nyx_space::io

Struct ExportCfg

Source
pub struct ExportCfg {
    pub fields: Option<Vec<StateParameter>>,
    pub start_epoch: Option<Epoch>,
    pub end_epoch: Option<Epoch>,
    pub step: Option<Duration>,
    pub metadata: Option<HashMap<String, String>>,
    pub timestamp: bool,
}
Expand description

Configuration for exporting a trajectory to parquet.

Fields§

§fields: Option<Vec<StateParameter>>

Fields to export, if unset, defaults to all possible fields.

§start_epoch: Option<Epoch>

Start epoch to export, defaults to the start of the trajectory

§end_epoch: Option<Epoch>

End epoch to export, defaults to the end of the trajectory

§step: Option<Duration>

An optional step, defaults to every state in the trajectory (which likely isn’t equidistant)

§metadata: Option<HashMap<String, String>>

Additional metadata to store in the Parquet metadata

§timestamp: bool

Set to true to append the timestamp to the filename

Implementations§

Source§

impl ExportCfg

Source

pub fn builder() -> ExportCfgBuilder<((), (), (), (), (), ())>

Create a builder for building ExportCfg. On the builder, call .fields(...)(optional), .start_epoch(...)(optional), .end_epoch(...)(optional), .step(...)(optional), .metadata(...)(optional), .timestamp(...)(optional) to set the values of the fields. Finally, call .build() to create the instance of ExportCfg.

Examples found in repository?
examples/03_geo_analysis/drift.rs (line 157)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();
    // Dynamics models require planetary constants and ephemerides to be defined.
    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
    // This will automatically download the DE440s planetary ephemeris,
    // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
    // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
    // planetary constants kernels.
    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
    // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
    // references to many functions.
    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
    // Define the orbit epoch
    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);

    // Define the orbit.
    // First we need to fetch the Earth J2000 from information from the Almanac.
    // This allows the frame to include the gravitational parameters and the shape of the Earth,
    // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
    // by loading a different set of planetary constants.
    let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;

    // Placing this GEO bird just above Colorado.
    // In theory, the eccentricity is zero, but in practice, it's about 1e-5 to 1e-6 at best.
    let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
    // Print in in Keplerian form.
    println!("{orbit:x}");

    let state_bf = almanac.transform_to(orbit, IAU_EARTH_FRAME, None)?;
    let (orig_lat_deg, orig_long_deg, orig_alt_km) = state_bf.latlongalt()?;

    // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
    // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
    // models such as solar radiation pressure.

    // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
    let sc = Spacecraft::builder()
        .orbit(orbit)
        .mass(Mass::from_dry_mass(9.60))
        .srp(SRPData {
            area_m2: 10e-4,
            coeff_reflectivity: 1.1,
        })
        .build();
    println!("{sc:x}");

    // Set up the spacecraft dynamics.

    // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
    // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);

    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
    // We're using the JGM3 model here, which is the default in GMAT.
    let mut jgm3_meta = MetaFile {
        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
    };
    // And let's download it if we don't have it yet.
    jgm3_meta.process(true)?;

    // Build the spherical harmonics.
    // The harmonics must be computed in the body fixed frame.
    // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
    let harmonics_21x21 = Harmonics::from_stor(
        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
        HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
    );

    // Include the spherical harmonics into the orbital dynamics.
    orbital_dyn.accel_models.push(harmonics_21x21);

    // We define the solar radiation pressure, using the default solar flux and accounting only
    // for the eclipsing caused by the Earth and Moon.
    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;

    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);

    println!("{dynamics}");

    // Finally, let's propagate this orbit to the same epoch as above.
    // The first returned value is the spacecraft state at the final epoch.
    // The second value is the full trajectory where the step size is variable step used by the propagator.
    let (future_sc, trajectory) = Propagator::default(dynamics)
        .with(sc, almanac.clone())
        .until_epoch_with_traj(epoch + Unit::Century * 0.03)?;

    println!("=== High fidelity propagation ===");
    println!(
        "SMA changed by {:.3} km",
        orbit.sma_km()? - future_sc.orbit.sma_km()?
    );
    println!(
        "ECC changed by {:.6}",
        orbit.ecc()? - future_sc.orbit.ecc()?
    );
    println!(
        "INC changed by {:.3e} deg",
        orbit.inc_deg()? - future_sc.orbit.inc_deg()?
    );
    println!(
        "RAAN changed by {:.3} deg",
        orbit.raan_deg()? - future_sc.orbit.raan_deg()?
    );
    println!(
        "AOP changed by {:.3} deg",
        orbit.aop_deg()? - future_sc.orbit.aop_deg()?
    );
    println!(
        "TA changed by {:.3} deg",
        orbit.ta_deg()? - future_sc.orbit.ta_deg()?
    );

    // We also have access to the full trajectory throughout the propagation.
    println!("{trajectory}");

    println!("Spacecraft params after 3 years without active control:\n{future_sc:x}");

    // With the trajectory, let's build a few data products.

