Skip to main content

TimeUnits

Trait TimeUnits 

pub trait TimeUnits: Copy + Mul<Unit, Output = Duration> {
    // Provided methods
    fn centuries(self) -> Duration { ... }
    fn weeks(self) -> Duration { ... }
    fn days(self) -> Duration { ... }
    fn hours(self) -> Duration { ... }
    fn minutes(self) -> Duration { ... }
    fn seconds(self) -> Duration { ... }
    fn milliseconds(self) -> Duration { ... }
    fn microseconds(self) -> Duration { ... }
    fn nanoseconds(self) -> Duration { ... }
}
Expand description

A trait to automatically convert some primitives to a duration

#[cfg(feature = "std")]
{
use hifitime::prelude::*;
use std::str::FromStr;

assert_eq!(Duration::from_str("1 d").unwrap(), 1.days());
assert_eq!(Duration::from_str("10.598 days").unwrap(), 10.598.days());
assert_eq!(Duration::from_str("10.598 min").unwrap(), 10.598.minutes());
assert_eq!(Duration::from_str("10.598 us").unwrap(), 10.598.microseconds());
assert_eq!(Duration::from_str("10.598 seconds").unwrap(), 10.598.seconds());
assert_eq!(Duration::from_str("10.598 nanosecond").unwrap(), 10.598.nanoseconds());
}

