecraft template.
80 let sc_template = Spacecraft::builder()
81 .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
82 .srp(SRPData {
83 // SRP configuration is arbitrary, but we will be estimating it anyway.
84 area_m2: 3.9 * 2.7,
85 coeff_reflectivity: 0.96,
86 })
87 .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
88 .build();
89 // Now we can build the trajectory from the BSP file.
90 // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
91 let traj_as_flown = Traj::from_bsp(
92 lro_frame,
93 MOON_J2000,
94 almanac.clone(),
95 sc_template,
96 5.seconds(),
97 Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
98 Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
99 Aberration::LT,
100 Some("LRO".to_string()),
101 )?;
102
103 println!("{traj_as_flown}");
104
105 // ====================== //
106 // === MODEL MATCHING === //
107 // ====================== //
108
109 // Set up the spacecraft dynamics.
110
111 // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
112 // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
113 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
114
115 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
116 // We're using the GRAIL JGGRX model.
117 let mut jggrx_meta = MetaFile {
118 uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
119 crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
120 };
121 // And let's download it if we don't have it yet.
122 jggrx_meta.process(true)?;
123
124 // Build the spherical harmonics.
125 // The harmonics must be computed in the body fixed frame.
126 // We're using the long term prediction of the Moon principal axes frame.
127 let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
128 let sph_harmonics = Harmonics::from_stor(
129 almanac.frame_from_uid(moon_pa_frame)?,
130 HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
131 );
132
133 // Include the spherical harmonics into the orbital dynamics.
134 orbital_dyn.accel_models.push(sph_harmonics);
135
136 // We define the solar radiation pressure, using the default solar flux and accounting only
137 // for the eclipsing caused by the Earth and Moon.
138 // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
139 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
140
141 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
142 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
143 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
144
145 println!("{dynamics}");
146
147 // Now we can build the propagator.
148 let setup = Propagator::default_dp78(dynamics.clone());
149
150 // For reference, let's build the trajectory with Nyx's models from that LRO state.
151 let (sim_final, traj_as_sim) = setup
152 .with(*traj_as_flown.first(), almanac.clone())
153 .until_epoch_with_traj(traj_as_flown.last().epoch())?;
154
155 println!("SIM INIT: {:x}", traj_as_flown.first());
156 println!("SIM FINAL: {sim_final:x}");
157 // Compute RIC difference between SIM and LRO ephem
158 let sim_lro_delta = sim_final
159 .orbit
160 .ric_difference(&traj_as_flown.last().orbit)?;
161 println!("{traj_as_sim}");
162 println!(
163 "SIM v LRO - RIC Position (m): {:.3}",
164 sim_lro_delta.radius_km * 1e3
165 );
166 println!(
167 "SIM v LRO - RIC Velocity (m/s): {:.3}",
168 sim_lro_delta.velocity_km_s * 1e3
169 );
170
171 traj_as_sim.ric_diff_to_parquet(
172 &traj_as_flown,
173 "./04_lro_sim_truth_error.parquet",
174 ExportCfg::default(),
175 )?;
176
177 // ==================== //
178 // === OD SIMULATOR === //
179 // ==================== //
180
181 // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
182 // and the truth LRO state.
183
184 // Therefore, we will actually run an estimation from a dispersed LRO state.
185 // The sc_seed is the true LRO state from the BSP.
186 let sc_seed = *traj_as_flown.first();
187
188 // Load the Deep Space Network ground stations.
189 // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
190 let ground_station_file: PathBuf = [
191 env!("CARGO_MANIFEST_DIR"),
192 "examples",
193 "04_lro_od",
194 "dsn-network.yaml",
195 ]
196 .iter()
197 .collect();
198
199 let devices = GroundStation::load_named(ground_station_file)?;
200
201 let mut proc_devices = devices.clone();
202
203 // Increase the noise in the devices to accept more measurements.
204 for gs in proc_devices.values_mut() {
205 if let Some(noise) = &mut gs
206 .stochastic_noises
207 .as_mut()
208 .unwrap()
209 .get_mut(&MeasurementType::Range)
210 {
211 *noise.white_noise.as_mut().unwrap() *= 3.0;
212 }
213 }
214
215 // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
216 // Nyx can build a tracking schedule for you based on the first station with access.
217 let trkconfg_yaml: PathBuf = [
218 env!("CARGO_MANIFEST_DIR"),
219 "examples",
220 "04_lro_od",
221 "tracking-cfg.yaml",
222 ]
223 .iter()
224 .collect();
225
226 let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
227
228 // Build the tracking arc simulation to generate a "standard measurement".
229 let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::with_seed(
230 devices.clone(),
231 traj_as_flown.clone(),
232 configs,
233 123, // Set a seed for reproducibility
234 )?;
235
236 trk.build_schedule(almanac.clone())?;
237 let arc = trk.generate_measurements(almanac.clone())?;
238 // Save the simulated tracking data
239 arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
240
241 // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
242 println!("{arc}");
243
244 // Now that we have simulated measurements, we'll run the orbit determination.
245
246 // ===================== //
247 // === OD ESTIMATION === //
248 // ===================== //
249
250 let sc = SpacecraftUncertainty::builder()
251 .nominal(sc_seed)
252 .frame(LocalFrame::RIC)
253 .x_km(0.5)
254 .y_km(0.5)
255 .z_km(0.5)
256 .vx_km_s(5e-3)
257 .vy_km_s(5e-3)
258 .vz_km_s(5e-3)
259 .build();
260
261 // Build the filter initial estimate, which we will reuse in the filter.
262 let mut initial_estimate = sc.to_estimate()?;
263 initial_estimate.covar *= 3.0;
264
265 println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
266
267 // Build the SNC in the Moon J2000 frame, specified as a velocity noise over time.
268 let process_noise = ProcessNoise3D::from_velocity_km_s(
269 &[1e-10, 1e-10, 1e-10],
270 1 * Unit::Hour,
271 10 * Unit::Minute,
272 None,
273 );
274
275 println!("{process_noise}");
276
277 // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
278 let odp = SpacecraftKalmanOD::new(
279 setup,
280 KalmanVariant::ReferenceUpdate,
281 Some(ResidRejectCrit::default()),
282 proc_devices,
283 almanac.clone(),
284 )
285 .with_process_noise(process_noise);
286
287 let od_sol = odp.process_arc(initial_estimate, &arc)?;
288
289 let final_est = od_sol.estimates.last().unwrap();
290
291 println!("{final_est}");
292
293 let ric_err = traj_as_flown
294 .at(final_est.epoch())?
295 .orbit
296 .ric_difference(&final_est.orbital_state())?;
297 println!("== RIC at end ==");
298 println!("RIC Position (m): {:.3}", ric_err.radius_km * 1e3);
299 println!("RIC Velocity (m/s): {:.3}", ric_err.velocity_km_s * 1e3);
300
301 println!(
302 "Num residuals rejected: #{}",
303 od_sol.rejected_residuals().len()
304 );
305 println!(
306 "Percentage within +/-3: {}",
307 od_sol.residual_ratio_within_threshold(3.0).unwrap()
308 );
309 println!("Ratios normal? {}", od_sol.is_normal(None).unwrap());
310
311 od_sol.to_parquet("./04_lro_od_results.parquet", ExportCfg::default())?;
312
313 // In our case, we have the truth trajectory from NASA.
314 // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
315 // Export the OD trajectory first.
316 let od_trajectory = od_sol.to_traj()?;
317 // Build the RIC difference.
318 od_trajectory.ric_diff_to_parquet(
319 &traj_as_flown,
320 "./04_lro_od_truth_error.parquet",
321 ExportCfg::default(),
322 )?;
323
324 Ok(())
325}
Sourcepub fn to_frame(
&self,
new_frame: Frame,
almanac: Arc<Almanac>,
) -> Result<Self, NyxError>
pub fn to_frame( &self, new_frame: Frame, almanac: Arc<Almanac>, ) -> Result<Self, NyxError>
Allows converting the source trajectory into the (almost) equivalent trajectory in another frame
Sourcepub fn to_groundtrack_parquet<P: AsRef<Path>>(
&self,
path: P,
body_fixed_frame: Frame,
events: Option<Vec<&dyn EventEvaluator<Spacecraft>>>,
metadata: Option<HashMap<String, String>>,
almanac: Arc<Almanac>,
) -> Result<PathBuf, Box<dyn Error>>
pub fn to_groundtrack_parquet<P: AsRef<Path>>( &self, path: P, body_fixed_frame: Frame, events: Option<Vec<&dyn EventEvaluator<Spacecraft>>>, metadata: Option<HashMap<String, String>>, almanac: Arc<Almanac>, ) -> Result<PathBuf, Box<dyn Error>>
Exports this trajectory to the provided filename in parquet format with only the epoch, the geodetic latitude, longitude, and height at one state per minute. Must provide a body fixed frame to correctly compute the latitude and longitude.
Sourcepub fn from_oem_file<P: AsRef<Path>>(
path: P,
tpl_option: Option<Spacecraft>,
) -> Result<Self, NyxError>
pub fn from_oem_file<P: AsRef<Path>>( path: P, tpl_option: Option<Spacecraft>, ) -> Result<Self, NyxError>
Initialize a new spacecraft trajectory from the path to a CCSDS OEM file.
CCSDS OEM only contains the orbit information but Nyx builds spacecraft trajectories. If not spacecraft template is provided, then a default massless spacecraft will be built.
Sourcepub fn to_oem_file<P: AsRef<Path>>(
&self,
path: P,
cfg: ExportCfg,
) -> Result<PathBuf, NyxError>
pub fn to_oem_file<P: AsRef<Path>>( &self, path: P, cfg: ExportCfg, ) -> Result<PathBuf, NyxError>
Examples found in repository?
30fn main() -> Result<(), Box<dyn Error>> {
31 pel::init();
32 // Dynamics models require planetary constants and ephemerides to be defined.
33 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
34 // This will automatically download the DE440s planetary ephemeris,
35 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
36 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
37 // planetary constants kernels.
38 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
39 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
40 // references to many functions.
41 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
42 // Define the orbit epoch
43 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45 // Define the orbit.
46 // First we need to fetch the Earth J2000 from information from the Almanac.
47 // This allows the frame to include the gravitational parameters and the shape of the Earth,
48 // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
49 // by loading a different set of planetary constants.
50 let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
51
52 let orbit =
53 Orbit::try_keplerian_altitude(300.0, 0.015, 68.5, 65.2, 75.0, 0.0, epoch, earth_j2000)?;
54 // Print in in Keplerian form.
55 println!("{orbit:x}");
56
57 // There are two ways to propagate an orbit. We can make a quick approximation assuming only two-body
58 // motion. This is a useful first order approximation but it isn't used in real-world applications.
59
60 // This approach is a feature of ANISE.
61 let future_orbit_tb = orbit.at_epoch(epoch + Unit::Day * 3)?;
62 println!("{future_orbit_tb:x}");
63
64 // Two body propagation relies solely on Kepler's laws, so only the true anomaly will change.
65 println!(
66 "SMA changed by {:.3e} km",
67 orbit.sma_km()? - future_orbit_tb.sma_km()?
68 );
69 println!(
70 "ECC changed by {:.3e}",
71 orbit.ecc()? - future_orbit_tb.ecc()?
72 );
73 println!(
74 "INC changed by {:.3e} deg",
75 orbit.inc_deg()? - future_orbit_tb.inc_deg()?
76 );
77 println!(
78 "RAAN changed by {:.3e} deg",
79 orbit.raan_deg()? - future_orbit_tb.raan_deg()?
80 );
81 println!(
82 "AOP changed by {:.3e} deg",
83 orbit.aop_deg()? - future_orbit_tb.aop_deg()?
84 );
85 println!(
86 "TA changed by {:.3} deg",
87 orbit.ta_deg()? - future_orbit_tb.ta_deg()?
88 );
89
90 // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
91 // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
92 // models such as solar radiation pressure.
93
94 // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
95 let sc = Spacecraft::builder()
96 .orbit(orbit)
97 .mass(Mass::from_dry_mass(9.60))
98 .srp(SRPData {
99 area_m2: 10e-4,
100 coeff_reflectivity: 1.1,
101 })
102 .build();
103 println!("{sc:x}");
104
105 // Set up the spacecraft dynamics.
106
107 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
108 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
109 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
110
111 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
112 // We're using the JGM3 model here, which is the default in GMAT.
113 let mut jgm3_meta = MetaFile {
114 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
115 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
116 };
117 // And let's download it if we don't have it yet.
118 jgm3_meta.process(true)?;
119
120 // Build the spherical harmonics.
121 // The harmonics must be computed in the body fixed frame.
122 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
123 let harmonics_21x21 = Harmonics::from_stor(
124 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
125 HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
126 );
127
128 // Include the spherical harmonics into the orbital dynamics.
129 orbital_dyn.accel_models.push(harmonics_21x21);
130
131 // We define the solar radiation pressure, using the default solar flux and accounting only
132 // for the eclipsing caused by the Earth.
133 let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
134
135 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
136 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
137 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
138
139 println!("{dynamics}");
140
141 // Finally, let's propagate this orbit to the same epoch as above.
142 // The first returned value is the spacecraft state at the final epoch.
143 // The second value is the full trajectory where the step size is variable step used by the propagator.
144 let (future_sc, trajectory) = Propagator::default(dynamics)
145 .with(sc, almanac.clone())
146 .until_epoch_with_traj(future_orbit_tb.epoch)?;
147
148 println!("=== High fidelity propagation ===");
149 println!(
150 "SMA changed by {:.3} km",
151 orbit.sma_km()? - future_sc.orbit.sma_km()?
152 );
153 println!(
154 "ECC changed by {:.6}",
155 orbit.ecc()? - future_sc.orbit.ecc()?
156 );
157 println!(
158 "INC changed by {:.3e} deg",
159 orbit.inc_deg()? - future_sc.orbit.inc_deg()?
160 );
161 println!(
162 "RAAN changed by {:.3} deg",
163 orbit.raan_deg()? - future_sc.orbit.raan_deg()?
164 );
165 println!(
166 "AOP changed by {:.3} deg",
167 orbit.aop_deg()? - future_sc.orbit.aop_deg()?
168 );
169 println!(
170 "TA changed by {:.3} deg",
171 orbit.ta_deg()? - future_sc.orbit.ta_deg()?
172 );
173
174 // We also have access to the full trajectory throughout the propagation.
175 println!("{trajectory}");
176
177 // With the trajectory, let's build a few data products.
178
179 // 1. Export the trajectory as a CCSDS OEM version 2.0 file and as a parquet file, which includes the Keplerian orbital elements.
180
181 trajectory.to_oem_file(
182 "./01_cubesat_hf_prop.oem",
183 ExportCfg::builder().step(Unit::Minute * 2).build(),
184 )?;
185
186 trajectory.to_parquet_with_cfg(
187 "./01_cubesat_hf_prop.parquet",
188 ExportCfg::builder().step(Unit::Minute * 2).build(),
189 almanac.clone(),
190 )?;
191
192 // 2. Compare the difference in the radial-intrack-crosstrack frame between the high fidelity
193 // and Keplerian propagation. The RIC frame is commonly used to compute the difference in position
194 // and velocity of different spacecraft.
195 // 3. Compute the azimuth, elevation, range, and range-rate data of that spacecraft as seen from Boulder, CO, USA.
196
197 let boulder_station = GroundStation::from_point(
198 "Boulder, CO, USA".to_string(),
199 40.014984, // latitude in degrees
200 -105.270546, // longitude in degrees
201 1.6550, // altitude in kilometers
202 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
203 );
204
205 // We iterate over the trajectory, grabbing a state every two minutes.
206 let mut offset_s = vec![];
207 let mut epoch_str = vec![];
208 let mut ric_x_km = vec![];
209 let mut ric_y_km = vec![];
210 let mut ric_z_km = vec![];
211 let mut ric_vx_km_s = vec![];
212 let mut ric_vy_km_s = vec![];
213 let mut ric_vz_km_s = vec![];
214
215 let mut azimuth_deg = vec![];
216 let mut elevation_deg = vec![];
217 let mut range_km = vec![];
218 let mut range_rate_km_s = vec![];
219 for state in trajectory.every(Unit::Minute * 2) {
220 // Try to compute the Keplerian/two body state just in time.
221 // This method occasionally fails to converge on an appropriate true anomaly
222 // from the mean anomaly. If that happens, we just skip this state.
223 // The high fidelity and Keplerian states diverge continuously, and we're curious
224 // about the divergence in this quick analysis.
225 let this_epoch = state.epoch();
226 match orbit.at_epoch(this_epoch) {
227 Ok(tb_then) => {
228 offset_s.push((this_epoch - orbit.epoch).to_seconds());
229 epoch_str.push(format!("{this_epoch}"));
230 // Compute the two body state just in time.