    // 1. Export the trajectory as a parquet file, which includes the Keplerian orbital elements.

    let analysis_step = Unit::Minute * 5;

    trajectory.to_parquet(
        "./03_geo_hf_prop.parquet",
        Some(vec![
            &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
        ]),
        ExportCfg::builder().step(analysis_step).build(),
        almanac.clone(),
    )?;

    // 2. Compute the latitude, longitude, and altitude throughout the trajectory by rotating the spacecraft position into the Earth body fixed frame.

    // We iterate over the trajectory, grabbing a state every two minutes.
    let mut offset_s = vec![];
    let mut epoch_str = vec![];
    let mut longitude_deg = vec![];
    let mut latitude_deg = vec![];
    let mut altitude_km = vec![];

    for state in trajectory.every(analysis_step) {
        // Convert the GEO bird state into the body fixed frame, and keep track of its latitude, longitude, and altitude.
        // These define the GEO stationkeeping box.

        let this_epoch = state.epoch();

        offset_s.push((this_epoch - orbit.epoch).to_seconds());
        epoch_str.push(this_epoch.to_isoformat());

        let state_bf = almanac.transform_to(state.orbit, IAU_EARTH_FRAME, None)?;
        let (lat_deg, long_deg, alt_km) = state_bf.latlongalt()?;
        longitude_deg.push(long_deg);
        latitude_deg.push(lat_deg);
        altitude_km.push(alt_km);
    }

    println!(
        "Longitude changed by {:.3} deg -- Box is 0.1 deg E-W",
        orig_long_deg - longitude_deg.last().unwrap()
    );

    println!(
        "Latitude changed by {:.3} deg -- Box is 0.05 deg N-S",
        orig_lat_deg - latitude_deg.last().unwrap()
    );

    println!(
        "Altitude changed by {:.3} km -- Box is 30 km",
        orig_alt_km - altitude_km.last().unwrap()
    );

    // Build the station keeping data frame.
    let mut sk_df = df!(
        "Offset (s)" => offset_s.clone(),
        "Epoch (UTC)" => epoch_str.clone(),
        "Longitude E-W (deg)" => longitude_deg,
        "Latitude N-S (deg)" => latitude_deg,
        "Altitude (km)" => altitude_km,

    )?;

    // Create a file to write the Parquet to
    let file = File::create("./03_geo_lla.parquet").expect("Could not create file");

    // Create a ParquetWriter and write the DataFrame to the file
    ParquetWriter::new(file).finish(&mut sk_df)?;

    Ok(())
}
More examples
Hide additional examples
examples/01_orbit_prop/main.rs (line 183)
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();
    // Dynamics models require planetary constants and ephemerides to be defined.
    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
    // This will automatically download the DE440s planetary ephemeris,
    // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
    // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
    // planetary constants kernels.
    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
    // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
    // references to many functions.
    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
    // Define the orbit epoch
    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);

    // Define the orbit.
    // First we need to fetch the Earth J2000 from information from the Almanac.
    // This allows the frame to include the gravitational parameters and the shape of the Earth,
    // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
    // by loading a different set of planetary constants.
    let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;

    let orbit =
        Orbit::try_keplerian_altitude(300.0, 0.015, 68.5, 65.2, 75.0, 0.0, epoch, earth_j2000)?;
    // Print in in Keplerian form.
    println!("{orbit:x}");

    // There are two ways to propagate an orbit. We can make a quick approximation assuming only two-body
    // motion. This is a useful first order approximation but it isn't used in real-world applications.

