pub struct ExportCfg {
pub fields: Option<Vec<StateParameter>>,
pub start_epoch: Option<Epoch>,
pub end_epoch: Option<Epoch>,
pub step: Option<Duration>,
pub metadata: Option<HashMap<String, String>>,
pub timestamp: bool,
}
Expand description
Configuration for exporting a trajectory to parquet.
Fields§
§fields: Option<Vec<StateParameter>>
Fields to export, if unset, defaults to all possible fields.
start_epoch: Option<Epoch>
Start epoch to export, defaults to the start of the trajectory
end_epoch: Option<Epoch>
End epoch to export, defaults to the end of the trajectory
step: Option<Duration>
An optional step, defaults to every state in the trajectory (which likely isn’t equidistant)
metadata: Option<HashMap<String, String>>
Additional metadata to store in the Parquet metadata
timestamp: bool
Set to true to append the timestamp to the filename
Implementations§
Source§impl ExportCfg
impl ExportCfg
Sourcepub fn builder() -> ExportCfgBuilder<((), (), (), (), (), ())>
pub fn builder() -> ExportCfgBuilder<((), (), (), (), (), ())>
Create a builder for building ExportCfg
.
On the builder, call .fields(...)
(optional), .start_epoch(...)
(optional), .end_epoch(...)
(optional), .step(...)
(optional), .metadata(...)
(optional), .timestamp(...)
(optional) to set the values of the fields.
Finally, call .build()
to create the instance of ExportCfg
.
Examples found in repository?
26fn main() -> Result<(), Box<dyn Error>> {
27 pel::init();
28 // Dynamics models require planetary constants and ephemerides to be defined.
29 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30 // This will automatically download the DE440s planetary ephemeris,
31 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
32 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
33 // planetary constants kernels.
34 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
35 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
36 // references to many functions.
37 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
38 // Define the orbit epoch
39 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
40
41 // Define the orbit.
42 // First we need to fetch the Earth J2000 from information from the Almanac.
43 // This allows the frame to include the gravitational parameters and the shape of the Earth,
44 // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
45 // by loading a different set of planetary constants.
46 let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
47
48 // Placing this GEO bird just above Colorado.
49 // In theory, the eccentricity is zero, but in practice, it's about 1e-5 to 1e-6 at best.
50 let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
51 // Print in in Keplerian form.
52 println!("{orbit:x}");
53
54 let state_bf = almanac.transform_to(orbit, IAU_EARTH_FRAME, None)?;
55 let (orig_lat_deg, orig_long_deg, orig_alt_km) = state_bf.latlongalt()?;
56
57 // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
58 // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
59 // models such as solar radiation pressure.
60
61 // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
62 let sc = Spacecraft::builder()
63 .orbit(orbit)
64 .mass(Mass::from_dry_mass(9.60))
65 .srp(SRPData {
66 area_m2: 10e-4,
67 coeff_reflectivity: 1.1,
68 })
69 .build();
70 println!("{sc:x}");
71
72 // Set up the spacecraft dynamics.
73
74 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
75 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
76 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
77
78 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
79 // We're using the JGM3 model here, which is the default in GMAT.
80 let mut jgm3_meta = MetaFile {
81 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
82 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
83 };
84 // And let's download it if we don't have it yet.
85 jgm3_meta.process(true)?;
86
87 // Build the spherical harmonics.
88 // The harmonics must be computed in the body fixed frame.
89 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
90 let harmonics_21x21 = Harmonics::from_stor(
91 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
92 HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
93 );
94
95 // Include the spherical harmonics into the orbital dynamics.
96 orbital_dyn.accel_models.push(harmonics_21x21);
97
98 // We define the solar radiation pressure, using the default solar flux and accounting only
99 // for the eclipsing caused by the Earth and Moon.
100 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
103 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
104 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
105
106 println!("{dynamics}");
107
108 // Finally, let's propagate this orbit to the same epoch as above.
109 // The first returned value is the spacecraft state at the final epoch.
110 // The second value is the full trajectory where the step size is variable step used by the propagator.
111 let (future_sc, trajectory) = Propagator::default(dynamics)
112 .with(sc, almanac.clone())
113 .until_epoch_with_traj(epoch + Unit::Century * 0.03)?;
114
115 println!("=== High fidelity propagation ===");
116 println!(
117 "SMA changed by {:.3} km",
118 orbit.sma_km()? - future_sc.orbit.sma_km()?
119 );
120 println!(
121 "ECC changed by {:.6}",
122 orbit.ecc()? - future_sc.orbit.ecc()?
123 );
124 println!(
125 "INC changed by {:.3e} deg",
126 orbit.inc_deg()? - future_sc.orbit.inc_deg()?
127 );
128 println!(
129 "RAAN changed by {:.3} deg",
130 orbit.raan_deg()? - future_sc.orbit.raan_deg()?