231 let ric = state.orbit.ric_difference(&tb_then)?;
232 ric_x_km.push(ric.radius_km.x);
233 ric_y_km.push(ric.radius_km.y);
234 ric_z_km.push(ric.radius_km.z);
235 ric_vx_km_s.push(ric.velocity_km_s.x);
236 ric_vy_km_s.push(ric.velocity_km_s.y);
237 ric_vz_km_s.push(ric.velocity_km_s.z);
238
239 // Compute the AER data for each state.
240 let aer = almanac.azimuth_elevation_range_sez(
241 state.orbit,
242 boulder_station.to_orbit(this_epoch, &almanac)?,
243 None,
244 None,
245 )?;
246 azimuth_deg.push(aer.azimuth_deg);
247 elevation_deg.push(aer.elevation_deg);
248 range_km.push(aer.range_km);
249 range_rate_km_s.push(aer.range_rate_km_s);
250 }
251 Err(e) => warn!("{} {e}", state.epoch()),
252 };
253 }
254
255 // Build the data frames.
256 let ric_df = df!(
257 "Offset (s)" => offset_s.clone(),
258 "Epoch" => epoch_str.clone(),
259 "RIC X (km)" => ric_x_km,
260 "RIC Y (km)" => ric_y_km,
261 "RIC Z (km)" => ric_z_km,
262 "RIC VX (km/s)" => ric_vx_km_s,
263 "RIC VY (km/s)" => ric_vy_km_s,
264 "RIC VZ (km/s)" => ric_vz_km_s,
265 )?;
266
267 println!("RIC difference at start\n{}", ric_df.head(Some(10)));
268 println!("RIC difference at end\n{}", ric_df.tail(Some(10)));
269
270 let aer_df = df!(
271 "Offset (s)" => offset_s.clone(),
272 "Epoch" => epoch_str.clone(),
273 "azimuth (deg)" => azimuth_deg,
274 "elevation (deg)" => elevation_deg,
275 "range (km)" => range_km,
276 "range rate (km/s)" => range_rate_km_s,
277 )?;
278
279 // Finally, let's see when the spacecraft is visible, assuming 15 degrees minimum elevation.
280 let mask = aer_df
281 .column("elevation (deg)")?
282 .gt(&Column::Scalar(ScalarColumn::new(
283 "elevation mask (deg)".into(),
284 Scalar::new(DataType::Float64, AnyValue::Float64(15.0)),
285 offset_s.len(),
286 )))?;
287 let cubesat_visible = aer_df.filter(&mask)?;
288
289 println!("{cubesat_visible}");
290
291 Ok(())
292}
pub fn from_parquet<P: AsRef<Path>>(path: P) -> Result<Self, InputOutputError>
Source§impl<S: Interpolatable> Traj<S>
impl<S: Interpolatable> Traj<S>
pub fn new() -> Self
Sourcepub fn at(&self, epoch: Epoch) -> Result<S, TrajError>
pub fn at(&self, epoch: Epoch) -> Result<S, TrajError>
Evaluate the trajectory at this specific epoch.
Examples found in repository?
34fn main() -> Result<(), Box<dyn Error>> {
35 pel::init();
36
37 // ====================== //
38 // === ALMANAC SET UP === //
39 // ====================== //
40
41 let manifest_dir =
42 PathBuf::from(std::env::var("CARGO_MANIFEST_DIR").unwrap_or(".".to_string()));
43
44 let out = manifest_dir.join("data/04_output/");
45
46 let almanac = Arc::new(
47 Almanac::new(
48 &manifest_dir
49 .join("data/01_planetary/pck08.pca")
50 .to_string_lossy(),
51 )
52 .unwrap()
53 .load(
54 &manifest_dir
55 .join("data/01_planetary/de440s.bsp")
56 .to_string_lossy(),
57 )
58 .unwrap(),
59 );
60
61 let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
62 let moon_iau = almanac.frame_from_uid(IAU_MOON_FRAME).unwrap();
63
64 let epoch = Epoch::from_gregorian_tai(2021, 5, 29, 19, 51, 16, 852_000);
65 let nrho = Orbit::cartesian(
66 166_473.631_302_239_7,
67 -274_715.487_253_382_7,
68 -211_233.210_176_686_7,
69 0.933_451_604_520_018_4,
70 0.436_775_046_841_900_9,
71 -0.082_211_021_250_348_95,
72 epoch,
73 eme2k,
74 );
75
76 let tx_nrho_sc = Spacecraft::from(nrho);
77
78 let state_luna = almanac.transform_to(nrho, MOON_J2000, None).unwrap();
79 println!("Start state (dynamics: Earth, Moon, Sun gravity):\n{state_luna}");
80
81 let bodies = vec![EARTH, SUN];
82 let dynamics = SpacecraftDynamics::new(OrbitalDynamics::point_masses(bodies));
83
84 let setup = Propagator::rk89(
85 dynamics,
86 IntegratorOptions::builder().max_step(0.5.minutes()).build(),
87 );
88
89 /* == Propagate the NRHO vehicle == */
90 let prop_time = 1.1 * state_luna.period().unwrap();
91
92 let (nrho_final, mut tx_traj) = setup
93 .with(tx_nrho_sc, almanac.clone())
94 .for_duration_with_traj(prop_time)
95 .unwrap();
96
97 tx_traj.name = Some("NRHO Tx SC".to_string());
98
99 println!("{tx_traj}");
100
101 /* == Propagate an LLO vehicle == */
102 let llo_orbit =
103 Orbit::try_keplerian_altitude(110.0, 1e-4, 90.0, 0.0, 0.0, 0.0, epoch, moon_iau).unwrap();
104
105 let llo_sc = Spacecraft::builder().orbit(llo_orbit).build();
106
107 let (_, llo_traj) = setup
108 .with(llo_sc, almanac.clone())
109 .until_epoch_with_traj(nrho_final.epoch())
110 .unwrap();
111
112 // Export the subset of the first two hours.
113 llo_traj
114 .clone()
115 .filter_by_offset(..2.hours())
116 .to_parquet_simple(out.join("05_caps_llo_truth.pq"), almanac.clone())?;
117
118 /* == Setup the interlink == */
119
120 let mut measurement_types = IndexSet::new();
121 measurement_types.insert(MeasurementType::Range);
122 measurement_types.insert(MeasurementType::Doppler);
123
124 let mut stochastics = IndexMap::new();
125
126 let sa45_csac_allan_dev = 1e-11;
127
128 stochastics.insert(
129 MeasurementType::Range,
130 StochasticNoise::from_hardware_range_km(
131 sa45_csac_allan_dev,
132 10.0.seconds(),
133 link_specific::ChipRate::StandardT4B,
134 link_specific::SN0::Average,
135 ),
136 );
137
138 stochastics.insert(
139 MeasurementType::Doppler,
140 StochasticNoise::from_hardware_doppler_km_s(
141 sa45_csac_allan_dev,
142 10.0.seconds(),
143 link_specific::CarrierFreq::SBand,
144 link_specific::CN0::Average,
145 ),
146 );
147
148 let interlink = InterlinkTxSpacecraft {
149 traj: tx_traj,
150 measurement_types,
151 integration_time: None,
152 timestamp_noise_s: None,
153 ab_corr: Aberration::LT,
154 stochastic_noises: Some(stochastics),
155 };
156
157 // Devices are the transmitter, which is our NRHO vehicle.
158 let mut devices = BTreeMap::new();
159 devices.insert("NRHO Tx SC".to_string(), interlink);
160
161 let mut configs = BTreeMap::new();
162 configs.insert(
163 "NRHO Tx SC".to_string(),
164 TrkConfig::builder()
165 .strands(vec![Strand {
166 start: epoch,
167 end: nrho_final.epoch(),
168 }])
169 .build(),
170 );
171
172 let mut trk_sim =
173 TrackingArcSim::with_seed(devices.clone(), llo_traj.clone(), configs, 0).unwrap();
174 println!("{trk_sim}");
175
176 let trk_data = trk_sim.generate_measurements(almanac.clone()).unwrap();
177 println!("{trk_data}");
178
179 trk_data
180 .to_parquet_simple(out.clone().join("nrho_interlink_msr.pq"))
181 .unwrap();
182
183 // Run a truth OD where we estimate the LLO position
184 let llo_uncertainty = SpacecraftUncertainty::builder()
185 .nominal(llo_sc)
186 .x_km(1.0)
187 .y_km(1.0)
188 .z_km(1.0)
189 .vx_km_s(1e-3)
190 .vy_km_s(1e-3)
191 .vz_km_s(1e-3)
192 .build();
193
194 let mut proc_devices = devices.clone();
195
196 // Define the initial estimate, randomized, seed for reproducibility
197 let mut initial_estimate = llo_uncertainty.to_estimate_randomized(Some(0)).unwrap();
198 // Inflate the covariance -- https://github.com/nyx-space/nyx/issues/339
199 initial_estimate.covar *= 2.5;
200
201 // Increase the noise in the devices to accept more measurements.
202
203 for link in proc_devices.values_mut() {
204 for noise in &mut link.stochastic_noises.as_mut().unwrap().values_mut() {
205 *noise.white_noise.as_mut().unwrap() *= 3.0;
206 }
207 }
208
209 let init_err = initial_estimate
210 .orbital_state()
211 .ric_difference(&llo_orbit)
212 .unwrap();
213
214 println!("initial estimate:\n{initial_estimate}");
215 println!("RIC errors = {init_err}",);
216
217 let odp = InterlinkKalmanOD::new(
218 setup.clone(),
219 KalmanVariant::ReferenceUpdate,
220 Some(ResidRejectCrit::default()),
221 proc_devices,
222 almanac.clone(),
223 );
224
225 // Shrink the data to process.
226 let arc = trk_data.filter_by_offset(..2.hours());
227
228 let od_sol = odp.process_arc(initial_estimate, &arc).unwrap();
229
230 println!("{od_sol}");
231
232 od_sol
233 .to_parquet(
234 out.join(format!("05_caps_interlink_od_sol.pq")),
235 ExportCfg::default(),
236 )
237 .unwrap();
238
239 let od_traj = od_sol.to_traj().unwrap();
240
241 od_traj
242 .ric_diff_to_parquet(
243 &llo_traj,
244 out.join(format!("05_caps_interlink_llo_est_error.pq")),
245 ExportCfg::default(),
246 )
247 .unwrap();
248
249 let final_est = od_sol.estimates.last().unwrap();
250 assert!(final_est.within_3sigma(), "should be within 3 sigma");
251
252 println!("ESTIMATE\n{final_est:x}\n");
253 let truth = llo_traj.at(final_est.epoch()).unwrap();
254 println!("TRUTH\n{truth:x}");
255
256 let final_err = truth
257 .orbit
258 .ric_difference(&final_est.orbital_state())
259 .unwrap();
260 println!("ERROR {final_err}");
261
262 // Build the residuals versus reference plot.
263 let rvr_sol = odp
264 .process_arc(initial_estimate, &arc.resid_vs_ref_check())
265 .unwrap();
266
267 rvr_sol
268 .to_parquet(
269 out.join(format!("05_caps_interlink_resid_v_ref.pq")),
270 ExportCfg::default(),
271 )
272 .unwrap();
273
274 let final_rvr = rvr_sol.estimates.last().unwrap();
275
276 println!("RMAG error {:.3} m", final_err.rmag_km() * 1e3);
277 println!(
278 "Pure prop error {:.3} m",
279 final_rvr
280 .orbital_state()
281 .ric_difference(&final_est.orbital_state())
282 .unwrap()
283 .rmag_km()
284 * 1e3
285 );
286
287 Ok(())
288}
More examples
34fn main() -> Result<(), Box<dyn Error>> {
35 pel::init();
36
37 // ====================== //
38 // === ALMANAC SET UP === //
39 // ====================== //
40
41 // Dynamics models require planetary constants and ephemerides to be defined.
42 // Let's start by grabbing those by using ANISE's MetaAlmanac.
43
44 let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
45 .iter()
46 .collect();
47
48 let meta = data_folder.join("lro-dynamics.dhall");
49
50 // Load this ephem in the general Almanac we're using for this analysis.
51 let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
52 .map_err(Box::new)?
53 .process(true)
54 .map_err(Box::new)?;
55
56 let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
57 moon_pc.mu_km3_s2 = 4902.74987;
58 almanac.planetary_data.set_by_id(MOON, moon_pc)?;
59
60 let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
61 earth_pc.mu_km3_s2 = 398600.436;
62 almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
63
64 // Save this new kernel for reuse.
65 // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
66 almanac
67 .planetary_data
68 .save_as(&data_folder.join("lro-specific.pca"), true)?;
69
70 // Lock the almanac (an Arc is a read only structure).
71 let almanac = Arc::new(almanac);
72
73 // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
74 // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
75 // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
76 // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
77 let lro_frame = Frame::from_ephem_j2000(-85);
78
79 // To build the trajectory we need to provide a spacecraft template.
80 let sc_template = Spacecraft::builder()
81 .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
82 .srp(SRPData {
83 // SRP configuration is arbitrary, but we will be estimating it anyway.
84 area_m2: 3.9 * 2.7,
85 coeff_reflectivity: 0.96,
86 })
87 .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
88 .build();
89 // Now we can build the trajectory from the BSP file.
90 // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
91 let traj_as_flown = Traj::from_bsp(
92 lro_frame,
93 MOON_J2000,
94 almanac.clone(),
95 sc_template,
96 5.seconds(),
97 Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
98 Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
99 Aberration::LT,
100 Some("LRO".to_string()),
101 )?;
102
103 println!("{traj_as_flown}");
104
105 // ====================== //
106 // === MODEL MATCHING === //
107 // ====================== //
108
109 // Set up the spacecraft dynamics.
110
111 // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
112 // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
113 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
114
115 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
116 // We're using the GRAIL JGGRX model.
117 let mut jggrx_meta = MetaFile {
118 uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
119 crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
120 };
121 // And let's download it if we don't have it yet.
122 jggrx_meta.process(true)?;
123
124 // Build the spherical harmonics.
125 // The harmonics must be computed in the body fixed frame.
126 // We're using the long term prediction of the Moon principal axes frame.
127 let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
128 let sph_harmonics = Harmonics::from_stor(
129 almanac.frame_from_uid(moon_pa_frame)?,
130 HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
131 );
132
133 // Include the spherical harmonics into the orbital dynamics.
134 orbital_dyn.accel_models.push(sph_harmonics);
135
136 // We define the solar radiation pressure, using the default solar flux and accounting only
137 // for the eclipsing caused by the Earth and Moon.
138 // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
139 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
140
141 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
142 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
143 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
144
145 println!("{dynamics}");
146
147 // Now we can build the propagator.
148 let setup = Propagator::default_dp78(dynamics.clone());
149
150 // For reference, let's build the trajectory with Nyx's models from that LRO state.
151 let (sim_final, traj_as_sim) = setup
152 .with(*traj_as_flown.first(), almanac.clone())
153 .until_epoch_with_traj(traj_as_flown.last().epoch())?;
154
155 println!("SIM INIT: {:x}", traj_as_flown.first());
156 println!("SIM FINAL: {sim_final:x}");
157 // Compute RIC difference between SIM and LRO ephem
158 let sim_lro_delta = sim_final
159 .orbit
160 .ric_difference(&traj_as_flown.last().orbit)?;
161 println!("{traj_as_sim}");
162 println!(
163 "SIM v LRO - RIC Position (m): {:.3}",
164 sim_lro_delta.radius_km * 1e3
165 );
166 println!(
167 "SIM v LRO - RIC Velocity (m/s): {:.3}",
168 sim_lro_delta.velocity_km_s * 1e3
169 );
170
171 traj_as_sim.ric_diff_to_parquet(
172 &traj_as_flown,
173 "./04_lro_sim_truth_error.parquet",
174 ExportCfg::default(),
175 )?;
176
177 // ==================== //
178 // === OD SIMULATOR === //
179 // ==================== //
180
181 // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
182 // and the truth LRO state.
183
184 // Therefore, we will actually run an estimation from a dispersed LRO state.
185 // The sc_seed is the true LRO state from the BSP.
186 let sc_seed = *traj_as_flown.first();
187
188 // Load the Deep Space Network ground stations.
189 // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
190 let ground_station_file: PathBuf = [
191 env!("CARGO_MANIFEST_DIR"),
192 "examples",
193 "04_lro_od",
194 "dsn-network.yaml",
195 ]
196 .iter()
197 .collect();
198
199 let devices = GroundStation::load_named(ground_station_file)?;
200
201 let mut proc_devices = devices.clone();
202
203 // Increase the noise in the devices to accept more measurements.
204 for gs in proc_devices.values_mut() {
205 if let Some(noise) = &mut gs
206 .stochastic_noises
207 .as_mut()
208 .unwrap()
209 .get_mut(&MeasurementType::Range)
210 {
211 *noise.white_noise.as_mut().unwrap() *= 3.0;
212 }
213 }
214
215 // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
216 // Nyx can build a tracking schedule for you based on the first station with access.