Provided Methods§

fn centuries(self) -> Duration

fn weeks(self) -> Duration

fn days(self) -> Duration

fn hours(self) -> Duration

Examples found in repository?
examples/05_cislunar_spacecraft_link_od/main.rs (line 115)
34fn main() -> Result<(), Box<dyn Error>> {
35    pel::init();
36
37    // ====================== //
38    // === ALMANAC SET UP === //
39    // ====================== //
40
41    let manifest_dir =
42        PathBuf::from(std::env::var("CARGO_MANIFEST_DIR").unwrap_or(".".to_string()));
43
44    let out = manifest_dir.join("data/04_output/");
45
46    let almanac = Arc::new(
47        Almanac::new(
48            &manifest_dir
49                .join("data/01_planetary/pck08.pca")
50                .to_string_lossy(),
51        )
52        .unwrap()
53        .load(
54            &manifest_dir
55                .join("data/01_planetary/de440s.bsp")
56                .to_string_lossy(),
57        )
58        .unwrap(),
59    );
60
61    let eme2k = almanac.frame_info(EARTH_J2000).unwrap();
62    let moon_iau = almanac.frame_info(IAU_MOON_FRAME).unwrap();
63
64    let epoch = Epoch::from_gregorian_tai(2021, 5, 29, 19, 51, 16, 852_000);
65    let nrho = Orbit::cartesian(
66        166_473.631_302_239_7,
67        -274_715.487_253_382_7,
68        -211_233.210_176_686_7,
69        0.933_451_604_520_018_4,
70        0.436_775_046_841_900_9,
71        -0.082_211_021_250_348_95,
72        epoch,
73        eme2k,
74    );
75
76    let tx_nrho_sc = Spacecraft::from(nrho);
77
78    let state_luna = almanac.transform_to(nrho, MOON_J2000, None).unwrap();
79    println!("Start state (dynamics: Earth, Moon, Sun gravity):\n{state_luna}");
80
81    let bodies = vec![EARTH, SUN];
82    let dynamics = SpacecraftDynamics::new(OrbitalDynamics::point_masses(bodies));
83
84    let setup = Propagator::rk89(
85        dynamics,
86        IntegratorOptions::builder().max_step(0.5.minutes()).build(),
87    );
88
89    /* == Propagate the NRHO vehicle == */
90    let prop_time = 1.1 * state_luna.period().unwrap();
91
92    let (nrho_final, mut tx_traj) = setup
93        .with(tx_nrho_sc, almanac.clone())
94        .for_duration_with_traj(prop_time)
95        .unwrap();
96
97    tx_traj.name = Some("NRHO Tx SC".to_string());
98
99    println!("{tx_traj}");
100
101    /* == Propagate an LLO vehicle == */
102    let llo_orbit =
103        Orbit::try_keplerian_altitude(110.0, 1e-4, 90.0, 0.0, 0.0, 0.0, epoch, moon_iau).unwrap();
104
105    let llo_sc = Spacecraft::builder().orbit(llo_orbit).build();
106
107    let (_, llo_traj) = setup
108        .with(llo_sc, almanac.clone())
109        .until_epoch_with_traj(nrho_final.epoch())
110        .unwrap();
111
112    // Export the subset of the first two hours.
113    llo_traj
114        .clone()
115        .filter_by_offset(..2.hours())
116        .to_parquet_simple(out.join("05_caps_llo_truth.pq"))?;
117
118    /* == Setup the interlink == */
119
120    let mut measurement_types = IndexSet::new();
121    measurement_types.insert(MeasurementType::Range);
122    measurement_types.insert(MeasurementType::Doppler);
123
124    let mut stochastics = IndexMap::new();
125
126    let sa45_csac_allan_dev = 1e-11;
127
128    stochastics.insert(
129        MeasurementType::Range,
130        StochasticNoise::from_hardware_range_km(
131            sa45_csac_allan_dev,
132            10.0.seconds(),
133            link_specific::ChipRate::StandardT4B,
134            link_specific::SN0::Average,
135        ),
136    );
137
138    stochastics.insert(
139        MeasurementType::Doppler,
140        StochasticNoise::from_hardware_doppler_km_s(
141            sa45_csac_allan_dev,
142            10.0.seconds(),
143            link_specific::CarrierFreq::SBand,
144            link_specific::CN0::Average,
145        ),
146    );
147
148    let interlink = InterlinkTxSpacecraft {
149        traj: tx_traj,
150        measurement_types,
151        integration_time: None,
152        timestamp_noise_s: None,
153        ab_corr: Aberration::LT,
154        stochastic_noises: Some(stochastics),
155    };
156