131 );
132 println!(
133 "AOP changed by {:.3} deg",
134 orbit.aop_deg()? - future_sc.orbit.aop_deg()?
135 );
136 println!(
137 "TA changed by {:.3} deg",
138 orbit.ta_deg()? - future_sc.orbit.ta_deg()?
139 );
140
141 // We also have access to the full trajectory throughout the propagation.
142 println!("{trajectory}");
143
144 println!("Spacecraft params after 3 years without active control:\n{future_sc:x}");
145
146 // With the trajectory, let's build a few data products.
147
148 // 1. Export the trajectory as a parquet file, which includes the Keplerian orbital elements.
149
150 let analysis_step = Unit::Minute * 5;
151
152 trajectory.to_parquet(
153 "./03_geo_hf_prop.parquet",
154 Some(vec![
155 &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
156 ]),
157 ExportCfg::builder().step(analysis_step).build(),
158 almanac.clone(),
159 )?;
160
161 // 2. Compute the latitude, longitude, and altitude throughout the trajectory by rotating the spacecraft position into the Earth body fixed frame.
162
163 // We iterate over the trajectory, grabbing a state every two minutes.
164 let mut offset_s = vec![];
165 let mut epoch_str = vec![];
166 let mut longitude_deg = vec![];
167 let mut latitude_deg = vec![];
168 let mut altitude_km = vec![];
169
170 for state in trajectory.every(analysis_step) {
171 // Convert the GEO bird state into the body fixed frame, and keep track of its latitude, longitude, and altitude.
172 // These define the GEO stationkeeping box.
173
174 let this_epoch = state.epoch();
175
176 offset_s.push((this_epoch - orbit.epoch).to_seconds());
177 epoch_str.push(this_epoch.to_isoformat());
178
179 let state_bf = almanac.transform_to(state.orbit, IAU_EARTH_FRAME, None)?;
180 let (lat_deg, long_deg, alt_km) = state_bf.latlongalt()?;
181 longitude_deg.push(long_deg);
182 latitude_deg.push(lat_deg);
183 altitude_km.push(alt_km);
184 }
185
186 println!(
187 "Longitude changed by {:.3} deg -- Box is 0.1 deg E-W",
188 orig_long_deg - longitude_deg.last().unwrap()
189 );
190
191 println!(
192 "Latitude changed by {:.3} deg -- Box is 0.05 deg N-S",
193 orig_lat_deg - latitude_deg.last().unwrap()
194 );
195
196 println!(
197 "Altitude changed by {:.3} km -- Box is 30 km",
198 orig_alt_km - altitude_km.last().unwrap()
199 );
200
201 // Build the station keeping data frame.
202 let mut sk_df = df!(
203 "Offset (s)" => offset_s.clone(),
204 "Epoch (UTC)" => epoch_str.clone(),
205 "Longitude E-W (deg)" => longitude_deg,
206 "Latitude N-S (deg)" => latitude_deg,
207 "Altitude (km)" => altitude_km,
208
209 )?;
210
211 // Create a file to write the Parquet to
212 let file = File::create("./03_geo_lla.parquet").expect("Could not create file");
213
214 // Create a ParquetWriter and write the DataFrame to the file
215 ParquetWriter::new(file).finish(&mut sk_df)?;
216
217 Ok(())
218}
More examples
30fn main() -> Result<(), Box<dyn Error>> {
31 pel::init();
32 // Dynamics models require planetary constants and ephemerides to be defined.
33 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
34 // This will automatically download the DE440s planetary ephemeris,
35 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
36 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
37 // planetary constants kernels.
38 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
39 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
40 // references to many functions.
41 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
42 // Define the orbit epoch
43 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45 // Define the orbit.
46 // First we need to fetch the Earth J2000 from information from the Almanac.
47 // This allows the frame to include the gravitational parameters and the shape of the Earth,
48 // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
49 // by loading a different set of planetary constants.
50 let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
51
52 let orbit =
53 Orbit::try_keplerian_altitude(300.0, 0.015, 68.5, 65.2, 75.0, 0.0, epoch, earth_j2000)?;
54 // Print in in Keplerian form.
55 println!("{orbit:x}");
56
57 // There are two ways to propagate an orbit. We can make a quick approximation assuming only two-body
58 // motion. This is a useful first order approximation but it isn't used in real-world applications.
59
60 // This approach is a feature of ANISE.
61 let future_orbit_tb = orbit.at_epoch(epoch + Unit::Day * 3)?;
62 println!("{future_orbit_tb:x}");
63
64 // Two body propagation relies solely on Kepler's laws, so only the true anomaly will change.
65 println!(
66 "SMA changed by {:.3e} km",
67 orbit.sma_km()? - future_orbit_tb.sma_km()?