217 let trkconfg_yaml: PathBuf = [
218 env!("CARGO_MANIFEST_DIR"),
219 "examples",
220 "04_lro_od",
221 "tracking-cfg.yaml",
222 ]
223 .iter()
224 .collect();
225
226 let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
227
228 // Build the tracking arc simulation to generate a "standard measurement".
229 let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::with_seed(
230 devices.clone(),
231 traj_as_flown.clone(),
232 configs,
233 123, // Set a seed for reproducibility
234 )?;
235
236 trk.build_schedule(almanac.clone())?;
237 let arc = trk.generate_measurements(almanac.clone())?;
238 // Save the simulated tracking data
239 arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
240
241 // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
242 println!("{arc}");
243
244 // Now that we have simulated measurements, we'll run the orbit determination.
245
246 // ===================== //
247 // === OD ESTIMATION === //
248 // ===================== //
249
250 let sc = SpacecraftUncertainty::builder()
251 .nominal(sc_seed)
252 .frame(LocalFrame::RIC)
253 .x_km(0.5)
254 .y_km(0.5)
255 .z_km(0.5)
256 .vx_km_s(5e-3)
257 .vy_km_s(5e-3)
258 .vz_km_s(5e-3)
259 .build();
260
261 // Build the filter initial estimate, which we will reuse in the filter.
262 let mut initial_estimate = sc.to_estimate()?;
263 initial_estimate.covar *= 3.0;
264
265 println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
266
267 // Build the SNC in the Moon J2000 frame, specified as a velocity noise over time.
268 let process_noise = ProcessNoise3D::from_velocity_km_s(
269 &[1e-10, 1e-10, 1e-10],
270 1 * Unit::Hour,
271 10 * Unit::Minute,
272 None,
273 );
274
275 println!("{process_noise}");
276
277 // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
278 let odp = SpacecraftKalmanOD::new(
279 setup,
280 KalmanVariant::ReferenceUpdate,
281 Some(ResidRejectCrit::default()),
282 proc_devices,
283 almanac.clone(),
284 )
285 .with_process_noise(process_noise);
286
287 let od_sol = odp.process_arc(initial_estimate, &arc)?;
288
289 let final_est = od_sol.estimates.last().unwrap();
290
291 println!("{final_est}");
292
293 let ric_err = traj_as_flown
294 .at(final_est.epoch())?
295 .orbit
296 .ric_difference(&final_est.orbital_state())?;
297 println!("== RIC at end ==");
298 println!("RIC Position (m): {:.3}", ric_err.radius_km * 1e3);
299 println!("RIC Velocity (m/s): {:.3}", ric_err.velocity_km_s * 1e3);
300
301 println!(
302 "Num residuals rejected: #{}",
303 od_sol.rejected_residuals().len()
304 );
305 println!(
306 "Percentage within +/-3: {}",
307 od_sol.residual_ratio_within_threshold(3.0).unwrap()
308 );
309 println!("Ratios normal? {}", od_sol.is_normal(None).unwrap());
310
311 od_sol.to_parquet("./04_lro_od_results.parquet", ExportCfg::default())?;
312
313 // In our case, we have the truth trajectory from NASA.
314 // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
315 // Export the OD trajectory first.
316 let od_trajectory = od_sol.to_traj()?;
317 // Build the RIC difference.
318 od_trajectory.ric_diff_to_parquet(
319 &traj_as_flown,
320 "./04_lro_od_truth_error.parquet",
321 ExportCfg::default(),
322 )?;
323
324 Ok(())
325}
Sourcepub fn first(&self) -> &S
pub fn first(&self) -> &S
Returns the first state in this ephemeris
Examples found in repository?
34fn main() -> Result<(), Box<dyn Error>> {
35 pel::init();
36
37 // ====================== //
38 // === ALMANAC SET UP === //
39 // ====================== //
40
41 // Dynamics models require planetary constants and ephemerides to be defined.
42 // Let's start by grabbing those by using ANISE's MetaAlmanac.
43
44 let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
45 .iter()
46 .collect();
47
48 let meta = data_folder.join("lro-dynamics.dhall");
49
50 // Load this ephem in the general Almanac we're using for this analysis.
51 let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
52 .map_err(Box::new)?
53 .process(true)
54 .map_err(Box::new)?;
55
56 let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
57 moon_pc.mu_km3_s2 = 4902.74987;
58 almanac.planetary_data.set_by_id(MOON, moon_pc)?;
59
60 let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
61 earth_pc.mu_km3_s2 = 398600.436;
62 almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
63
64 // Save this new kernel for reuse.
65 // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
66 almanac
67 .planetary_data
68 .save_as(&data_folder.join("lro-specific.pca"), true)?;
69
70 // Lock the almanac (an Arc is a read only structure).
71 let almanac = Arc::new(almanac);
72
73 // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
74 // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
75 // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
76 // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
77 let lro_frame = Frame::from_ephem_j2000(-85);
78
79 // To build the trajectory we need to provide a spacecraft template.
80 let sc_template = Spacecraft::builder()
81 .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
82 .srp(SRPData {
83 // SRP configuration is arbitrary, but we will be estimating it anyway.
84 area_m2: 3.9 * 2.7,
85 coeff_reflectivity: 0.96,
86 })
87 .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
88 .build();
89 // Now we can build the trajectory from the BSP file.
90 // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
91 let traj_as_flown = Traj::from_bsp(
92 lro_frame,
93 MOON_J2000,
94 almanac.clone(),
95 sc_template,
96 5.seconds(),
97 Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
98 Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
99 Aberration::LT,
100 Some("LRO".to_string()),
101 )?;
102
103 println!("{traj_as_flown}");
104
105 // ====================== //
106 // === MODEL MATCHING === //
107 // ====================== //
108
109 // Set up the spacecraft dynamics.
110
111 // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
112 // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
113 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
114
115 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
116 // We're using the GRAIL JGGRX model.
117 let mut jggrx_meta = MetaFile {
118 uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
119 crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
120 };
121 // And let's download it if we don't have it yet.
122 jggrx_meta.process(true)?;
123
124 // Build the spherical harmonics.
125 // The harmonics must be computed in the body fixed frame.
126 // We're using the long term prediction of the Moon principal axes frame.
127 let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
128 let sph_harmonics = Harmonics::from_stor(
129 almanac.frame_from_uid(moon_pa_frame)?,
130 HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
131 );
132
133 // Include the spherical harmonics into the orbital dynamics.
134 orbital_dyn.accel_models.push(sph_harmonics);
135
136 // We define the solar radiation pressure, using the default solar flux and accounting only
137 // for the eclipsing caused by the Earth and Moon.
138 // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
139 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
140
141 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
142 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
143 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
144
145 println!("{dynamics}");
146
147 // Now we can build the propagator.
148 let setup = Propagator::default_dp78(dynamics.clone());
149
150 // For reference, let's build the trajectory with Nyx's models from that LRO state.
151 let (sim_final, traj_as_sim) = setup
152 .with(*traj_as_flown.first(), almanac.clone())
153 .until_epoch_with_traj(traj_as_flown.last().epoch())?;
154
155 println!("SIM INIT: {:x}", traj_as_flown.first());
156 println!("SIM FINAL: {sim_final:x}");
157 // Compute RIC difference between SIM and LRO ephem
158 let sim_lro_delta = sim_final
159 .orbit
160 .ric_difference(&traj_as_flown.last().orbit)?;
161 println!("{traj_as_sim}");
162 println!(
163 "SIM v LRO - RIC Position (m): {:.3}",
164 sim_lro_delta.radius_km * 1e3
165 );
166 println!(
167 "SIM v LRO - RIC Velocity (m/s): {:.3}",
168 sim_lro_delta.velocity_km_s * 1e3
169 );
170
171 traj_as_sim.ric_diff_to_parquet(
172 &traj_as_flown,
173 "./04_lro_sim_truth_error.parquet",
174 ExportCfg::default(),
175 )?;
176
177 // ==================== //
178 // === OD SIMULATOR === //
179 // ==================== //
180
181 // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
182 // and the truth LRO state.
183
184 // Therefore, we will actually run an estimation from a dispersed LRO state.
185 // The sc_seed is the true LRO state from the BSP.
186 let sc_seed = *traj_as_flown.first();
187
188 // Load the Deep Space Network ground stations.
189 // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
190 let ground_station_file: PathBuf = [
191 env!("CARGO_MANIFEST_DIR"),
192 "examples",
193 "04_lro_od",
194 "dsn-network.yaml",
195 ]
196 .iter()
197 .collect();
198
199 let devices = GroundStation::load_named(ground_station_file)?;
200
201 let mut proc_devices = devices.clone();
202
203 // Increase the noise in the devices to accept more measurements.
204 for gs in proc_devices.values_mut() {
205 if let Some(noise) = &mut gs
206 .stochastic_noises
207 .as_mut()
208 .unwrap()
209 .get_mut(&MeasurementType::Range)
210 {
211 *noise.white_noise.as_mut().unwrap() *= 3.0;
212 }
213 }
214
215 // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
216 // Nyx can build a tracking schedule for you based on the first station with access.
217 let trkconfg_yaml: PathBuf = [
218 env!("CARGO_MANIFEST_DIR"),
219 "examples",
220 "04_lro_od",
221 "tracking-cfg.yaml",
222 ]
223 .iter()
224 .collect();
225
226 let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
227
228 // Build the tracking arc simulation to generate a "standard measurement".
229 let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::with_seed(
230 devices.clone(),
231 traj_as_flown.clone(),
232 configs,
233 123, // Set a seed for reproducibility
234 )?;
235
236 trk.build_schedule(almanac.clone())?;
237 let arc = trk.generate_measurements(almanac.clone())?;
238 // Save the simulated tracking data
239 arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
240
241 // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
242 println!("{arc}");
243
244 // Now that we have simulated measurements, we'll run the orbit determination.
245
246 // ===================== //
247 // === OD ESTIMATION === //
248 // ===================== //
249
250 let sc = SpacecraftUncertainty::builder()
251 .nominal(sc_seed)
252 .frame(LocalFrame::RIC)
253 .x_km(0.5)
254 .y_km(0.5)
255 .z_km(0.5)
256 .vx_km_s(5e-3)
257 .vy_km_s(5e-3)
258 .vz_km_s(5e-3)
259 .build();
260
261 // Build the filter initial estimate, which we will reuse in the filter.
262 let mut initial_estimate = sc.to_estimate()?;
263 initial_estimate.covar *= 3.0;
264
265 println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
266
267 // Build the SNC in the Moon J2000 frame, specified as a velocity noise over time.
268 let process_noise = ProcessNoise3D::from_velocity_km_s(
269 &[1e-10, 1e-10, 1e-10],
270 1 * Unit::Hour,
271 10 * Unit::Minute,
272 None,
273 );
274
275 println!("{process_noise}");
276
277 // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
278 let odp = SpacecraftKalmanOD::new(
279 setup,
280 KalmanVariant::ReferenceUpdate,
281 Some(ResidRejectCrit::default()),
282 proc_devices,
283 almanac.clone(),
284 )
285 .with_process_noise(process_noise);
286
287 let od_sol = odp.process_arc(initial_estimate, &arc)?;
288
289 let final_est = od_sol.estimates.last().unwrap();
290
291 println!("{final_est}");
292
293 let ric_err = traj_as_flown
294 .at(final_est.epoch())?
295 .orbit
296 .ric_difference(&final_est.orbital_state())?;
297 println!("== RIC at end ==");
298 println!("RIC Position (m): {:.3}", ric_err.radius_km * 1e3);
299 println!("RIC Velocity (m/s): {:.3}", ric_err.velocity_km_s * 1e3);
300
301 println!(
302 "Num residuals rejected: #{}",
303 od_sol.rejected_residuals().len()
304 );
305 println!(
306 "Percentage within +/-3: {}",
307 od_sol.residual_ratio_within_threshold(3.0).unwrap()
308 );
309 println!("Ratios normal? {}", od_sol.is_normal(None).unwrap());
310
311 od_sol.to_parquet("./04_lro_od_results.parquet", ExportCfg::default())?;
312
313 // In our case, we have the truth trajectory from NASA.
314 // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
315 // Export the OD trajectory first.
316 let od_trajectory = od_sol.to_traj()?;
317 // Build the RIC difference.
318 od_trajectory.ric_diff_to_parquet(
319 &traj_as_flown,
320 "./04_lro_od_truth_error.parquet",
321 ExportCfg::default(),
322 )?;
323
324 Ok(())
325}
Sourcepub fn last(&self) -> &S
pub fn last(&self) -> &S
Returns the last state in this ephemeris
Examples found in repository?
34fn main() -> Result<(), Box<dyn Error>> {
35 pel::init();
36
37 // ====================== //
38 // === ALMANAC SET UP === //
39 // ====================== //
40
41 // Dynamics models require planetary constants and ephemerides to be defined.
42 // Let's start by grabbing those by using ANISE's MetaAlmanac.
43
44 let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
45 .iter()
46 .collect();
47
48 let meta = data_folder.join("lro-dynamics.dhall");
49
50 // Load this ephem in the general Almanac we're using for this analysis.
51 let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
52 .map_err(Box::new)?
53 .process(true)
54 .map_err(Box::new)?;
55
56 let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
57 moon_pc.mu_km3_s2 = 4902.74987;
58 almanac.planetary_data.set_by_id(MOON, moon_pc)?;
59
60 let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
61 earth_pc.mu_km3_s2 = 398600.436;
62 almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
63
64 // Save this new kernel for reuse.
65 // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
66 almanac
67 .planetary_data
68 .save_as(&data_folder.join("lro-specific.pca"), true)?;
69
70 // Lock the almanac (an Arc is a read only structure).
71 let almanac = Arc::new(almanac);
72
73 // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
74 // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
75 // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
76 // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
77 let lro_frame = Frame::from_ephem_j2000(-85);
78
79 // To build the trajectory we need to provide a spacecraft template.
80 let sc_template = Spacecraft::builder()
81 .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
82 .srp(SRPData {
83 // SRP configuration is arbitrary, but we will be estimating it anyway.
84 area_m2: 3.9 * 2.7,
85 coeff_reflectivity: 0.96,
86 })
87 .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
88 .build();
89 // Now we can build the trajectory from the BSP file.
90 // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
91 let traj_as_flown = Traj::from_bsp(
92 lro_frame,
93 MOON_J2000,
94 almanac.clone(),
95 sc_template,
96 5.seconds(),
97 Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
98 Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
99 Aberration::LT,
100 Some("LRO".to_string()),
101 )?;
102
103 println!("{traj_as_flown}");
104
105 // ====================== //
106 // === MODEL MATCHING === //
107 // ====================== //
108
109 // Set up the spacecraft dynamics.
110
111 // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
112 // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
113 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
114
115 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
116 // We're using the GRAIL JGGRX model.
117 let mut jggrx_meta = MetaFile {
118 uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
119 crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
120 };
121 // And let's download it if we don't have it yet.
122 jggrx_meta.process(true)?;
123
124 // Build the spherical harmonics.
125 // The harmonics must be computed in the body fixed frame.
126 // We're using the long term prediction of the Moon principal axes frame.
127 let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
128 let sph_harmonics = Harmonics::from_stor(
129 almanac.frame_from_uid(moon_pa_frame)?,
130 HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
131 );
132
133 // Include the spherical harmonics into the orbital dynamics.
134 orbital_dyn.accel_models.push(sph_harmonics);
135
136 // We define the solar radiation pressure, using the default solar flux and accounting only
137 // for the eclipsing caused by the Earth and Moon.
138 // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
139 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
140
141 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
142 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
143 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
144
145 println!("{dynamics}");
146
147 // Now we can build the propagator.
148 let setup = Propagator::default_dp78(dynamics.clone());
149
150 // For reference, let's build the trajectory with Nyx's models from that LRO state.
151 let (sim_final, traj_as_sim) = setup
152 .with(*traj_as_flown.first(), almanac.clone())
153 .until_epoch_with_traj(traj_as_flown.last().epoch())?;
154
155 println!("SIM INIT: {:x}", traj_as_flown.first());
156 println!("SIM FINAL: {sim_final:x}");
157 // Compute RIC difference between SIM and LRO ephem
158 let sim_lro_delta = sim_final
159 .orbit
160 .ric_difference(&traj_as_flown.last().orbit)?;
161 println!("{traj_as_sim}");
162 println!(
163 "SIM v LRO - RIC Position (m): {:.3}",
164 sim_lro_delta.radius_km * 1e3
165 );
166 println!(
167 "SIM v LRO - RIC Velocity (m/s): {:.3}",
168 sim_lro_delta.velocity_km_s * 1e3
169 );
170
171 traj_as_sim.ric_diff_to_parquet(
172 &traj_as_flown,
173 "./04_lro_sim_truth_error.parquet",
174 ExportCfg::default(),
175 )?;
176
177 // ==================== //
178 // === OD SIMULATOR === //
179 // ==================== //
180
181 // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
182 // and the truth LRO state.
183
184 // Therefore, we will actually run an estimation from a dispersed LRO state.