157    // Devices are the transmitter, which is our NRHO vehicle.
158    let mut devices = BTreeMap::new();
159    devices.insert("NRHO Tx SC".to_string(), interlink);
160
161    let mut configs = BTreeMap::new();
162    configs.insert(
163        "NRHO Tx SC".to_string(),
164        TrkConfig::builder()
165            .strands(vec![Strand {
166                start: epoch,
167                end: nrho_final.epoch(),
168            }])
169            .build(),
170    );
171
172    let mut trk_sim =
173        TrackingArcSim::with_seed(devices.clone(), llo_traj.clone(), configs, 0).unwrap();
174    println!("{trk_sim}");
175
176    let trk_data = trk_sim.generate_measurements(almanac.clone()).unwrap();
177    println!("{trk_data}");
178
179    trk_data
180        .to_parquet_simple(out.clone().join("nrho_interlink_msr.pq"))
181        .unwrap();
182
183    // Run a truth OD where we estimate the LLO position
184    let llo_uncertainty = SpacecraftUncertainty::builder()
185        .nominal(llo_sc)
186        .x_km(1.0)
187        .y_km(1.0)
188        .z_km(1.0)
189        .vx_km_s(1e-3)
190        .vy_km_s(1e-3)
191        .vz_km_s(1e-3)
192        .build();
193
194    let mut proc_devices = devices.clone();
195
196    // Define the initial estimate, randomized, seed for reproducibility
197    let mut initial_estimate = llo_uncertainty.to_estimate_randomized(Some(0)).unwrap();
198    // Inflate the covariance -- https://github.com/nyx-space/nyx/issues/339
199    initial_estimate.covar *= 2.5;
200
201    // Increase the noise in the devices to accept more measurements.
202
203    for link in proc_devices.values_mut() {
204        for noise in &mut link.stochastic_noises.as_mut().unwrap().values_mut() {
205            *noise.white_noise.as_mut().unwrap() *= 3.0;
206        }
207    }
208
209    let init_err = initial_estimate
210        .orbital_state()
211        .ric_difference(&llo_orbit)
212        .unwrap();
213
214    println!("initial estimate:\n{initial_estimate}");
215    println!("RIC errors = {init_err}",);
216
217    let odp = InterlinkKalmanOD::new(
218        setup.clone(),
219        KalmanVariant::ReferenceUpdate,
220        Some(ResidRejectCrit::default()),
221        proc_devices,
222        almanac.clone(),
223    );
224
225    // Shrink the data to process.
226    let arc = trk_data.filter_by_offset(..2.hours());
227
228    let od_sol = odp.process_arc(initial_estimate, &arc).unwrap();
229
230    println!("{od_sol}");
231
232    od_sol
233        .to_parquet(
234            out.join("05_caps_interlink_od_sol.pq"),
235            ExportCfg::default(),
236        )
237        .unwrap();
238
239    let od_traj = od_sol.to_traj().unwrap();
240
241    od_traj
242        .ric_diff_to_parquet(
243            &llo_traj,
244            out.join("05_caps_interlink_llo_est_error.pq"),
245            ExportCfg::default(),
246        )
247        .unwrap();
248
249    let final_est = od_sol.estimates.last().unwrap();
250    assert!(final_est.within_3sigma(), "should be within 3 sigma");
251
252    println!("ESTIMATE\n{final_est:x}\n");
253    let truth = llo_traj.at(final_est.epoch()).unwrap();
254    println!("TRUTH\n{truth:x}");
255
256    let final_err = truth
257        .orbit
258        .ric_difference(&final_est.orbital_state())
259        .unwrap();
260    println!("ERROR {final_err}");
261
262    // Build the residuals versus reference plot.
263    let rvr_sol = odp
264        .process_arc(initial_estimate, &arc.resid_vs_ref_check())
265        .unwrap();
266
267    rvr_sol
268        .to_parquet(
269            out.join("05_caps_interlink_resid_v_ref.pq"),
270            ExportCfg::default(),
271        )
272        .unwrap();
273
274    let final_rvr = rvr_sol.estimates.last().unwrap();
275
276    println!("RMAG error {:.3} m", final_err.rmag_km() * 1e3);
277    println!(
278        "Pure prop error {:.3} m",
279        final_rvr
280            .orbital_state()
281            .ric_difference(&final_est.orbital_state())
282            .unwrap()
283            .rmag_km()
284            * 1e3
285    );
286
287    Ok(())
288}