68 );
69 println!(
70 "ECC changed by {:.3e}",
71 orbit.ecc()? - future_orbit_tb.ecc()?
72 );
73 println!(
74 "INC changed by {:.3e} deg",
75 orbit.inc_deg()? - future_orbit_tb.inc_deg()?
76 );
77 println!(
78 "RAAN changed by {:.3e} deg",
79 orbit.raan_deg()? - future_orbit_tb.raan_deg()?
80 );
81 println!(
82 "AOP changed by {:.3e} deg",
83 orbit.aop_deg()? - future_orbit_tb.aop_deg()?
84 );
85 println!(
86 "TA changed by {:.3} deg",
87 orbit.ta_deg()? - future_orbit_tb.ta_deg()?
88 );
89
90 // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
91 // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
92 // models such as solar radiation pressure.
93
94 // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
95 let sc = Spacecraft::builder()
96 .orbit(orbit)
97 .mass(Mass::from_dry_mass(9.60))
98 .srp(SRPData {
99 area_m2: 10e-4,
100 coeff_reflectivity: 1.1,
101 })
102 .build();
103 println!("{sc:x}");
104
105 // Set up the spacecraft dynamics.
106
107 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
108 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
109 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
110
111 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
112 // We're using the JGM3 model here, which is the default in GMAT.
113 let mut jgm3_meta = MetaFile {
114 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
115 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
116 };
117 // And let's download it if we don't have it yet.
118 jgm3_meta.process(true)?;
119
120 // Build the spherical harmonics.
121 // The harmonics must be computed in the body fixed frame.
122 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
123 let harmonics_21x21 = Harmonics::from_stor(
124 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
125 HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
126 );
127
128 // Include the spherical harmonics into the orbital dynamics.
129 orbital_dyn.accel_models.push(harmonics_21x21);
130
131 // We define the solar radiation pressure, using the default solar flux and accounting only
132 // for the eclipsing caused by the Earth.
133 let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
134
135 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
136 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
137 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
138
139 println!("{dynamics}");
140
141 // Finally, let's propagate this orbit to the same epoch as above.
142 // The first returned value is the spacecraft state at the final epoch.
143 // The second value is the full trajectory where the step size is variable step used by the propagator.
144 let (future_sc, trajectory) = Propagator::default(dynamics)
145 .with(sc, almanac.clone())
146 .until_epoch_with_traj(future_orbit_tb.epoch)?;
147
148 println!("=== High fidelity propagation ===");
149 println!(
150 "SMA changed by {:.3} km",
151 orbit.sma_km()? - future_sc.orbit.sma_km()?
152 );
153 println!(
154 "ECC changed by {:.6}",
155 orbit.ecc()? - future_sc.orbit.ecc()?
156 );
157 println!(
158 "INC changed by {:.3e} deg",
159 orbit.inc_deg()? - future_sc.orbit.inc_deg()?
160 );
161 println!(
162 "RAAN changed by {:.3} deg",
163 orbit.raan_deg()? - future_sc.orbit.raan_deg()?
164 );
165 println!(
166 "AOP changed by {:.3} deg",
167 orbit.aop_deg()? - future_sc.orbit.aop_deg()?
168 );
169 println!(
170 "TA changed by {:.3} deg",
171 orbit.ta_deg()? - future_sc.orbit.ta_deg()?
172 );
173
174 // We also have access to the full trajectory throughout the propagation.
175 println!("{trajectory}");
176
177 // With the trajectory, let's build a few data products.
178
179 // 1. Export the trajectory as a CCSDS OEM version 2.0 file and as a parquet file, which includes the Keplerian orbital elements.
180
181 trajectory.to_oem_file(
182 "./01_cubesat_hf_prop.oem",
183 ExportCfg::builder().step(Unit::Minute * 2).build(),
184 )?;
185
186 trajectory.to_parquet_with_cfg(
187 "./01_cubesat_hf_prop.parquet",
188 ExportCfg::builder().step(Unit::Minute * 2).build(),
189 almanac.clone(),
190 )?;
191
192 // 2. Compare the difference in the radial-intrack-crosstrack frame between the high fidelity
193 // and Keplerian propagation. The RIC frame is commonly used to compute the difference in position
194 // and velocity of different spacecraft.
195 // 3. Compute the azimuth, elevation, range, and range-rate data of that spacecraft as seen from Boulder, CO, USA.
196
197 let boulder_station = GroundStation::from_point(
198 "Boulder, CO, USA".to_string(),
199 40.014984, // latitude in degrees
200 -105.270546, // longitude in degrees
201 1.6550, // altitude in kilometers
202 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
203 );
204
205 // We iterate over the trajectory, grabbing a state every two minutes.