185 // The sc_seed is the true LRO state from the BSP.
186 let sc_seed = *traj_as_flown.first();
187
188 // Load the Deep Space Network ground stations.
189 // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
190 let ground_station_file: PathBuf = [
191 env!("CARGO_MANIFEST_DIR"),
192 "examples",
193 "04_lro_od",
194 "dsn-network.yaml",
195 ]
196 .iter()
197 .collect();
198
199 let devices = GroundStation::load_named(ground_station_file)?;
200
201 let mut proc_devices = devices.clone();
202
203 // Increase the noise in the devices to accept more measurements.
204 for gs in proc_devices.values_mut() {
205 if let Some(noise) = &mut gs
206 .stochastic_noises
207 .as_mut()
208 .unwrap()
209 .get_mut(&MeasurementType::Range)
210 {
211 *noise.white_noise.as_mut().unwrap() *= 3.0;
212 }
213 }
214
215 // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
216 // Nyx can build a tracking schedule for you based on the first station with access.
217 let trkconfg_yaml: PathBuf = [
218 env!("CARGO_MANIFEST_DIR"),
219 "examples",
220 "04_lro_od",
221 "tracking-cfg.yaml",
222 ]
223 .iter()
224 .collect();
225
226 let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
227
228 // Build the tracking arc simulation to generate a "standard measurement".
229 let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::with_seed(
230 devices.clone(),
231 traj_as_flown.clone(),
232 configs,
233 123, // Set a seed for reproducibility
234 )?;
235
236 trk.build_schedule(almanac.clone())?;
237 let arc = trk.generate_measurements(almanac.clone())?;
238 // Save the simulated tracking data
239 arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
240
241 // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
242 println!("{arc}");
243
244 // Now that we have simulated measurements, we'll run the orbit determination.
245
246 // ===================== //
247 // === OD ESTIMATION === //
248 // ===================== //
249
250 let sc = SpacecraftUncertainty::builder()
251 .nominal(sc_seed)
252 .frame(LocalFrame::RIC)
253 .x_km(0.5)
254 .y_km(0.5)
255 .z_km(0.5)
256 .vx_km_s(5e-3)
257 .vy_km_s(5e-3)
258 .vz_km_s(5e-3)
259 .build();
260
261 // Build the filter initial estimate, which we will reuse in the filter.
262 let mut initial_estimate = sc.to_estimate()?;
263 initial_estimate.covar *= 3.0;
264
265 println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
266
267 // Build the SNC in the Moon J2000 frame, specified as a velocity noise over time.
268 let process_noise = ProcessNoise3D::from_velocity_km_s(
269 &[1e-10, 1e-10, 1e-10],
270 1 * Unit::Hour,
271 10 * Unit::Minute,
272 None,
273 );
274
275 println!("{process_noise}");
276
277 // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
278 let odp = SpacecraftKalmanOD::new(
279 setup,
280 KalmanVariant::ReferenceUpdate,
281 Some(ResidRejectCrit::default()),
282 proc_devices,
283 almanac.clone(),
284 )
285 .with_process_noise(process_noise);
286
287 let od_sol = odp.process_arc(initial_estimate, &arc)?;
288
289 let final_est = od_sol.estimates.last().unwrap();
290
291 println!("{final_est}");
292
293 let ric_err = traj_as_flown
294 .at(final_est.epoch())?
295 .orbit
296 .ric_difference(&final_est.orbital_state())?;
297 println!("== RIC at end ==");
298 println!("RIC Position (m): {:.3}", ric_err.radius_km * 1e3);
299 println!("RIC Velocity (m/s): {:.3}", ric_err.velocity_km_s * 1e3);
300
301 println!(
302 "Num residuals rejected: #{}",
303 od_sol.rejected_residuals().len()
304 );
305 println!(
306 "Percentage within +/-3: {}",
307 od_sol.residual_ratio_within_threshold(3.0).unwrap()
308 );
309 println!("Ratios normal? {}", od_sol.is_normal(None).unwrap());
310
311 od_sol.to_parquet("./04_lro_od_results.parquet", ExportCfg::default())?;
312
313 // In our case, we have the truth trajectory from NASA.
314 // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
315 // Export the OD trajectory first.
316 let od_trajectory = od_sol.to_traj()?;
317 // Build the RIC difference.
318 od_trajectory.ric_diff_to_parquet(
319 &traj_as_flown,
320 "./04_lro_od_truth_error.parquet",
321 ExportCfg::default(),
322 )?;
323
324 Ok(())
325}
Sourcepub fn every(&self, step: Duration) -> TrajIterator<'_, S>
pub fn every(&self, step: Duration) -> TrajIterator<'_, S>
Creates an iterator through the trajectory by the provided step size
Examples found in repository?
26fn main() -> Result<(), Box<dyn Error>> {
27 pel::init();
28 // Dynamics models require planetary constants and ephemerides to be defined.
29 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30 // This will automatically download the DE440s planetary ephemeris,
31 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
32 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
33 // planetary constants kernels.
34 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
35 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
36 // references to many functions.
37 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
38 // Define the orbit epoch
39 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
40
41 // Define the orbit.
42 // First we need to fetch the Earth J2000 from information from the Almanac.
43 // This allows the frame to include the gravitational parameters and the shape of the Earth,
44 // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
45 // by loading a different set of planetary constants.
46 let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
47
48 // Placing this GEO bird just above Colorado.
49 // In theory, the eccentricity is zero, but in practice, it's about 1e-5 to 1e-6 at best.
50 let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
51 // Print in in Keplerian form.
52 println!("{orbit:x}");
53
54 let state_bf = almanac.transform_to(orbit, IAU_EARTH_FRAME, None)?;
55 let (orig_lat_deg, orig_long_deg, orig_alt_km) = state_bf.latlongalt()?;
56
57 // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
58 // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
59 // models such as solar radiation pressure.
60
61 // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
62 let sc = Spacecraft::builder()
63 .orbit(orbit)
64 .mass(Mass::from_dry_mass(9.60))
65 .srp(SRPData {
66 area_m2: 10e-4,
67 coeff_reflectivity: 1.1,
68 })
69 .build();
70 println!("{sc:x}");
71
72 // Set up the spacecraft dynamics.
73
74 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
75 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
76 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
77
78 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
79 // We're using the JGM3 model here, which is the default in GMAT.
80 let mut jgm3_meta = MetaFile {
81 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
82 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
83 };
84 // And let's download it if we don't have it yet.
85 jgm3_meta.process(true)?;
86
87 // Build the spherical harmonics.
88 // The harmonics must be computed in the body fixed frame.
89 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
90 let harmonics_21x21 = Harmonics::from_stor(
91 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
92 HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
93 );
94
95 // Include the spherical harmonics into the orbital dynamics.
96 orbital_dyn.accel_models.push(harmonics_21x21);
97
98 // We define the solar radiation pressure, using the default solar flux and accounting only
99 // for the eclipsing caused by the Earth and Moon.
100 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
103 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
104 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
105
106 println!("{dynamics}");
107
108 // Finally, let's propagate this orbit to the same epoch as above.
109 // The first returned value is the spacecraft state at the final epoch.
110 // The second value is the full trajectory where the step size is variable step used by the propagator.
111 let (future_sc, trajectory) = Propagator::default(dynamics)
112 .with(sc, almanac.clone())
113 .until_epoch_with_traj(epoch + Unit::Century * 0.03)?;
114
115 println!("=== High fidelity propagation ===");
116 println!(
117 "SMA changed by {:.3} km",
118 orbit.sma_km()? - future_sc.orbit.sma_km()?
119 );
120 println!(
121 "ECC changed by {:.6}",
122 orbit.ecc()? - future_sc.orbit.ecc()?
123 );
124 println!(
125 "INC changed by {:.3e} deg",
126 orbit.inc_deg()? - future_sc.orbit.inc_deg()?
127 );
128 println!(
129 "RAAN changed by {:.3} deg",
130 orbit.raan_deg()? - future_sc.orbit.raan_deg()?
131 );
132 println!(
133 "AOP changed by {:.3} deg",
134 orbit.aop_deg()? - future_sc.orbit.aop_deg()?
135 );
136 println!(
137 "TA changed by {:.3} deg",
138 orbit.ta_deg()? - future_sc.orbit.ta_deg()?
139 );
140
141 // We also have access to the full trajectory throughout the propagation.
142 println!("{trajectory}");
143
144 println!("Spacecraft params after 3 years without active control:\n{future_sc:x}");
145
146 // With the trajectory, let's build a few data products.
147
148 // 1. Export the trajectory as a parquet file, which includes the Keplerian orbital elements.
149
150 let analysis_step = Unit::Minute * 5;
151
152 trajectory.to_parquet(
153 "./03_geo_hf_prop.parquet",
154 Some(vec![
155 &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
156 ]),
157 ExportCfg::builder().step(analysis_step).build(),
158 almanac.clone(),
159 )?;
160
161 // 2. Compute the latitude, longitude, and altitude throughout the trajectory by rotating the spacecraft position into the Earth body fixed frame.
162
163 // We iterate over the trajectory, grabbing a state every two minutes.
164 let mut offset_s = vec![];
165 let mut epoch_str = vec![];
166 let mut longitude_deg = vec![];
167 let mut latitude_deg = vec![];
168 let mut altitude_km = vec![];
169
170 for state in trajectory.every(analysis_step) {
171 // Convert the GEO bird state into the body fixed frame, and keep track of its latitude, longitude, and altitude.
172 // These define the GEO stationkeeping box.
173
174 let this_epoch = state.epoch();
175
176 offset_s.push((this_epoch - orbit.epoch).to_seconds());
177 epoch_str.push(this_epoch.to_isoformat());
178
179 let state_bf = almanac.transform_to(state.orbit, IAU_EARTH_FRAME, None)?;
180 let (lat_deg, long_deg, alt_km) = state_bf.latlongalt()?;
181 longitude_deg.push(long_deg);
182 latitude_deg.push(lat_deg);
183 altitude_km.push(alt_km);
184 }
185
186 println!(
187 "Longitude changed by {:.3} deg -- Box is 0.1 deg E-W",
188 orig_long_deg - longitude_deg.last().unwrap()
189 );
190
191 println!(
192 "Latitude changed by {:.3} deg -- Box is 0.05 deg N-S",
193 orig_lat_deg - latitude_deg.last().unwrap()
194 );
195
196 println!(
197 "Altitude changed by {:.3} km -- Box is 30 km",
198 orig_alt_km - altitude_km.last().unwrap()
199 );
200
201 // Build the station keeping data frame.
202 let mut sk_df = df!(
203 "Offset (s)" => offset_s.clone(),
204 "Epoch (UTC)" => epoch_str.clone(),
205 "Longitude E-W (deg)" => longitude_deg,
206 "Latitude N-S (deg)" => latitude_deg,
207 "Altitude (km)" => altitude_km,
208
209 )?;
210
211 // Create a file to write the Parquet to
212 let file = File::create("./03_geo_lla.parquet").expect("Could not create file");
213
214 // Create a ParquetWriter and write the DataFrame to the file
215 ParquetWriter::new(file).finish(&mut sk_df)?;
216
217 Ok(())
218}
More examples
30fn main() -> Result<(), Box<dyn Error>> {
31 pel::init();
32 // Dynamics models require planetary constants and ephemerides to be defined.
33 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
34 // This will automatically download the DE440s planetary ephemeris,
35 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
36 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
37 // planetary constants kernels.
38 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
39 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
40 // references to many functions.
41 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
42 // Define the orbit epoch
43 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45 // Define the orbit.
46 // First we need to fetch the Earth J2000 from information from the Almanac.
47 // This allows the frame to include the gravitational parameters and the shape of the Earth,
48 // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
49 // by loading a different set of planetary constants.
50 let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
51
52 let orbit =
53 Orbit::try_keplerian_altitude(300.0, 0.015, 68.5, 65.2, 75.0, 0.0, epoch, earth_j2000)?;
54 // Print in in Keplerian form.
55 println!("{orbit:x}");
56
57 // There are two ways to propagate an orbit. We can make a quick approximation assuming only two-body
58 // motion. This is a useful first order approximation but it isn't used in real-world applications.
59
60 // This approach is a feature of ANISE.
61 let future_orbit_tb = orbit.at_epoch(epoch + Unit::Day * 3)?;
62 println!("{future_orbit_tb:x}");
63
64 // Two body propagation relies solely on Kepler's laws, so only the true anomaly will change.
65 println!(
66 "SMA changed by {:.3e} km",
67 orbit.sma_km()? - future_orbit_tb.sma_km()?
68 );
69 println!(
70 "ECC changed by {:.3e}",
71 orbit.ecc()? - future_orbit_tb.ecc()?
72 );
73 println!(
74 "INC changed by {:.3e} deg",
75 orbit.inc_deg()? - future_orbit_tb.inc_deg()?
76 );
77 println!(
78 "RAAN changed by {:.3e} deg",
79 orbit.raan_deg()? - future_orbit_tb.raan_deg()?
80 );
81 println!(
82 "AOP changed by {:.3e} deg",
83 orbit.aop_deg()? - future_orbit_tb.aop_deg()?
84 );
85 println!(
86 "TA changed by {:.3} deg",
87 orbit.ta_deg()? - future_orbit_tb.ta_deg()?
88 );
89
90 // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
91 // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
92 // models such as solar radiation pressure.
93
94 // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
95 let sc = Spacecraft::builder()
96 .orbit(orbit)
97 .mass(Mass::from_dry_mass(9.60))
98 .srp(SRPData {
99 area_m2: 10e-4,
100 coeff_reflectivity: 1.1,
101 })
102 .build();
103 println!("{sc:x}");
104
105 // Set up the spacecraft dynamics.
106
107 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
108 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
109 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
110
111 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
112 // We're using the JGM3 model here, which is the default in GMAT.
113 let mut jgm3_meta = MetaFile {
114 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
115 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
116 };
117 // And let's download it if we don't have it yet.
118 jgm3_meta.process(true)?;
119
120 // Build the spherical harmonics.
121 // The harmonics must be computed in the body fixed frame.
122 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
123 let harmonics_21x21 = Harmonics::from_stor(
124 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
125 HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
126 );
127
128 // Include the spherical harmonics into the orbital dynamics.
129 orbital_dyn.accel_models.push(harmonics_21x21);
130
131 // We define the solar radiation pressure, using the default solar flux and accounting only
132 // for the eclipsing caused by the Earth.
133 let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
134
135 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
136 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
137 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
138
139 println!("{dynamics}");
140
141 // Finally, let's propagate this orbit to the same epoch as above.
142 // The first returned value is the spacecraft state at the final epoch.
143 // The second value is the full trajectory where the step size is variable step used by the propagator.
144 let (future_sc, trajectory) = Propagator::default(dynamics)
145 .with(sc, almanac.clone())
146 .until_epoch_with_traj(future_orbit_tb.epoch)?;
147
148 println!("=== High fidelity propagation ===");
149 println!(
150 "SMA changed by {:.3} km",
151 orbit.sma_km()? - future_sc.orbit.sma_km()?
152 );
153 println!(
154 "ECC changed by {:.6}",
155 orbit.ecc()? - future_sc.orbit.ecc()?
156 );
157 println!(
158 "INC changed by {:.3e} deg",
159 orbit.inc_deg()? - future_sc.orbit.inc_deg()?
160 );
161 println!(
162 "RAAN changed by {:.3} deg",
163 orbit.raan_deg()? - future_sc.orbit.raan_deg()?
164 );
165 println!(
166 "AOP changed by {:.3} deg",
167 orbit.aop_deg()? - future_sc.orbit.aop_deg()?
168 );
169 println!(
170 "TA changed by {:.3} deg",
171 orbit.ta_deg()? - future_sc.orbit.ta_deg()?
172 );
173
174 // We also have access to the full trajectory throughout the propagation.
175 println!("{trajectory}");
176
177 // With the trajectory, let's build a few data products.
178
179 // 1. Export the trajectory as a CCSDS OEM version 2.0 file and as a parquet file, which includes the Keplerian orbital elements.
180
181 trajectory.to_oem_file(
182 "./01_cubesat_hf_prop.oem",
183 ExportCfg::builder().step(Unit::Minute * 2).build(),
184 )?;
185
186 trajectory.to_parquet_with_cfg(
187 "./01_cubesat_hf_prop.parquet",
188 ExportCfg::builder().step(Unit::Minute * 2).build(),
189 almanac.clone(),
190 )?;
191
192 // 2. Compare the difference in the radial-intrack-crosstrack frame between the high fidelity
193 // and Keplerian propagation. The RIC frame is commonly used to compute the difference in position
194 // and velocity of different spacecraft.
195 // 3. Compute the azimuth, elevation, range, and range-rate data of that spacecraft as seen from Boulder, CO, USA.
196
197 let boulder_station = GroundStation::from_point(
198 "Boulder, CO, USA".to_string(),
199 40.014984, // latitude in degrees
200 -105.270546, // longitude in degrees
201 1.6550, // altitude in kilometers
202 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
203 );
204
205 // We iterate over the trajectory, grabbing a state every two minutes.