fn minutes(self) -> Duration

Examples found in repository?
examples/02_jwst_covar_monte_carlo/main.rs (line 125)
26fn main() -> Result<(), Box<dyn Error>> {
27    pel::init();
28    // Dynamics models require planetary constants and ephemerides to be defined.
29    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
31
32    // Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
33    // Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
34    let mut latest_jwst_ephem = MetaFile {
35        uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
36        crc32: None,
37    };
38    latest_jwst_ephem.process(true)?;
39
40    // Load this ephem in the general Almanac we're using for this analysis.
41    let almanac = Arc::new(
42        MetaAlmanac::latest()
43            .map_err(Box::new)?
44            .load_from_metafile(latest_jwst_ephem, true)?,
45    );
46
47    // By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
48    // in the BSP. We need this ID in order to query the ephemeris.
49    const JWST_NAIF_ID: i32 = -170;
50    // Let's build a frame in the J2000 orientation centered on the JWST.
51    const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);
52
53    // Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
54    let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
55    println!("JWST defined from {earliest_epoch} to {latest_epoch}");
56    // Fetch the state, printing it in the Earth J2000 frame.
57    let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
58    println!("{jwst_orbit:x}");
59
60    // Build the spacecraft
61    // SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
62    // SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
63    let jwst = Spacecraft::builder()
64        .orbit(jwst_orbit)
65        .srp(SRPData {
66            area_m2: 21.197 * 14.162,
67            coeff_reflectivity: 1.56,
68        })
69        .mass(Mass::from_dry_mass(6200.0))
70        .build();
71
72    // Build up the spacecraft uncertainty builder.
73    // We can use the spacecraft uncertainty structure to build this up.
74    // We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
75    // in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
76    // Nyx can also estimate the deviation of the spacecraft parameters.
77    let jwst_uncertainty = SpacecraftUncertainty::builder()
78        .nominal(jwst)
79        .frame(LocalFrame::RIC)
80        .x_km(0.5)
81        .y_km(0.3)
82        .z_km(1.5)
83        .vx_km_s(1e-4)
84        .vy_km_s(0.6e-3)
85        .vz_km_s(3e-3)
86        .build();
87
88    println!("{jwst_uncertainty}");
89
90    // Build the Kalman filter estimate.
91    // Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
92    // but this approach requires quite a bit more boilerplate code.
93    let jwst_estimate = jwst_uncertainty.to_estimate()?;
94
95    // Set up the spacecraft dynamics.
96    // We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
97    // We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.
98
99    let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
100    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102    // Finalize setting up the dynamics.
103    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
104
105    // Build the propagator set up to use for the whole analysis.
106    let setup = Propagator::default(dynamics);
107
108    // All of the analysis will use this duration.
109    let prediction_duration = 6.5 * Unit::Day;
110
111    // === Covariance mapping ===
112    // For the covariance mapping / prediction, we'll use the common orbit determination approach.
113    // This is done by setting up a spacecraft Kalman filter OD process, and predicting for the analysis duration.
114
115    // Build the propagation instance for the OD process.
116    let odp = SpacecraftKalmanOD::new(
117        setup.clone(),
118        KalmanVariant::DeviationTracking,
119        None,
120        BTreeMap::new(),
121        almanac.clone(),
122    );
123
124    // The prediction step is 1 minute by default, configured in the OD process, i.e. how often we want to know the covariance.
125    assert_eq!(odp.max_step, 1_i64.minutes());
126    // Finally, predict, and export the trajectory with covariance to a parquet file.
127    let od_sol = odp.predict_for(jwst_estimate, prediction_duration)?;
128    od_sol.to_parquet("./02_jwst_covar_map.parquet", ExportCfg::default())?;
129
130    // === Monte Carlo framework ===
131    // Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.
132
133    let my_mc = MonteCarlo::new(
134        jwst, // Nominal state
135        jwst_estimate.to_random_variable()?,
136        "02_jwst".to_string(), // Scenario name
137        None, // No specific seed specified, so one will be drawn from the computer's entropy.
138    );
139
140    let num_runs = 5_000;
141    let rslts = my_mc.run_until_epoch(
142        setup,
143        almanac.clone(),
144        jwst.epoch() + prediction_duration,
145        num_runs,
146    );
147
148    assert_eq!(rslts.runs.len(), num_runs);