206 let mut offset_s = vec![];
207 let mut epoch_str = vec![];
208 let mut ric_x_km = vec![];
209 let mut ric_y_km = vec![];
210 let mut ric_z_km = vec![];
211 let mut ric_vx_km_s = vec![];
212 let mut ric_vy_km_s = vec![];
213 let mut ric_vz_km_s = vec![];
214
215 let mut azimuth_deg = vec![];
216 let mut elevation_deg = vec![];
217 let mut range_km = vec![];
218 let mut range_rate_km_s = vec![];
219 for state in trajectory.every(Unit::Minute * 2) {
220 // Try to compute the Keplerian/two body state just in time.
221 // This method occasionally fails to converge on an appropriate true anomaly
222 // from the mean anomaly. If that happens, we just skip this state.
223 // The high fidelity and Keplerian states diverge continuously, and we're curious
224 // about the divergence in this quick analysis.
225 let this_epoch = state.epoch();
226 match orbit.at_epoch(this_epoch) {
227 Ok(tb_then) => {
228 offset_s.push((this_epoch - orbit.epoch).to_seconds());
229 epoch_str.push(format!("{this_epoch}"));
230 // Compute the two body state just in time.
231 let ric = state.orbit.ric_difference(&tb_then)?;
232 ric_x_km.push(ric.radius_km.x);
233 ric_y_km.push(ric.radius_km.y);
234 ric_z_km.push(ric.radius_km.z);
235 ric_vx_km_s.push(ric.velocity_km_s.x);
236 ric_vy_km_s.push(ric.velocity_km_s.y);
237 ric_vz_km_s.push(ric.velocity_km_s.z);
238
239 // Compute the AER data for each state.
240 let aer = almanac.azimuth_elevation_range_sez(
241 state.orbit,
242 boulder_station.to_orbit(this_epoch, &almanac)?,
243 None,
244 None,
245 )?;
246 azimuth_deg.push(aer.azimuth_deg);
247 elevation_deg.push(aer.elevation_deg);
248 range_km.push(aer.range_km);
249 range_rate_km_s.push(aer.range_rate_km_s);
250 }
251 Err(e) => warn!("{} {e}", state.epoch()),
252 };
253 }
254
255 // Build the data frames.
256 let ric_df = df!(
257 "Offset (s)" => offset_s.clone(),
258 "Epoch" => epoch_str.clone(),
259 "RIC X (km)" => ric_x_km,
260 "RIC Y (km)" => ric_y_km,
261 "RIC Z (km)" => ric_z_km,
262 "RIC VX (km/s)" => ric_vx_km_s,
263 "RIC VY (km/s)" => ric_vy_km_s,
264 "RIC VZ (km/s)" => ric_vz_km_s,
265 )?;
266
267 println!("RIC difference at start\n{}", ric_df.head(Some(10)));
268 println!("RIC difference at end\n{}", ric_df.tail(Some(10)));
269
270 let aer_df = df!(
271 "Offset (s)" => offset_s.clone(),
272 "Epoch" => epoch_str.clone(),
273 "azimuth (deg)" => azimuth_deg,
274 "elevation (deg)" => elevation_deg,
275 "range (km)" => range_km,
276 "range rate (km/s)" => range_rate_km_s,
277 )?;
278
279 // Finally, let's see when the spacecraft is visible, assuming 15 degrees minimum elevation.
280 let mask = aer_df
281 .column("elevation (deg)")?
282 .gt(&Column::Scalar(ScalarColumn::new(
283 "elevation mask (deg)".into(),
284 Scalar::new(DataType::Float64, AnyValue::Float64(15.0)),
285 offset_s.len(),
286 )))?;
287 let cubesat_visible = aer_df.filter(&mask)?;
288
289 println!("{cubesat_visible}");
290
291 Ok(())
292}
Source§impl ExportCfg
impl ExportCfg
Sourcepub fn from_metadata(metadata: Vec<(String, String)>) -> Self
pub fn from_metadata(metadata: Vec<(String, String)>) -> Self
Initialize a new configuration with the given metadata entries.
Sourcepub fn timestamped() -> Self
pub fn timestamped() -> Self
Initialize a new default configuration but timestamp the filename.
pub fn append_field(&mut self, field: StateParameter)
Trait Implementations§
Source§impl<'de> Deserialize<'de> for ExportCfg
impl<'de> Deserialize<'de> for ExportCfg
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Auto Trait Implementations§
impl Freeze for ExportCfg
impl RefUnwindSafe for ExportCfg
impl Send for ExportCfg
impl Sync for ExportCfg
impl Unpin for ExportCfg
impl UnwindSafe for ExportCfg
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> FromDhall for Twhere
T: DeserializeOwned,
impl<T> FromDhall for Twhere
T: DeserializeOwned,
fn from_dhall(v: &Value) -> Result<T, Error>
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.