206 let mut offset_s = vec![];
207 let mut epoch_str = vec![];
208 let mut ric_x_km = vec![];
209 let mut ric_y_km = vec![];
210 let mut ric_z_km = vec![];
211 let mut ric_vx_km_s = vec![];
212 let mut ric_vy_km_s = vec![];
213 let mut ric_vz_km_s = vec![];
214
215 let mut azimuth_deg = vec![];
216 let mut elevation_deg = vec![];
217 let mut range_km = vec![];
218 let mut range_rate_km_s = vec![];
219 for state in trajectory.every(Unit::Minute * 2) {
220 // Try to compute the Keplerian/two body state just in time.
221 // This method occasionally fails to converge on an appropriate true anomaly
222 // from the mean anomaly. If that happens, we just skip this state.
223 // The high fidelity and Keplerian states diverge continuously, and we're curious
224 // about the divergence in this quick analysis.
225 let this_epoch = state.epoch();
226 match orbit.at_epoch(this_epoch) {
227 Ok(tb_then) => {
228 offset_s.push((this_epoch - orbit.epoch).to_seconds());
229 epoch_str.push(format!("{this_epoch}"));
230 // Compute the two body state just in time.
231 let ric = state.orbit.ric_difference(&tb_then)?;
232 ric_x_km.push(ric.radius_km.x);
233 ric_y_km.push(ric.radius_km.y);
234 ric_z_km.push(ric.radius_km.z);
235 ric_vx_km_s.push(ric.velocity_km_s.x);
236 ric_vy_km_s.push(ric.velocity_km_s.y);
237 ric_vz_km_s.push(ric.velocity_km_s.z);
238
239 // Compute the AER data for each state.
240 let aer = almanac.azimuth_elevation_range_sez(
241 state.orbit,
242 boulder_station.to_orbit(this_epoch, &almanac)?,
243 None,
244 None,
245 )?;
246 azimuth_deg.push(aer.azimuth_deg);
247 elevation_deg.push(aer.elevation_deg);
248 range_km.push(aer.range_km);
249 range_rate_km_s.push(aer.range_rate_km_s);
250 }
251 Err(e) => warn!("{} {e}", state.epoch()),
252 };
253 }
254
255 // Build the data frames.
256 let ric_df = df!(
257 "Offset (s)" => offset_s.clone(),
258 "Epoch" => epoch_str.clone(),
259 "RIC X (km)" => ric_x_km,
260 "RIC Y (km)" => ric_y_km,
261 "RIC Z (km)" => ric_z_km,
262 "RIC VX (km/s)" => ric_vx_km_s,
263 "RIC VY (km/s)" => ric_vy_km_s,
264 "RIC VZ (km/s)" => ric_vz_km_s,
265 )?;
266
267 println!("RIC difference at start\n{}", ric_df.head(Some(10)));
268 println!("RIC difference at end\n{}", ric_df.tail(Some(10)));
269
270 let aer_df = df!(
271 "Offset (s)" => offset_s.clone(),
272 "Epoch" => epoch_str.clone(),
273 "azimuth (deg)" => azimuth_deg,
274 "elevation (deg)" => elevation_deg,
275 "range (km)" => range_km,
276 "range rate (km/s)" => range_rate_km_s,
277 )?;
278
279 // Finally, let's see when the spacecraft is visible, assuming 15 degrees minimum elevation.
280 let mask = aer_df
281 .column("elevation (deg)")?
282 .gt(&Column::Scalar(ScalarColumn::new(
283 "elevation mask (deg)".into(),
284 Scalar::new(DataType::Float64, AnyValue::Float64(15.0)),
285 offset_s.len(),
286 )))?;
287 let cubesat_visible = aer_df.filter(&mask)?;
288
289 println!("{cubesat_visible}");
290
291 Ok(())
292}
Sourcepub fn every_between(
&self,
step: Duration,
start: Epoch,
end: Epoch,
) -> TrajIterator<'_, S>
pub fn every_between( &self, step: Duration, start: Epoch, end: Epoch, ) -> TrajIterator<'_, S>
Creates an iterator through the trajectory by the provided step size between the provided bounds
Sourcepub fn filter_by_epoch<R: RangeBounds<Epoch>>(self, bound: R) -> Self
pub fn filter_by_epoch<R: RangeBounds<Epoch>>(self, bound: R) -> Self
Returns a new trajectory that only contains states that fall within the given epoch range.
Sourcepub fn filter_by_offset<R: RangeBounds<Duration>>(self, bound: R) -> Self
pub fn filter_by_offset<R: RangeBounds<Duration>>(self, bound: R) -> Self
Returns a new trajectory that only contains states that fall within the given offset from the first epoch. For example, a bound of 30.minutes()..90.minutes() will only return states from the start of the trajectory + 30 minutes until start + 90 minutes.
Examples found in repository?
34fn main() -> Result<(), Box<dyn Error>> {
35 pel::init();
36
37 // ====================== //
38 // === ALMANAC SET UP === //
39 // ====================== //
40
41 let manifest_dir =
42 PathBuf::from(std::env::var("CARGO_MANIFEST_DIR").unwrap_or(".".to_string()));
43
44 let out = manifest_dir.join("data/04_output/");
45
46 let almanac = Arc::new(
47 Almanac::new(
48 &manifest_dir
49 .join("data/01_planetary/pck08.pca")
50 .to_string_lossy(),
51 )
52 .unwrap()
53 .load(
54 &manifest_dir
55 .join("data/01_planetary/de440s.bsp")
56 .to_string_lossy(),
57 )
58 .unwrap(),
59 );
60
61 let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
62 let moon_iau = almanac.frame_from_uid(IAU_MOON_FRAME).unwrap();
63
64 let epoch = Epoch::from_gregorian_tai(2021, 5, 29, 19, 51, 16, 852_000);
65 let nrho = Orbit::cartesian(
66 166_473.631_302_239_7,
67 -274_715.487_253_382_7,
68 -211_233.210_176_686_7,
69 0.933_451_604_520_018_4,
70 0.436_775_046_841_900_9,
71 -0.082_211_021_250_348_95,
72 epoch,
73 eme2k,
74 );
75
76 let tx_nrho_sc = Spacecraft::from(nrho);
77
78 let state_luna = almanac.transform_to(nrho, MOON_J2000, None).unwrap();
79 println!("Start state (dynamics: Earth, Moon, Sun gravity):\n{state_luna}");
80
81 let bodies = vec![EARTH, SUN];
82 let dynamics = SpacecraftDynamics::new(OrbitalDynamics::point_masses(bodies));
83
84 let setup = Propagator::rk89(
85 dynamics,
86 IntegratorOptions::builder().max_step(0.5.minutes()).build(),
87 );
88
89 /* == Propagate the NRHO vehicle == */
90 let prop_time = 1.1 * state_luna.period().unwrap();
91
92 let (nrho_final, mut tx_traj) = setup
93 .with(tx_nrho_sc, almanac.clone())
94 .for_duration_with_traj(prop_time)
95 .unwrap();
96
97 tx_traj.name = Some("NRHO Tx SC".to_string());
98
99 println!("{tx_traj}");
100
101 /* == Propagate an LLO vehicle == */
102 let llo_orbit =
103 Orbit::try_keplerian_altitude(110.0, 1e-4, 90.0, 0.0, 0.0, 0.0, epoch, moon_iau).unwrap();
104
105 let llo_sc = Spacecraft::builder().orbit(llo_orbit).build();
106
107 let (_, llo_traj) = setup
108 .with(llo_sc, almanac.clone())
109 .until_epoch_with_traj(nrho_final.epoch())
110 .unwrap();
111
112 // Export the subset of the first two hours.
113 llo_traj
114 .clone()
115 .filter_by_offset(..2.hours())
116 .to_parquet_simple(out.join("05_caps_llo_truth.pq"), almanac.clone())?;
117
118 /* == Setup the interlink == */
119
120 let mut measurement_types = IndexSet::new();
121 measurement_types.insert(MeasurementType::Range);
122 measurement_types.insert(MeasurementType::Doppler);
123
124 let mut stochastics = IndexMap::new();
125
126 let sa45_csac_allan_dev = 1e-11;
127
128 stochastics.insert(
129 MeasurementType::Range,
130 StochasticNoise::from_hardware_range_km(
131 sa45_csac_allan_dev,
132 10.0.seconds(),
133 link_specific::ChipRate::StandardT4B,
134 link_specific::SN0::Average,
135 ),
136 );
137
138 stochastics.insert(
139 MeasurementType::Doppler,
140 StochasticNoise::from_hardware_doppler_km_s(
141 sa45_csac_allan_dev,
142 10.0.seconds(),
143 link_specific::CarrierFreq::SBand,
144 link_specific::CN0::Average,
145 ),
146 );
147
148 let interlink = InterlinkTxSpacecraft {
149 traj: tx_traj,
150 measurement_types,
151 integration_time: None,
152 timestamp_noise_s: None,
153 ab_corr: Aberration::LT,
154 stochastic_noises: Some(stochastics),
155 };
156
157 // Devices are the transmitter, which is our NRHO vehicle.
158 let mut devices = BTreeMap::new();
159 devices.insert("NRHO Tx SC".to_string(), interlink);
160
161 let mut configs = BTreeMap::new();
162 configs.insert(
163 "NRHO Tx SC".to_string(),
164 TrkConfig::builder()
165 .strands(vec![Strand {
166 start: epoch,
167 end: nrho_final.epoch(),
168 }])
169 .build(),
170 );
171
172 let mut trk_sim =
173 TrackingArcSim::with_seed(devices.clone(), llo_traj.clone(), configs, 0).unwrap();
174 println!("{trk_sim}");
175
176 let trk_data = trk_sim.generate_measurements(almanac.clone()).unwrap();
177 println!("{trk_data}");
178
179 trk_data
180 .to_parquet_simple(out.clone().join("nrho_interlink_msr.pq"))
181 .unwrap();
182
183 // Run a truth OD where we estimate the LLO position
184 let llo_uncertainty = SpacecraftUncertainty::builder()
185 .nominal(llo_sc)
186 .x_km(1.0)
187 .y_km(1.0)
188 .z_km(1.0)
189 .vx_km_s(1e-3)
190 .vy_km_s(1e-3)
191 .vz_km_s(1e-3)
192 .build();
193
194 let mut proc_devices = devices.clone();
195
196 // Define the initial estimate, randomized, seed for reproducibility
197 let mut initial_estimate = llo_uncertainty.to_estimate_randomized(Some(0)).unwrap();
198 // Inflate the covariance -- https://github.com/nyx-space/nyx/issues/339
199 initial_estimate.covar *= 2.5;
200
201 // Increase the noise in the devices to accept more measurements.
202
203 for link in proc_devices.values_mut() {
204 for noise in &mut link.stochastic_noises.as_mut().unwrap().values_mut() {
205 *noise.white_noise.as_mut().unwrap() *= 3.0;
206 }
207 }
208
209 let init_err = initial_estimate
210 .orbital_state()
211 .ric_difference(&llo_orbit)
212 .unwrap();
213
214 println!("initial estimate:\n{initial_estimate}");
215 println!("RIC errors = {init_err}",);
216
217 let odp = InterlinkKalmanOD::new(
218 setup.clone(),
219 KalmanVariant::ReferenceUpdate,
220 Some(ResidRejectCrit::default()),
221 proc_devices,
222 almanac.clone(),
223 );
224
225 // Shrink the data to process.
226 let arc = trk_data.filter_by_offset(..2.hours());
227
228 let od_sol = odp.process_arc(initial_estimate, &arc).unwrap();
229
230 println!("{od_sol}");
231
232 od_sol
233 .to_parquet(
234 out.join(format!("05_caps_interlink_od_sol.pq")),
235 ExportCfg::default(),
236 )
237 .unwrap();
238
239 let od_traj = od_sol.to_traj().unwrap();
240
241 od_traj
242 .ric_diff_to_parquet(
243 &llo_traj,
244 out.join(format!("05_caps_interlink_llo_est_error.pq")),
245 ExportCfg::default(),
246 )
247 .unwrap();
248
249 let final_est = od_sol.estimates.last().unwrap();
250 assert!(final_est.within_3sigma(), "should be within 3 sigma");
251
252 println!("ESTIMATE\n{final_est:x}\n");
253 let truth = llo_traj.at(final_est.epoch()).unwrap();
254 println!("TRUTH\n{truth:x}");
255
256 let final_err = truth
257 .orbit
258 .ric_difference(&final_est.orbital_state())
259 .unwrap();
260 println!("ERROR {final_err}");
261
262 // Build the residuals versus reference plot.
263 let rvr_sol = odp
264 .process_arc(initial_estimate, &arc.resid_vs_ref_check())
265 .unwrap();
266
267 rvr_sol
268 .to_parquet(
269 out.join(format!("05_caps_interlink_resid_v_ref.pq")),
270 ExportCfg::default(),
271 )
272 .unwrap();
273
274 let final_rvr = rvr_sol.estimates.last().unwrap();
275
276 println!("RMAG error {:.3} m", final_err.rmag_km() * 1e3);
277 println!(
278 "Pure prop error {:.3} m",
279 final_rvr
280 .orbital_state()
281 .ric_difference(&final_est.orbital_state())
282 .unwrap()
283 .rmag_km()
284 * 1e3
285 );
286
287 Ok(())
288}
Sourcepub fn to_parquet_simple<P: AsRef<Path>>(
&self,
path: P,
almanac: Arc<Almanac>,
) -> Result<PathBuf, Box<dyn Error>>
pub fn to_parquet_simple<P: AsRef<Path>>( &self, path: P, almanac: Arc<Almanac>, ) -> Result<PathBuf, Box<dyn Error>>
Store this trajectory arc to a parquet file with the default configuration (depends on the state type, search for export_params
in the documentation for details).
Examples found in repository?
34fn main() -> Result<(), Box<dyn Error>> {
35 pel::init();
36
37 // ====================== //
38 // === ALMANAC SET UP === //
39 // ====================== //
40
41 let manifest_dir =
42 PathBuf::from(std::env::var("CARGO_MANIFEST_DIR").unwrap_or(".".to_string()));
43
44 let out = manifest_dir.join("data/04_output/");
45
46 let almanac = Arc::new(
47 Almanac::new(
48 &manifest_dir
49 .join("data/01_planetary/pck08.pca")
50 .to_string_lossy(),
51 )
52 .unwrap()
53 .load(
54 &manifest_dir
55 .join("data/01_planetary/de440s.bsp")
56 .to_string_lossy(),
57 )
58 .unwrap(),
59 );
60
61 let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
62 let moon_iau = almanac.frame_from_uid(IAU_MOON_FRAME).unwrap();
63
64 let epoch = Epoch::from_gregorian_tai(2021, 5, 29, 19, 51, 16, 852_000);
65 let nrho = Orbit::cartesian(
66 166_473.631_302_239_7,
67 -274_715.487_253_382_7,
68 -211_233.210_176_686_7,
69 0.933_451_604_520_018_4,
70 0.436_775_046_841_900_9,
71 -0.082_211_021_250_348_95,
72 epoch,
73 eme2k,
74 );
75
76 let tx_nrho_sc = Spacecraft::from(nrho);
77
78 let state_luna = almanac.transform_to(nrho, MOON_J2000, None).unwrap();
79 println!("Start state (dynamics: Earth, Moon, Sun gravity):\n{state_luna}");
80
81 let bodies = vec![EARTH, SUN];
82 let dynamics = SpacecraftDynamics::new(OrbitalDynamics::point_masses(bodies));
83
84 let setup = Propagator::rk89(
85 dynamics,
86 IntegratorOptions::builder().max_step(0.5.minutes()).build(),
87 );
88
89 /* == Propagate the NRHO vehicle == */
90 let prop_time = 1.1 * state_luna.period().unwrap();
91
92 let (nrho_final, mut tx_traj) = setup
93 .with(tx_nrho_sc, almanac.clone())
94 .for_duration_with_traj(prop_time)
95 .unwrap();
96
97 tx_traj.name = Some("NRHO Tx SC".to_string());
98
99 println!("{tx_traj}");
100
101 /* == Propagate an LLO vehicle == */
102 let llo_orbit =
103 Orbit::try_keplerian_altitude(110.0, 1e-4, 90.0, 0.0, 0.0, 0.0, epoch, moon_iau).unwrap();
104
105 let llo_sc = Spacecraft::builder().orbit(llo_orbit).build();
106
107 let (_, llo_traj) = setup
108 .with(llo_sc, almanac.clone())
109 .until_epoch_with_traj(nrho_final.epoch())
110 .unwrap();
111
112 // Export the subset of the first two hours.