    // This approach is a feature of ANISE.
    let future_orbit_tb = orbit.at_epoch(epoch + Unit::Day * 3)?;
    println!("{future_orbit_tb:x}");

    // Two body propagation relies solely on Kepler's laws, so only the true anomaly will change.
    println!(
        "SMA changed by {:.3e} km",
        orbit.sma_km()? - future_orbit_tb.sma_km()?
    );
    println!(
        "ECC changed by {:.3e}",
        orbit.ecc()? - future_orbit_tb.ecc()?
    );
    println!(
        "INC changed by {:.3e} deg",
        orbit.inc_deg()? - future_orbit_tb.inc_deg()?
    );
    println!(
        "RAAN changed by {:.3e} deg",
        orbit.raan_deg()? - future_orbit_tb.raan_deg()?
    );
    println!(
        "AOP changed by {:.3e} deg",
        orbit.aop_deg()? - future_orbit_tb.aop_deg()?
    );
    println!(
        "TA changed by {:.3} deg",
        orbit.ta_deg()? - future_orbit_tb.ta_deg()?
    );

    // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
    // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
    // models such as solar radiation pressure.

    // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
    let sc = Spacecraft::builder()
        .orbit(orbit)
        .mass(Mass::from_dry_mass(9.60))
        .srp(SRPData {
            area_m2: 10e-4,
            coeff_reflectivity: 1.1,
        })
        .build();
    println!("{sc:x}");

    // Set up the spacecraft dynamics.

    // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
    // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);

    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
    // We're using the JGM3 model here, which is the default in GMAT.
    let mut jgm3_meta = MetaFile {
        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
    };
    // And let's download it if we don't have it yet.
    jgm3_meta.process(true)?;

    // Build the spherical harmonics.
    // The harmonics must be computed in the body fixed frame.
    // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
    let harmonics_21x21 = Harmonics::from_stor(
        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
        HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
    );

    // Include the spherical harmonics into the orbital dynamics.
    orbital_dyn.accel_models.push(harmonics_21x21);

    // We define the solar radiation pressure, using the default solar flux and accounting only
    // for the eclipsing caused by the Earth.
    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;

    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);

    println!("{dynamics}");

    // Finally, let's propagate this orbit to the same epoch as above.
    // The first returned value is the spacecraft state at the final epoch.
    // The second value is the full trajectory where the step size is variable step used by the propagator.
    let (future_sc, trajectory) = Propagator::default(dynamics)
        .with(sc, almanac.clone())
        .until_epoch_with_traj(future_orbit_tb.epoch)?;

    println!("=== High fidelity propagation ===");
    println!(
        "SMA changed by {:.3} km",
        orbit.sma_km()? - future_sc.orbit.sma_km()?
    );
    println!(
        "ECC changed by {:.6}",
        orbit.ecc()? - future_sc.orbit.ecc()?
    );
    println!(
        "INC changed by {:.3e} deg",
        orbit.inc_deg()? - future_sc.orbit.inc_deg()?
    );
    println!(
        "RAAN changed by {:.3} deg",
        orbit.raan_deg()? - future_sc.orbit.raan_deg()?
    );
    println!(
        "AOP changed by {:.3} deg",
        orbit.aop_deg()? - future_sc.orbit.aop_deg()?
    );
    println!(
        "TA changed by {:.3} deg",
        orbit.ta_deg()? - future_sc.orbit.ta_deg()?
    );

    // We also have access to the full trajectory throughout the propagation.
    println!("{trajectory}");

    // With the trajectory, let's build a few data products.

    // 1. Export the trajectory as a CCSDS OEM version 2.0 file and as a parquet file, which includes the Keplerian orbital elements.

    trajectory.to_oem_file(
        "./01_cubesat_hf_prop.oem",
        ExportCfg::builder().step(Unit::Minute * 2).build(),
    )?;

    trajectory.to_parquet_with_cfg(
        "./01_cubesat_hf_prop.parquet",
        ExportCfg::builder().step(Unit::Minute * 2).build(),
        almanac.clone(),
    )?;

    // 2. Compare the difference in the radial-intrack-crosstrack frame between the high fidelity
    // and Keplerian propagation. The RIC frame is commonly used to compute the difference in position
    // and velocity of different spacecraft.
    // 3. Compute the azimuth, elevation, range, and range-rate data of that spacecraft as seen from Boulder, CO, USA.

    let boulder_station = GroundStation::from_point(
        "Boulder, CO, USA".to_string(),
        40.014984,   // latitude in degrees
        -105.270546, // longitude in degrees
        1.6550,      // altitude in kilometers
        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
    );