113 llo_traj
114 .clone()
115 .filter_by_offset(..2.hours())
116 .to_parquet_simple(out.join("05_caps_llo_truth.pq"), almanac.clone())?;
117
118 /* == Setup the interlink == */
119
120 let mut measurement_types = IndexSet::new();
121 measurement_types.insert(MeasurementType::Range);
122 measurement_types.insert(MeasurementType::Doppler);
123
124 let mut stochastics = IndexMap::new();
125
126 let sa45_csac_allan_dev = 1e-11;
127
128 stochastics.insert(
129 MeasurementType::Range,
130 StochasticNoise::from_hardware_range_km(
131 sa45_csac_allan_dev,
132 10.0.seconds(),
133 link_specific::ChipRate::StandardT4B,
134 link_specific::SN0::Average,
135 ),
136 );
137
138 stochastics.insert(
139 MeasurementType::Doppler,
140 StochasticNoise::from_hardware_doppler_km_s(
141 sa45_csac_allan_dev,
142 10.0.seconds(),
143 link_specific::CarrierFreq::SBand,
144 link_specific::CN0::Average,
145 ),
146 );
147
148 let interlink = InterlinkTxSpacecraft {
149 traj: tx_traj,
150 measurement_types,
151 integration_time: None,
152 timestamp_noise_s: None,
153 ab_corr: Aberration::LT,
154 stochastic_noises: Some(stochastics),
155 };
156
157 // Devices are the transmitter, which is our NRHO vehicle.
158 let mut devices = BTreeMap::new();
159 devices.insert("NRHO Tx SC".to_string(), interlink);
160
161 let mut configs = BTreeMap::new();
162 configs.insert(
163 "NRHO Tx SC".to_string(),
164 TrkConfig::builder()
165 .strands(vec![Strand {
166 start: epoch,
167 end: nrho_final.epoch(),
168 }])
169 .build(),
170 );
171
172 let mut trk_sim =
173 TrackingArcSim::with_seed(devices.clone(), llo_traj.clone(), configs, 0).unwrap();
174 println!("{trk_sim}");
175
176 let trk_data = trk_sim.generate_measurements(almanac.clone()).unwrap();
177 println!("{trk_data}");
178
179 trk_data
180 .to_parquet_simple(out.clone().join("nrho_interlink_msr.pq"))
181 .unwrap();
182
183 // Run a truth OD where we estimate the LLO position
184 let llo_uncertainty = SpacecraftUncertainty::builder()
185 .nominal(llo_sc)
186 .x_km(1.0)
187 .y_km(1.0)
188 .z_km(1.0)
189 .vx_km_s(1e-3)
190 .vy_km_s(1e-3)
191 .vz_km_s(1e-3)
192 .build();
193
194 let mut proc_devices = devices.clone();
195
196 // Define the initial estimate, randomized, seed for reproducibility
197 let mut initial_estimate = llo_uncertainty.to_estimate_randomized(Some(0)).unwrap();
198 // Inflate the covariance -- https://github.com/nyx-space/nyx/issues/339
199 initial_estimate.covar *= 2.5;
200
201 // Increase the noise in the devices to accept more measurements.
202
203 for link in proc_devices.values_mut() {
204 for noise in &mut link.stochastic_noises.as_mut().unwrap().values_mut() {
205 *noise.white_noise.as_mut().unwrap() *= 3.0;
206 }
207 }
208
209 let init_err = initial_estimate
210 .orbital_state()
211 .ric_difference(&llo_orbit)
212 .unwrap();
213
214 println!("initial estimate:\n{initial_estimate}");
215 println!("RIC errors = {init_err}",);
216
217 let odp = InterlinkKalmanOD::new(
218 setup.clone(),
219 KalmanVariant::ReferenceUpdate,
220 Some(ResidRejectCrit::default()),
221 proc_devices,
222 almanac.clone(),
223 );
224
225 // Shrink the data to process.
226 let arc = trk_data.filter_by_offset(..2.hours());
227
228 let od_sol = odp.process_arc(initial_estimate, &arc).unwrap();
229
230 println!("{od_sol}");
231
232 od_sol
233 .to_parquet(
234 out.join(format!("05_caps_interlink_od_sol.pq")),
235 ExportCfg::default(),
236 )
237 .unwrap();
238
239 let od_traj = od_sol.to_traj().unwrap();
240
241 od_traj
242 .ric_diff_to_parquet(
243 &llo_traj,
244 out.join(format!("05_caps_interlink_llo_est_error.pq")),
245 ExportCfg::default(),
246 )
247 .unwrap();
248
249 let final_est = od_sol.estimates.last().unwrap();
250 assert!(final_est.within_3sigma(), "should be within 3 sigma");
251
252 println!("ESTIMATE\n{final_est:x}\n");
253 let truth = llo_traj.at(final_est.epoch()).unwrap();
254 println!("TRUTH\n{truth:x}");
255
256 let final_err = truth
257 .orbit
258 .ric_difference(&final_est.orbital_state())
259 .unwrap();
260 println!("ERROR {final_err}");
261
262 // Build the residuals versus reference plot.
263 let rvr_sol = odp
264 .process_arc(initial_estimate, &arc.resid_vs_ref_check())
265 .unwrap();
266
267 rvr_sol
268 .to_parquet(
269 out.join(format!("05_caps_interlink_resid_v_ref.pq")),
270 ExportCfg::default(),
271 )
272 .unwrap();
273
274 let final_rvr = rvr_sol.estimates.last().unwrap();
275
276 println!("RMAG error {:.3} m", final_err.rmag_km() * 1e3);
277 println!(
278 "Pure prop error {:.3} m",
279 final_rvr
280 .orbital_state()
281 .ric_difference(&final_est.orbital_state())
282 .unwrap()
283 .rmag_km()
284 * 1e3
285 );
286
287 Ok(())
288}
Sourcepub fn to_parquet_with_cfg<P: AsRef<Path>>(
&self,
path: P,
cfg: ExportCfg,
almanac: Arc<Almanac>,
) -> Result<PathBuf, Box<dyn Error>>
pub fn to_parquet_with_cfg<P: AsRef<Path>>( &self, path: P, cfg: ExportCfg, almanac: Arc<Almanac>, ) -> Result<PathBuf, Box<dyn Error>>
Store this trajectory arc to a parquet file with the provided configuration
Examples found in repository?
30fn main() -> Result<(), Box<dyn Error>> {
31 pel::init();
32 // Dynamics models require planetary constants and ephemerides to be defined.
33 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
34 // This will automatically download the DE440s planetary ephemeris,
35 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
36 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
37 // planetary constants kernels.
38 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
39 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
40 // references to many functions.
41 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
42 // Define the orbit epoch
43 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45 // Define the orbit.
46 // First we need to fetch the Earth J2000 from information from the Almanac.
47 // This allows the frame to include the gravitational parameters and the shape of the Earth,
48 // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
49 // by loading a different set of planetary constants.
50 let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
51
52 let orbit =
53 Orbit::try_keplerian_altitude(300.0, 0.015, 68.5, 65.2, 75.0, 0.0, epoch, earth_j2000)?;
54 // Print in in Keplerian form.
55 println!("{orbit:x}");
56
57 // There are two ways to propagate an orbit. We can make a quick approximation assuming only two-body
58 // motion. This is a useful first order approximation but it isn't used in real-world applications.
59
60 // This approach is a feature of ANISE.
61 let future_orbit_tb = orbit.at_epoch(epoch + Unit::Day * 3)?;
62 println!("{future_orbit_tb:x}");
63
64 // Two body propagation relies solely on Kepler's laws, so only the true anomaly will change.
65 println!(
66 "SMA changed by {:.3e} km",
67 orbit.sma_km()? - future_orbit_tb.sma_km()?
68 );
69 println!(
70 "ECC changed by {:.3e}",
71 orbit.ecc()? - future_orbit_tb.ecc()?
72 );
73 println!(
74 "INC changed by {:.3e} deg",
75 orbit.inc_deg()? - future_orbit_tb.inc_deg()?
76 );
77 println!(
78 "RAAN changed by {:.3e} deg",
79 orbit.raan_deg()? - future_orbit_tb.raan_deg()?
80 );
81 println!(
82 "AOP changed by {:.3e} deg",
83 orbit.aop_deg()? - future_orbit_tb.aop_deg()?
84 );
85 println!(
86 "TA changed by {:.3} deg",
87 orbit.ta_deg()? - future_orbit_tb.ta_deg()?
88 );
89
90 // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
91 // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
92 // models such as solar radiation pressure.
93
94 // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
95 let sc = Spacecraft::builder()
96 .orbit(orbit)
97 .mass(Mass::from_dry_mass(9.60))
98 .srp(SRPData {
99 area_m2: 10e-4,
100 coeff_reflectivity: 1.1,
101 })
102 .build();
103 println!("{sc:x}");
104
105 // Set up the spacecraft dynamics.
106
107 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
108 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
109 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
110
111 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
112 // We're using the JGM3 model here, which is the default in GMAT.
113 let mut jgm3_meta = MetaFile {
114 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
115 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
116 };
117 // And let's download it if we don't have it yet.
118 jgm3_meta.process(true)?;
119
120 // Build the spherical harmonics.
121 // The harmonics must be computed in the body fixed frame.
122 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
123 let harmonics_21x21 = Harmonics::from_stor(
124 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
125 HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
126 );
127
128 // Include the spherical harmonics into the orbital dynamics.
129 orbital_dyn.accel_models.push(harmonics_21x21);
130
131 // We define the solar radiation pressure, using the default solar flux and accounting only
132 // for the eclipsing caused by the Earth.
133 let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
134
135 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
136 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
137 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
138
139 println!("{dynamics}");
140
141 // Finally, let's propagate this orbit to the same epoch as above.
142 // The first returned value is the spacecraft state at the final epoch.
143 // The second value is the full trajectory where the step size is variable step used by the propagator.
144 let (future_sc, trajectory) = Propagator::default(dynamics)
145 .with(sc, almanac.clone())
146 .until_epoch_with_traj(future_orbit_tb.epoch)?;
147
148 println!("=== High fidelity propagation ===");
149 println!(
150 "SMA changed by {:.3} km",
151 orbit.sma_km()? - future_sc.orbit.sma_km()?
152 );
153 println!(
154 "ECC changed by {:.6}",
155 orbit.ecc()? - future_sc.orbit.ecc()?
156 );
157 println!(
158 "INC changed by {:.3e} deg",
159 orbit.inc_deg()? - future_sc.orbit.inc_deg()?
160 );
161 println!(
162 "RAAN changed by {:.3} deg",
163 orbit.raan_deg()? - future_sc.orbit.raan_deg()?
164 );
165 println!(
166 "AOP changed by {:.3} deg",
167 orbit.aop_deg()? - future_sc.orbit.aop_deg()?
168 );
169 println!(
170 "TA changed by {:.3} deg",
171 orbit.ta_deg()? - future_sc.orbit.ta_deg()?
172 );
173
174 // We also have access to the full trajectory throughout the propagation.
175 println!("{trajectory}");
176
177 // With the trajectory, let's build a few data products.
178
179 // 1. Export the trajectory as a CCSDS OEM version 2.0 file and as a parquet file, which includes the Keplerian orbital elements.
180
181 trajectory.to_oem_file(
182 "./01_cubesat_hf_prop.oem",
183 ExportCfg::builder().step(Unit::Minute * 2).build(),
184 )?;
185
186 trajectory.to_parquet_with_cfg(
187 "./01_cubesat_hf_prop.parquet",
188 ExportCfg::builder().step(Unit::Minute * 2).build(),
189 almanac.clone(),
190 )?;
191
192 // 2. Compare the difference in the radial-intrack-crosstrack frame between the high fidelity
193 // and Keplerian propagation. The RIC frame is commonly used to compute the difference in position
194 // and velocity of different spacecraft.
195 // 3. Compute the azimuth, elevation, range, and range-rate data of that spacecraft as seen from Boulder, CO, USA.
196
197 let boulder_station = GroundStation::from_point(
198 "Boulder, CO, USA".to_string(),
199 40.014984, // latitude in degrees
200 -105.270546, // longitude in degrees
201 1.6550, // altitude in kilometers
202 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
203 );
204
205 // We iterate over the trajectory, grabbing a state every two minutes.
206 let mut offset_s = vec![];
207 let mut epoch_str = vec![];
208 let mut ric_x_km = vec![];
209 let mut ric_y_km = vec![];
210 let mut ric_z_km = vec![];
211 let mut ric_vx_km_s = vec![];
212 let mut ric_vy_km_s = vec![];
213 let mut ric_vz_km_s = vec![];
214
215 let mut azimuth_deg = vec![];
216 let mut elevation_deg = vec![];
217 let mut range_km = vec![];
218 let mut range_rate_km_s = vec![];
219 for state in trajectory.every(Unit::Minute * 2) {
220 // Try to compute the Keplerian/two body state just in time.
221 // This method occasionally fails to converge on an appropriate true anomaly
222 // from the mean anomaly. If that happens, we just skip this state.
223 // The high fidelity and Keplerian states diverge continuously, and we're curious
224 // about the divergence in this quick analysis.
225 let this_epoch = state.epoch();
226 match orbit.at_epoch(this_epoch) {
227 Ok(tb_then) => {
228 offset_s.push((this_epoch - orbit.epoch).to_seconds());
229 epoch_str.push(format!("{this_epoch}"));
230 // Compute the two body state just in time.
231 let ric = state.orbit.ric_difference(&tb_then)?;
232 ric_x_km.push(ric.radius_km.x);
233 ric_y_km.push(ric.radius_km.y);
234 ric_z_km.push(ric.radius_km.z);
235 ric_vx_km_s.push(ric.velocity_km_s.x);
236 ric_vy_km_s.push(ric.velocity_km_s.y);
237 ric_vz_km_s.push(ric.velocity_km_s.z);
238
239 // Compute the AER data for each state.
240 let aer = almanac.azimuth_elevation_range_sez(
241 state.orbit,
242 boulder_station.to_orbit(this_epoch, &almanac)?,
243 None,
244 None,
245 )?;
246 azimuth_deg.push(aer.azimuth_deg);
247 elevation_deg.push(aer.elevation_deg);
248 range_km.push(aer.range_km);
249 range_rate_km_s.push(aer.range_rate_km_s);
250 }
251 Err(e) => warn!("{} {e}", state.epoch()),
252 };
253 }
254
255 // Build the data frames.
256 let ric_df = df!(
257 "Offset (s)" => offset_s.clone(),
258 "Epoch" => epoch_str.clone(),
259 "RIC X (km)" => ric_x_km,
260 "RIC Y (km)" => ric_y_km,
261 "RIC Z (km)" => ric_z_km,
262 "RIC VX (km/s)" => ric_vx_km_s,
263 "RIC VY (km/s)" => ric_vy_km_s,
264 "RIC VZ (km/s)" => ric_vz_km_s,
265 )?;
266
267 println!("RIC difference at start\n{}", ric_df.head(Some(10)));
268 println!("RIC difference at end\n{}", ric_df.tail(Some(10)));
269
270 let aer_df = df!(
271 "Offset (s)" => offset_s.clone(),
272 "Epoch" => epoch_str.clone(),
273 "azimuth (deg)" => azimuth_deg,
274 "elevation (deg)" => elevation_deg,
275 "range (km)" => range_km,
276 "range rate (km/s)" => range_rate_km_s,
277 )?;
278
279 // Finally, let's see when the spacecraft is visible, assuming 15 degrees minimum elevation.
280 let mask = aer_df
281 .column("elevation (deg)")?
282 .gt(&Column::Scalar(ScalarColumn::new(
283 "elevation mask (deg)".into(),
284 Scalar::new(DataType::Float64, AnyValue::Float64(15.0)),
285 offset_s.len(),
286 )))?;
287 let cubesat_visible = aer_df.filter(&mask)?;
288
289 println!("{cubesat_visible}");
290
291 Ok(())
292}
Sourcepub fn to_parquet_with_step<P: AsRef<Path>>(
&self,
path: P,
step: Duration,
almanac: Arc<Almanac>,
) -> Result<(), Box<dyn Error>>
pub fn to_parquet_with_step<P: AsRef<Path>>( &self, path: P, step: Duration, almanac: Arc<Almanac>, ) -> Result<(), Box<dyn Error>>
A shortcut to to_parquet_with_cfg
Sourcepub fn to_parquet<P: AsRef<Path>>(
&self,
path: P,
events: Option<Vec<&dyn EventEvaluator<S>>>,
cfg: ExportCfg,
almanac: Arc<Almanac>,
) -> Result<PathBuf, Box<dyn Error>>
pub fn to_parquet<P: AsRef<Path>>( &self, path: P, events: Option<Vec<&dyn EventEvaluator<S>>>, cfg: ExportCfg, almanac: Arc<Almanac>, ) -> Result<PathBuf, Box<dyn Error>>
Store this trajectory arc to a parquet file with the provided configuration and event evaluators
Examples found in repository?
27fn main() -> Result<(), Box<dyn Error>> {
28 pel::init();
29
30 // Dynamics models require planetary constants and ephemerides to be defined.
31 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
32 // This will automatically download the DE440s planetary ephemeris,
33 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
34 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
35 // planetary constants kernels.
36 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
37 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
38 // references to many functions.
39 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
40 // Fetch the EME2000 frame from the Almabac
41 let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
42 // Define the orbit epoch
43 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45 // Build the spacecraft itself.
46 // Using slide 6 of https://aerospace.org/sites/default/files/2018-11/Davis-Mayberry_HPSEP_11212018.pdf
47 // for the "next gen" SEP characteristics.
48
49 // GTO start
50 let orbit = Orbit::keplerian(24505.9, 0.725, 7.05, 0.0, 0.0, 0.0, epoch, eme2k);
51
52 let sc = Spacecraft::builder()
53 .orbit(orbit)
54 .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
55 .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
56 .thruster(Thruster {
57 // "NEXT-STEP" row in Table 2
58 isp_s: 4435.0,
59 thrust_N: 0.472,
60 })
61 .mode(GuidanceMode::Thrust) // Start thrusting immediately.
62 .build();
63
64 let prop_time = 180.0 * Unit::Day;
65
66 // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
67 let objectives = &[
68 Objective::within_tolerance(StateParameter::SMA, 42_165.0, 20.0),
69 Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
70 Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
71 ];
72
73 // Ensure that we only thrust if we have more than 20% illumination.
74 let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2).unwrap();
75 println!("{ruggiero_ctrl}");
76
77 // Define the high fidelity dynamics
78
79 // Set up the spacecraft dynamics.
80
81 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
82 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
83 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
84
85 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
86 // We're using the JGM3 model here, which is the default in GMAT.
87 let mut jgm3_meta = MetaFile {
88 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
89 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
90 };
91 // And let's download it if we don't have it yet.
92 jgm3_meta.process(true)?;
93
94 // Build the spherical harmonics.
95 // The harmonics must be computed in the body fixed frame.
96 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
97 let harmonics = Harmonics::from_stor(
98 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
99 HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true).unwrap(),
100 );
101
102 // Include the spherical harmonics into the orbital dynamics.
103 orbital_dyn.accel_models.push(harmonics);
104
105 // We define the solar radiation pressure, using the default solar flux and accounting only
106 // for the eclipsing caused by the Earth.
107 let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
108
109 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
110 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
111 let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
112 .with_guidance_law(ruggiero_ctrl.clone());
113
114 println!("{orbit:x}");
115
116 // We specify a minimum step in the propagator because the Ruggiero control would otherwise drive this step very low.
117 let (final_state, traj) = Propagator::rk89(
118 sc_dynamics.clone(),
119 IntegratorOptions::builder()
120 .min_step(10.0_f64.seconds())
121 .error_ctrl(ErrorControl::RSSCartesianStep)
122 .build(),
123 )
124 .with(sc, almanac.clone())
125 .for_duration_with_traj(prop_time)?;
126
127 let prop_usage = sc.mass.prop_mass_kg - final_state.mass.prop_mass_kg;
128 println!("{:x}", final_state.orbit);
129 println!("prop usage: {prop_usage:.3} kg");
130
131 // Finally, export the results for analysis, including the penumbra percentage throughout the orbit raise.
132 traj.to_parquet(
133 "./03_geo_raise.parquet",
134 Some(vec![
135 &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
136 ]),
137 ExportCfg::default(),
138 almanac,
139 )?;
140
141 for status_line in ruggiero_ctrl.status(&final_state) {
142 println!("{status_line}");
143 }
144
145 ruggiero_ctrl
146 .achieved(&final_state)
147 .expect("objective not achieved");
148
149 Ok(())
150}
More examples
26fn main() -> Result<(), Box<dyn Error>> {
27 pel::init();
28 // Dynamics models require planetary constants and ephemerides to be defined.
29 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30 // This will automatically download the DE440s planetary ephemeris,
31 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
32 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
33 // planetary constants kernels.
34 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
35 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
36 // references to many functions.
37 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
38 // Define the orbit epoch
39 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
40
41 // Define the orbit.
42 // First we need to fetch the Earth J2000 from information from the Almanac.
43 // This allows the frame to include the gravitational parameters and the shape of the Earth,
44 // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
45 // by loading a different set of planetary constants.
46 let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
47
48 // Placing this GEO bird just above Colorado.
49 // In theory, the eccentricity is zero, but in practice, it's about 1e-5 to 1e-6 at best.
50 let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
51 // Print in in Keplerian form.
52 println!("{orbit:x}");
53
54 let state_bf = almanac.transform_to(orbit, IAU_EARTH_FRAME, None)?;
55 let (orig_lat_deg, orig_long_deg, orig_alt_km) = state_bf.latlongalt()?;
56
57 // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
58 // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
59 // models such as solar radiation pressure.
60
61 // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
62 let sc = Spacecraft::builder()
63 .orbit(orbit)
64 .mass(Mass::from_dry_mass(9.60))
65 .srp(SRPData {
66 area_m2: 10e-4,
67 coeff_reflectivity: 1.1,
68 })
69 .build();
70 println!("{sc:x}");
71
72 // Set up the spacecraft dynamics.
73
74 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
75 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
76 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
77
78 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
79 // We're using the JGM3 model here, which is the default in GMAT.
80 let mut jgm3_meta = MetaFile {
81 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
82 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
83 };
84 // And let's download it if we don't have it yet.
85 jgm3_meta.process(true)?;
86
87 // Build the spherical harmonics.
88 // The harmonics must be computed in the body fixed frame.
89 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
90 let harmonics_21x21 = Harmonics::from_stor(
91 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
92 HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
93 );
94
95 // Include the spherical harmonics into the orbital dynamics.
96 orbital_dyn.accel_models.push(harmonics_21x21);
97
98 // We define the solar radiation pressure, using the default solar flux and accounting only
99 // for the eclipsing caused by the Earth and Moon.
100 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
103 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
104 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
105
106 println!("{dynamics}");
107
108 // Finally, let's propagate this orbit to the same epoch as above.
109 // The first returned value is the spacecraft state at the final epoch.
110 // The second value is the full trajectory where the step size is variable step used by the propagator.
111 let (future_sc, trajectory) = Propagator::default(dynamics)
112 .with(sc, almanac.clone())
113 .until_epoch_with_traj(epoch + Unit::Century * 0.03)?;
114
115 println!("=== High fidelity propagation ===");
116 println!(
117 "SMA changed by {:.3} km",
118 orbit.sma_km()? - future_sc.orbit.sma_km()?
119 );
120 println!(
121 "ECC changed by {:.6}",
122 orbit.ecc()? - future_sc.orbit.ecc()?
123 );
124 println!(
125 "INC changed by {:.3e} deg",
126 orbit.inc_deg()? - future_sc.orbit.inc_deg()?
127 );
128 println!(
129 "RAAN changed by {:.3} deg",
130 orbit.raan_deg()? - future_sc.orbit.raan_deg()?
131 );
132 println!(
133 "AOP changed by {:.3} deg",
134 orbit.aop_deg()? - future_sc.orbit.aop_deg()?
135 );
136 println!(
137 "TA changed by {:.3} deg",
138 orbit.ta_deg()? - future_sc.orbit.ta_deg()?
139 );
140
141 // We also have access to the full trajectory throughout the propagation.
142 println!("{trajectory}");
143
144 println!("Spacecraft params after 3 years without active control:\n{future_sc:x}");
145
146 // With the trajectory, let's build a few data products.
147
148 // 1. Export the trajectory as a parquet file, which includes the Keplerian orbital elements.
149
150 let analysis_step = Unit::Minute * 5;
151
152 trajectory.to_parquet(
153 "./03_geo_hf_prop.parquet",
154 Some(vec![
155 &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
156 ]),
157 ExportCfg::builder().step(analysis_step).build(),
158 almanac.clone(),
159 )?;
160
161 // 2. Compute the latitude, longitude, and altitude throughout the trajectory by rotating the spacecraft position into the Earth body fixed frame.
162
163 // We iterate over the trajectory, grabbing a state every two minutes.
164 let mut offset_s = vec![];
165 let mut epoch_str = vec![];
166 let mut longitude_deg = vec![];
167 let mut latitude_deg = vec![];
168 let mut altitude_km = vec![];
169
170 for state in trajectory.every(analysis_step) {
171 // Convert the GEO bird state into the body fixed frame, and keep track of its latitude, longitude, and altitude.
172 // These define the GEO stationkeeping box.
173
174 let this_epoch = state.epoch();
175
176 offset_s.push((this_epoch - orbit.epoch).to_seconds());
177 epoch_str.push(this_epoch.to_isoformat());
178
179 let state_bf = almanac.transform_to(state.orbit, IAU_EARTH_FRAME, None)?;
180 let (lat_deg, long_deg, alt_km) = state_bf.latlongalt()?;
181 longitude_deg.push(long_deg);
182 latitude_deg.push(lat_deg);
183 altitude_km.push(alt_km);
184 }
185
186 println!(
187 "Longitude changed by {:.3} deg -- Box is 0.1 deg E-W",
188 orig_long_deg - longitude_deg.last().unwrap()
189 );
190
191 println!(
192 "Latitude changed by {:.3} deg -- Box is 0.05 deg N-S",
193 orig_lat_deg - latitude_deg.last().unwrap()
194 );
195
196 println!(
197 "Altitude changed by {:.3} km -- Box is 30 km",
198 orig_alt_km - altitude_km.last().unwrap()
199 );
200
201 // Build the station keeping data frame.
202 let mut sk_df = df!(
203 "Offset (s)" => offset_s.clone(),
204 "Epoch (UTC)" => epoch_str.clone(),
205 "Longitude E-W (deg)" => longitude_deg,
206 "Latitude N-S (deg)" => latitude_deg,
207 "Altitude (km)" => altitude_km,
208
209 )?;
210
211 // Create a file to write the Parquet to
212 let file = File::create("./03_geo_lla.parquet").expect("Could not create file");
213
214 // Create a ParquetWriter and write the DataFrame to the file
215 ParquetWriter::new(file).finish(&mut sk_df)?;
216
217 Ok(())
218}
Sourcepub fn resample(&self, step: Duration) -> Result<Self, NyxError>
pub fn resample(&self, step: Duration) -> Result<Self, NyxError>
Allows resampling this trajectory at a fixed interval instead of using the propagator step size. This may lead to aliasing due to the Nyquist–Shannon sampling theorem.
Sourcepub fn rebuild(&self, epochs: &[Epoch]) -> Result<Self, NyxError>
pub fn rebuild(&self, epochs: &[Epoch]) -> Result<Self, NyxError>
Rebuilds this trajectory with the provided epochs. This may lead to aliasing due to the Nyquist–Shannon sampling theorem.
Sourcepub fn ric_diff_to_parquet<P: AsRef<Path>>(
&self,
other: &Self,
path: P,
cfg: ExportCfg,
) -> Result<PathBuf, Box<dyn Error>>
pub fn ric_diff_to_parquet<P: AsRef<Path>>( &self, other: &Self, path: P, cfg: ExportCfg, ) -> Result<PathBuf, Box<dyn Error>>
Export the difference in RIC from of this trajectory compare to the “other” trajectory in parquet format.
§Notes
- The RIC frame accounts for the transport theorem by performing a finite differencing of the RIC frame.
Examples found in repository?
34fn main() -> Result<(), Box<dyn Error>> {
35 pel::init();
36
37 // ====================== //
38 // === ALMANAC SET UP === //
39 // ====================== //
40
41 let manifest_dir =
42 PathBuf::from(std::env::var("CARGO_MANIFEST_DIR").unwrap_or(".".to_string()));
43
44 let out = manifest_dir.join("data/04_output/");
45
46 let almanac = Arc::new(
47 Almanac::new(
48 &manifest_dir
49 .join("data/01_planetary/pck08.pca")
50 .to_string_lossy(),
51 )
52 .unwrap()
53 .load(
54 &manifest_dir
55 .join("data/01_planetary/de440s.bsp")
56 .to_string_lossy(),
57 )
58 .unwrap(),
59 );
60
61 let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
62 let moon_iau = almanac.frame_from_uid(IAU_MOON_FRAME).unwrap();
63
64 let epoch = Epoch::from_gregorian_tai(2021, 5, 29, 19, 51, 16, 852_000);
65 let nrho = Orbit::cartesian(
66 166_473.631_302_239_7,
67 -274_715.487_253_382_7,
68 -211_233.210_176_686_7,
69 0.933_451_604_520_018_4,
70 0.436_775_046_841_900_9,
71 -0.082_211_021_250_348_95,
72 epoch,
73 eme2k,
74 );
75
76 let tx_nrho_sc = Spacecraft::from(nrho);
77
78 let state_luna = almanac.transform_to(nrho, MOON_J2000, None).unwrap();
79 println!("Start state (dynamics: Earth, Moon, Sun gravity):\n{state_luna}");
80
81 let bodies = vec![EARTH, SUN];
82 let dynamics = SpacecraftDynamics::new(OrbitalDynamics::point_masses(bodies));
83
84 let setup = Propagator::rk89(
85 dynamics,
86 IntegratorOptions::builder().max_step(0.5.minutes()).build(),
87 );
88
89 /* == Propagate the NRHO vehicle == */
90 let prop_time = 1.1 * state_luna.period().unwrap();
91
92 let (nrho_final, mut tx_traj) = setup
93 .with(tx_nrho_sc, almanac.clone())
94 .for_duration_with_traj(prop_time)
95 .unwrap();
96
97 tx_traj.name = Some("NRHO Tx SC".to_string());
98
99 println!("{tx_traj}");
100
101 /* == Propagate an LLO vehicle == */
102 let llo_orbit =
103 Orbit::try_keplerian_altitude(110.0, 1e-4, 90.0, 0.0, 0.0, 0.0, epoch, moon_iau).unwrap();
104
105 let llo_sc = Spacecraft::builder().orbit(llo_orbit).build();
106
107 let (_, llo_traj) = setup
108 .with(llo_sc, almanac.clone())
109 .until_epoch_with_traj(nrho_final.epoch())
110 .unwrap();
111
112 // Export the subset of the first two hours.
113 llo_traj
114 .clone()
115 .filter_by_offset(..2.hours())
116 .to_parquet_simple(out.join("05_caps_llo_truth.pq"), almanac.clone())?;
117
118 /* == Setup the interlink == */
119
120 let mut measurement_types = IndexSet::new();
121 measurement_types.insert(MeasurementType::Range);
122 measurement_types.insert(MeasurementType::Doppler);
123
124 let mut stochastics = IndexMap::new();
125
126 let sa45_csac_allan_dev = 1e-11;
127
128 stochastics.insert(
129 MeasurementType::Range,
130 StochasticNoise::from_hardware_range_km(
131 sa45_csac_allan_dev,
132 10.0.seconds(),
133 link_specific::ChipRate::StandardT4B,
134 link_specific::SN0::Average,
135 ),
136 );
137
138 stochastics.insert(
139 MeasurementType::Doppler,
140 StochasticNoise::from_hardware_doppler_km_s(
141 sa45_csac_allan_dev,
142 10.0.seconds(),
143 link_specific::CarrierFreq::SBand,
144 link_specific::CN0::Average,
145 ),
146 );
147
148 let interlink = InterlinkTxSpacecraft {
149 traj: tx_traj,
150 measurement_types,
151 integration_time: None,
152 timestamp_noise_s: None,
153 ab_corr: Aberration::LT,
154 stochastic_noises: Some(stochastics),
155 };
156
157 // Devices are the transmitter, which is our NRHO vehicle.
158 let mut devices = BTreeMap::new();
159 devices.insert("NRHO Tx SC".to_string(), interlink);
160
161 let mut configs = BTreeMap::new();
162 configs.insert(
163 "NRHO Tx SC".to_string(),
164 TrkConfig::builder()
165 .strands(vec![Strand {
166 start: epoch,
167 end: nrho_final.epoch(),
168 }])
169 .build(),
170 );
171
172 let mut trk_sim =
173 TrackingArcSim::with_seed(devices.clone(), llo_traj.clone(), configs, 0).unwrap();
174 println!("{trk_sim}");
175
176 let trk_data = trk_sim.generate_measurements(almanac.clone()).unwrap();
177 println!("{trk_data}");
178
179 trk_data
180 .to_parquet_simple(out.clone().join("nrho_interlink_msr.pq"))
181 .unwrap();
182
183 // Run a truth OD where we estimate the LLO position
184 let llo_uncertainty = SpacecraftUncertainty::builder()
185 .nominal(llo_sc)
186 .x_km(1.0)
187 .y_km(1.0)
188 .z_km(1.0)
189 .vx_km_s(1e-3)
190 .vy_km_s(1e-3)
191 .vz_km_s(1e-3)
192 .build();
193
194 let mut proc_devices = devices.clone();
195
196 // Define the initial estimate, randomized, seed for reproducibility
197 let mut initial_estimate = llo_uncertainty.to_estimate_randomized(Some(0)).unwrap();
198 // Inflate the covariance -- https://github.com/nyx-space/nyx/issues/339
199 initial_estimate.covar *= 2.5;
200
201 // Increase the noise in the devices to accept more measurements.