    // We iterate over the trajectory, grabbing a state every two minutes.
    let mut offset_s = vec![];
    let mut epoch_str = vec![];
    let mut ric_x_km = vec![];
    let mut ric_y_km = vec![];
    let mut ric_z_km = vec![];
    let mut ric_vx_km_s = vec![];
    let mut ric_vy_km_s = vec![];
    let mut ric_vz_km_s = vec![];

    let mut azimuth_deg = vec![];
    let mut elevation_deg = vec![];
    let mut range_km = vec![];
    let mut range_rate_km_s = vec![];
    for state in trajectory.every(Unit::Minute * 2) {
        // Try to compute the Keplerian/two body state just in time.
        // This method occasionally fails to converge on an appropriate true anomaly
        // from the mean anomaly. If that happens, we just skip this state.
        // The high fidelity and Keplerian states diverge continuously, and we're curious
        // about the divergence in this quick analysis.
        let this_epoch = state.epoch();
        match orbit.at_epoch(this_epoch) {
            Ok(tb_then) => {
                offset_s.push((this_epoch - orbit.epoch).to_seconds());
                epoch_str.push(format!("{this_epoch}"));
                // Compute the two body state just in time.
                let ric = state.orbit.ric_difference(&tb_then)?;
                ric_x_km.push(ric.radius_km.x);
                ric_y_km.push(ric.radius_km.y);
                ric_z_km.push(ric.radius_km.z);
                ric_vx_km_s.push(ric.velocity_km_s.x);
                ric_vy_km_s.push(ric.velocity_km_s.y);
                ric_vz_km_s.push(ric.velocity_km_s.z);

                // Compute the AER data for each state.
                let aer = almanac.azimuth_elevation_range_sez(
                    state.orbit,
                    boulder_station.to_orbit(this_epoch, &almanac)?,
                    None,
                    None,
                )?;
                azimuth_deg.push(aer.azimuth_deg);
                elevation_deg.push(aer.elevation_deg);
                range_km.push(aer.range_km);
                range_rate_km_s.push(aer.range_rate_km_s);
            }
            Err(e) => warn!("{} {e}", state.epoch()),
        };
    }

    // Build the data frames.
    let ric_df = df!(
        "Offset (s)" => offset_s.clone(),
        "Epoch" => epoch_str.clone(),
        "RIC X (km)" => ric_x_km,
        "RIC Y (km)" => ric_y_km,
        "RIC Z (km)" => ric_z_km,
        "RIC VX (km/s)" => ric_vx_km_s,
        "RIC VY (km/s)" => ric_vy_km_s,
        "RIC VZ (km/s)" => ric_vz_km_s,
    )?;

    println!("RIC difference at start\n{}", ric_df.head(Some(10)));
    println!("RIC difference at end\n{}", ric_df.tail(Some(10)));

    let aer_df = df!(
        "Offset (s)" => offset_s.clone(),
        "Epoch" => epoch_str.clone(),
        "azimuth (deg)" => azimuth_deg,
        "elevation (deg)" => elevation_deg,
        "range (km)" => range_km,
        "range rate (km/s)" => range_rate_km_s,
    )?;

    // Finally, let's see when the spacecraft is visible, assuming 15 degrees minimum elevation.
    let mask = aer_df
        .column("elevation (deg)")?
        .gt(&Column::Scalar(ScalarColumn::new(
            "elevation mask (deg)".into(),
            Scalar::new(DataType::Float64, AnyValue::Float64(15.0)),
            offset_s.len(),
        )))?;
    let cubesat_visible = aer_df.filter(&mask)?;

    println!("{cubesat_visible}");

    Ok(())
}
Source§

impl ExportCfg

Source

pub fn from_metadata(metadata: Vec<(String, String)>) -> Self

Initialize a new configuration with the given metadata entries.

Source

pub fn timestamped() -> Self

Initialize a new default configuration but timestamp the filename.

Source

pub fn append_field(&mut self, field: StateParameter)

Trait Implementations§

Source§

impl Clone for ExportCfg

Source§

fn clone(&self) -> ExportCfg

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Default for ExportCfg

Source§

fn default() -> ExportCfg

Returns the “default value” for a type. Read more
Source§

impl<'de> Deserialize<'de> for ExportCfg

Source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl Serialize for ExportCfg

Source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> FromDhall for T

Source§

fn from_dhall(v: &Value) -> Result<T, Error>

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToDhall for T
where T: Serialize,

Source§

fn to_dhall(&self, ty: Option<&SimpleType>) -> Result<Value, Error>

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T> Allocation for T
where T: RefUnwindSafe + Send + Sync,

Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

§

impl<T> ErasedDestructor for T
where T: 'static,

§

impl<T> MaybeSendSync for T