202
203 for link in proc_devices.values_mut() {
204 for noise in &mut link.stochastic_noises.as_mut().unwrap().values_mut() {
205 *noise.white_noise.as_mut().unwrap() *= 3.0;
206 }
207 }
208
209 let init_err = initial_estimate
210 .orbital_state()
211 .ric_difference(&llo_orbit)
212 .unwrap();
213
214 println!("initial estimate:\n{initial_estimate}");
215 println!("RIC errors = {init_err}",);
216
217 let odp = InterlinkKalmanOD::new(
218 setup.clone(),
219 KalmanVariant::ReferenceUpdate,
220 Some(ResidRejectCrit::default()),
221 proc_devices,
222 almanac.clone(),
223 );
224
225 // Shrink the data to process.
226 let arc = trk_data.filter_by_offset(..2.hours());
227
228 let od_sol = odp.process_arc(initial_estimate, &arc).unwrap();
229
230 println!("{od_sol}");
231
232 od_sol
233 .to_parquet(
234 out.join(format!("05_caps_interlink_od_sol.pq")),
235 ExportCfg::default(),
236 )
237 .unwrap();
238
239 let od_traj = od_sol.to_traj().unwrap();
240
241 od_traj
242 .ric_diff_to_parquet(
243 &llo_traj,
244 out.join(format!("05_caps_interlink_llo_est_error.pq")),
245 ExportCfg::default(),
246 )
247 .unwrap();
248
249 let final_est = od_sol.estimates.last().unwrap();
250 assert!(final_est.within_3sigma(), "should be within 3 sigma");
251
252 println!("ESTIMATE\n{final_est:x}\n");
253 let truth = llo_traj.at(final_est.epoch()).unwrap();
254 println!("TRUTH\n{truth:x}");
255
256 let final_err = truth
257 .orbit
258 .ric_difference(&final_est.orbital_state())
259 .unwrap();
260 println!("ERROR {final_err}");
261
262 // Build the residuals versus reference plot.
263 let rvr_sol = odp
264 .process_arc(initial_estimate, &arc.resid_vs_ref_check())
265 .unwrap();
266
267 rvr_sol
268 .to_parquet(
269 out.join(format!("05_caps_interlink_resid_v_ref.pq")),
270 ExportCfg::default(),
271 )
272 .unwrap();
273
274 let final_rvr = rvr_sol.estimates.last().unwrap();
275
276 println!("RMAG error {:.3} m", final_err.rmag_km() * 1e3);
277 println!(
278 "Pure prop error {:.3} m",
279 final_rvr
280 .orbital_state()
281 .ric_difference(&final_est.orbital_state())
282 .unwrap()
283 .rmag_km()
284 * 1e3
285 );
286
287 Ok(())
288}
More examples
34fn main() -> Result<(), Box<dyn Error>> {
35 pel::init();
36
37 // ====================== //
38 // === ALMANAC SET UP === //
39 // ====================== //
40
41 // Dynamics models require planetary constants and ephemerides to be defined.
42 // Let's start by grabbing those by using ANISE's MetaAlmanac.
43
44 let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
45 .iter()
46 .collect();
47
48 let meta = data_folder.join("lro-dynamics.dhall");
49
50 // Load this ephem in the general Almanac we're using for this analysis.
51 let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
52 .map_err(Box::new)?
53 .process(true)
54 .map_err(Box::new)?;
55
56 let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
57 moon_pc.mu_km3_s2 = 4902.74987;
58 almanac.planetary_data.set_by_id(MOON, moon_pc)?;
59
60 let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
61 earth_pc.mu_km3_s2 = 398600.436;
62 almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
63
64 // Save this new kernel for reuse.
65 // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
66 almanac
67 .planetary_data
68 .save_as(&data_folder.join("lro-specific.pca"), true)?;
69
70 // Lock the almanac (an Arc is a read only structure).
71 let almanac = Arc::new(almanac);
72
73 // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
74 // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
75 // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
76 // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
77 let lro_frame = Frame::from_ephem_j2000(-85);
78
79 // To build the trajectory we need to provide a spacecraft template.
80 let sc_template = Spacecraft::builder()
81 .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
82 .srp(SRPData {
83 // SRP configuration is arbitrary, but we will be estimating it anyway.
84 area_m2: 3.9 * 2.7,
85 coeff_reflectivity: 0.96,
86 })
87 .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
88 .build();
89 // Now we can build the trajectory from the BSP file.
90 // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
91 let traj_as_flown = Traj::from_bsp(
92 lro_frame,
93 MOON_J2000,
94 almanac.clone(),
95 sc_template,
96 5.seconds(),
97 Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
98 Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
99 Aberration::LT,
100 Some("LRO".to_string()),
101 )?;
102
103 println!("{traj_as_flown}");
104
105 // ====================== //
106 // === MODEL MATCHING === //
107 // ====================== //
108
109 // Set up the spacecraft dynamics.
110
111 // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
112 // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
113 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
114
115 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
116 // We're using the GRAIL JGGRX model.
117 let mut jggrx_meta = MetaFile {
118 uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
119 crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
120 };
121 // And let's download it if we don't have it yet.
122 jggrx_meta.process(true)?;
123
124 // Build the spherical harmonics.
125 // The harmonics must be computed in the body fixed frame.
126 // We're using the long term prediction of the Moon principal axes frame.
127 let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
128 let sph_harmonics = Harmonics::from_stor(
129 almanac.frame_from_uid(moon_pa_frame)?,
130 HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
131 );
132
133 // Include the spherical harmonics into the orbital dynamics.
134 orbital_dyn.accel_models.push(sph_harmonics);
135
136 // We define the solar radiation pressure, using the default solar flux and accounting only
137 // for the eclipsing caused by the Earth and Moon.
138 // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
139 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
140
141 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
142 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
143 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
144
145 println!("{dynamics}");
146
147 // Now we can build the propagator.
148 let setup = Propagator::default_dp78(dynamics.clone());
149
150 // For reference, let's build the trajectory with Nyx's models from that LRO state.
151 let (sim_final, traj_as_sim) = setup
152 .with(*traj_as_flown.first(), almanac.clone())
153 .until_epoch_with_traj(traj_as_flown.last().epoch())?;
154
155 println!("SIM INIT: {:x}", traj_as_flown.first());
156 println!("SIM FINAL: {sim_final:x}");
157 // Compute RIC difference between SIM and LRO ephem
158 let sim_lro_delta = sim_final
159 .orbit
160 .ric_difference(&traj_as_flown.last().orbit)?;
161 println!("{traj_as_sim}");
162 println!(
163 "SIM v LRO - RIC Position (m): {:.3}",
164 sim_lro_delta.radius_km * 1e3
165 );
166 println!(
167 "SIM v LRO - RIC Velocity (m/s): {:.3}",
168 sim_lro_delta.velocity_km_s * 1e3
169 );
170
171 traj_as_sim.ric_diff_to_parquet(
172 &traj_as_flown,
173 "./04_lro_sim_truth_error.parquet",
174 ExportCfg::default(),
175 )?;
176
177 // ==================== //
178 // === OD SIMULATOR === //
179 // ==================== //
180
181 // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
182 // and the truth LRO state.
183
184 // Therefore, we will actually run an estimation from a dispersed LRO state.
185 // The sc_seed is the true LRO state from the BSP.
186 let sc_seed = *traj_as_flown.first();
187
188 // Load the Deep Space Network ground stations.
189 // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
190 let ground_station_file: PathBuf = [
191 env!("CARGO_MANIFEST_DIR"),
192 "examples",
193 "04_lro_od",
194 "dsn-network.yaml",
195 ]
196 .iter()
197 .collect();
198
199 let devices = GroundStation::load_named(ground_station_file)?;
200
201 let mut proc_devices = devices.clone();
202
203 // Increase the noise in the devices to accept more measurements.
204 for gs in proc_devices.values_mut() {
205 if let Some(noise) = &mut gs
206 .stochastic_noises
207 .as_mut()
208 .unwrap()
209 .get_mut(&MeasurementType::Range)
210 {
211 *noise.white_noise.as_mut().unwrap() *= 3.0;
212 }
213 }
214
215 // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
216 // Nyx can build a tracking schedule for you based on the first station with access.
217 let trkconfg_yaml: PathBuf = [
218 env!("CARGO_MANIFEST_DIR"),
219 "examples",
220 "04_lro_od",
221 "tracking-cfg.yaml",
222 ]
223 .iter()
224 .collect();
225
226 let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
227
228 // Build the tracking arc simulation to generate a "standard measurement".
229 let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::with_seed(
230 devices.clone(),
231 traj_as_flown.clone(),
232 configs,
233 123, // Set a seed for reproducibility
234 )?;
235
236 trk.build_schedule(almanac.clone())?;
237 let arc = trk.generate_measurements(almanac.clone())?;
238 // Save the simulated tracking data
239 arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
240
241 // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
242 println!("{arc}");
243
244 // Now that we have simulated measurements, we'll run the orbit determination.
245
246 // ===================== //
247 // === OD ESTIMATION === //
248 // ===================== //
249
250 let sc = SpacecraftUncertainty::builder()
251 .nominal(sc_seed)
252 .frame(LocalFrame::RIC)
253 .x_km(0.5)
254 .y_km(0.5)
255 .z_km(0.5)
256 .vx_km_s(5e-3)
257 .vy_km_s(5e-3)
258 .vz_km_s(5e-3)
259 .build();
260
261 // Build the filter initial estimate, which we will reuse in the filter.
262 let mut initial_estimate = sc.to_estimate()?;
263 initial_estimate.covar *= 3.0;
264
265 println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
266
267 // Build the SNC in the Moon J2000 frame, specified as a velocity noise over time.
268 let process_noise = ProcessNoise3D::from_velocity_km_s(
269 &[1e-10, 1e-10, 1e-10],
270 1 * Unit::Hour,
271 10 * Unit::Minute,
272 None,
273 );
274
275 println!("{process_noise}");
276
277 // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
278 let odp = SpacecraftKalmanOD::new(
279 setup,
280 KalmanVariant::ReferenceUpdate,
281 Some(ResidRejectCrit::default()),
282 proc_devices,
283 almanac.clone(),
284 )
285 .with_process_noise(process_noise);
286
287 let od_sol = odp.process_arc(initial_estimate, &arc)?;
288
289 let final_est = od_sol.estimates.last().unwrap();
290
291 println!("{final_est}");
292
293 let ric_err = traj_as_flown
294 .at(final_est.epoch())?
295 .orbit
296 .ric_difference(&final_est.orbital_state())?;
297 println!("== RIC at end ==");
298 println!("RIC Position (m): {:.3}", ric_err.radius_km * 1e3);
299 println!("RIC Velocity (m/s): {:.3}", ric_err.velocity_km_s * 1e3);
300
301 println!(
302 "Num residuals rejected: #{}",
303 od_sol.rejected_residuals().len()
304 );
305 println!(
306 "Percentage within +/-3: {}",
307 od_sol.residual_ratio_within_threshold(3.0).unwrap()
308 );
309 println!("Ratios normal? {}", od_sol.is_normal(None).unwrap());
310
311 od_sol.to_parquet("./04_lro_od_results.parquet", ExportCfg::default())?;
312
313 // In our case, we have the truth trajectory from NASA.
314 // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
315 // Export the OD trajectory first.
316 let od_trajectory = od_sol.to_traj()?;
317 // Build the RIC difference.
318 od_trajectory.ric_diff_to_parquet(
319 &traj_as_flown,
320 "./04_lro_od_truth_error.parquet",
321 ExportCfg::default(),
322 )?;
323
324 Ok(())
325}
Source§impl<S: Interpolatable> Traj<S>
impl<S: Interpolatable> Traj<S>
Sourcepub fn find_bracketed<E>(
&self,
start: Epoch,
end: Epoch,
event: &E,
almanac: Arc<Almanac>,
) -> Result<EventDetails<S>, EventError>where
E: EventEvaluator<S>,
pub fn find_bracketed<E>(
&self,
start: Epoch,
end: Epoch,
event: &E,
almanac: Arc<Almanac>,
) -> Result<EventDetails<S>, EventError>where
E: EventEvaluator<S>,
Find the exact state where the request event happens. The event function is expected to be monotone in the provided interval because we find the event using a Brent solver.
Sourcepub fn find<E>(
&self,
event: &E,
heuristic: Option<Duration>,
almanac: Arc<Almanac>,
) -> Result<Vec<EventDetails<S>>, EventError>where
E: EventEvaluator<S>,
pub fn find<E>(
&self,
event: &E,
heuristic: Option<Duration>,
almanac: Arc<Almanac>,
) -> Result<Vec<EventDetails<S>>, EventError>where
E: EventEvaluator<S>,
Find all of the states where the event happens
§Limitations
This method uses a Brent solver. If the function that defines the event is not unimodal, the event finder may not converge correctly.
§Heuristic detail
The initial search step is 1% of the duration of the trajectory duration, if the heuristic is set to None. For example, if the trajectory is 100 days long, then we split the trajectory into 100 chunks of 1 day and see whether the event is in there. If the event happens twice or more times within 1% of the trajectory duration, only the one of such events will be found.
If this heuristic fails to find any such events, then find_minmax
is called on the event with a time precision of Unit::Second
.
Then we search only within the min and max bounds of the provided event.
Sourcepub fn find_minmax<E>(
&self,
event: &E,
precision: Unit,
almanac: Arc<Almanac>,
) -> Result<(S, S), EventError>where
E: EventEvaluator<S>,
pub fn find_minmax<E>(
&self,
event: &E,
precision: Unit,
almanac: Arc<Almanac>,
) -> Result<(S, S), EventError>where
E: EventEvaluator<S>,
Find the minimum and maximum of the provided event through the trajectory
Sourcepub fn find_arcs<E>(
&self,
event: &E,
heuristic: Option<Duration>,
almanac: Arc<Almanac>,
) -> Result<Vec<EventArc<S>>, EventError>where
E: EventEvaluator<S>,
pub fn find_arcs<E>(
&self,
event: &E,
heuristic: Option<Duration>,
almanac: Arc<Almanac>,
) -> Result<Vec<EventArc<S>>, EventError>where
E: EventEvaluator<S>,
Identifies and pairs rising and falling edge events in a trajectory.
This function processes a sequence of events in a trajectory and pairs each rising edge event with its subsequent falling edge event to form arcs. Each arc represents a complete cycle of an event rising above and then falling below a specified threshold. Use this to analyze a trajectory’s behavior when understanding the complete cycle of an event (from rising to falling) is essential, e.g. ground station passes.
§Arguments
event
: A reference to an object implementing theEventEvaluator<S>
trait, which is used to evaluate and classify events in the trajectory.
§Returns
Result<Vec<EventArc>, NyxError>
: On success, returns a vector of EventArc, where each struct contains a pair ofEventDetails
(one for the rising edge and one for the falling edge). Returns an error if any issues occur during the event evaluation process.
§Logic
- Sorts the events by their epoch to ensure chronological processing.
- Iterates through the sorted events, identifying transitions from falling to rising edges and vice versa.
- Pairs a rising edge with the subsequent falling edge to form an arc.
- Handles edge cases where the trajectory starts or ends with a rising or falling edge.
- Prints debug information for each event and arc.
§Note
If no zero crossing happens in the trajectory, i.e. the there is “event is true” and “event is false”, then this function checks whether the event is true at the start and end of the trajectory. If so, it means that there is a single arc that spans the whole trajectory.
Trait Implementations§
Source§impl<S: Interpolatable> Add for Traj<S>
impl<S: Interpolatable> Add for Traj<S>
Source§impl<S: Interpolatable> AddAssign<&Traj<S>> for Traj<S>
impl<S: Interpolatable> AddAssign<&Traj<S>> for Traj<S>
Source§fn add_assign(&mut self, rhs: &Self)
fn add_assign(&mut self, rhs: &Self)
Attempt to add two trajectories together and assign it to self
§Warnings
- This will panic if the frames mismatch!
- This is inefficient because both
self
andrhs
are cloned.
Source§impl<S: Interpolatable> Debug for Traj<S>
impl<S: Interpolatable> Debug for Traj<S>
Source§impl<S: Interpolatable> Default for Traj<S>
impl<S: Interpolatable> Default for Traj<S>
Source§impl<S: Interpolatable> Display for Traj<S>
impl<S: Interpolatable> Display for Traj<S>
impl<S: Interpolatable> StructuralPartialEq for Traj<S>
Auto Trait Implementations§
impl<S> Freeze for Traj<S>where
DefaultAllocator: Sized,
impl<S> RefUnwindSafe for Traj<S>
impl<S> Send for Traj<S>where
DefaultAllocator: Sized,
impl<S> Sync for Traj<S>where
DefaultAllocator: Sized,
impl<S> Unpin for Traj<S>
impl<S> UnwindSafe for Traj<S>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.