149    // Finally, export these results, computing the eclipse percentage for all of these results.
150
151    rslts.to_parquet("02_jwst_monte_carlo.parquet", ExportCfg::default())?;
152
153    Ok(())
154}
More examples
Hide additional examples
examples/05_cislunar_spacecraft_link_od/main.rs (line 86)
34fn main() -> Result<(), Box<dyn Error>> {
35    pel::init();
36
37    // ====================== //
38    // === ALMANAC SET UP === //
39    // ====================== //
40
41    let manifest_dir =
42        PathBuf::from(std::env::var("CARGO_MANIFEST_DIR").unwrap_or(".".to_string()));
43
44    let out = manifest_dir.join("data/04_output/");
45
46    let almanac = Arc::new(
47        Almanac::new(
48            &manifest_dir
49                .join("data/01_planetary/pck08.pca")
50                .to_string_lossy(),
51        )
52        .unwrap()
53        .load(
54            &manifest_dir
55                .join("data/01_planetary/de440s.bsp")
56                .to_string_lossy(),
57        )
58        .unwrap(),
59    );
60
61    let eme2k = almanac.frame_info(EARTH_J2000).unwrap();
62    let moon_iau = almanac.frame_info(IAU_MOON_FRAME).unwrap();
63
64    let epoch = Epoch::from_gregorian_tai(2021, 5, 29, 19, 51, 16, 852_000);
65    let nrho = Orbit::cartesian(
66        166_473.631_302_239_7,
67        -274_715.487_253_382_7,
68        -211_233.210_176_686_7,
69        0.933_451_604_520_018_4,
70        0.436_775_046_841_900_9,
71        -0.082_211_021_250_348_95,
72        epoch,
73        eme2k,
74    );
75
76    let tx_nrho_sc = Spacecraft::from(nrho);
77
78    let state_luna = almanac.transform_to(nrho, MOON_J2000, None).unwrap();
79    println!("Start state (dynamics: Earth, Moon, Sun gravity):\n{state_luna}");
80
81    let bodies = vec![EARTH, SUN];
82    let dynamics = SpacecraftDynamics::new(OrbitalDynamics::point_masses(bodies));
83
84    let setup = Propagator::rk89(
85        dynamics,
86        IntegratorOptions::builder().max_step(0.5.minutes()).build(),
87    );
88
89    /* == Propagate the NRHO vehicle == */
90    let prop_time = 1.1 * state_luna.period().unwrap();
91
92    let (nrho_final, mut tx_traj) = setup
93        .with(tx_nrho_sc, almanac.clone())
94        .for_duration_with_traj(prop_time)
95        .unwrap();
96
97    tx_traj.name = Some("NRHO Tx SC".to_string());
98
99    println!("{tx_traj}");
100
101    /* == Propagate an LLO vehicle == */
102    let llo_orbit =
103        Orbit::try_keplerian_altitude(110.0, 1e-4, 90.0, 0.0, 0.0, 0.0, epoch, moon_iau).unwrap();
104
105    let llo_sc = Spacecraft::builder().orbit(llo_orbit).build();
106
107    let (_, llo_traj) = setup
108        .with(llo_sc, almanac.clone())
109        .until_epoch_with_traj(nrho_final.epoch())
110        .unwrap();
111
112    // Export the subset of the first two hours.
113    llo_traj
114        .clone()
115        .filter_by_offset(..2.hours())
116        .to_parquet_simple(out.join("05_caps_llo_truth.pq"))?;
117
118    /* == Setup the interlink == */
119
120    let mut measurement_types = IndexSet::new();
121    measurement_types.insert(MeasurementType::Range);
122    measurement_types.insert(MeasurementType::Doppler);
123
124    let mut stochastics = IndexMap::new();
125
126    let sa45_csac_allan_dev = 1e-11;
127
128    stochastics.insert(
129        MeasurementType::Range,
130        StochasticNoise::from_hardware_range_km(
131            sa45_csac_allan_dev,
132            10.0.seconds(),
133            link_specific::ChipRate::StandardT4B,
134            link_specific::SN0::Average,
135        ),
136    );
137
138    stochastics.insert(
139        MeasurementType::Doppler,
140        StochasticNoise::from_hardware_doppler_km_s(
141            sa45_csac_allan_dev,
142            10.0.seconds(),
143            link_specific::CarrierFreq::SBand,
144            link_specific::CN0::Average,
145        ),
146    );
147
148    let interlink = InterlinkTxSpacecraft {
149        traj: tx_traj,
150        measurement_types,
151        integration_time: None,
152        timestamp_noise_s: None,
153        ab_corr: Aberration::LT,
154        stochastic_noises: Some(stochastics),
155    };
156
157    // Devices are the transmitter, which is our NRHO vehicle.
158    let mut devices = BTreeMap::new();
159    devices.insert("NRHO Tx SC".to_string(), interlink);
160
161    let mut configs = BTreeMap::new();
162    configs.insert(
163        "NRHO Tx SC".to_string(),
164        TrkConfig::builder()
165            .strands(vec![Strand {
166                start: epoch,
167                end: nrho_final.epoch(),
168            }])
169            .build(),
170    );
171
172    let mut trk_sim =
173        TrackingArcSim::with_seed(devices.clone(), llo_traj.clone(), configs, 0).unwrap();
174    println!("{trk_sim}");
175
176    let trk_data = trk_sim.generate_measurements(almanac.clone()).unwrap();
177    println!("{trk_data}");
178
179    trk_data
180        .to_parquet_simple(out.clone().join("nrho_interlink_msr.pq"))
181        .unwrap();
182
183    // Run a truth OD where we estimate the LLO position
184    let llo_uncertainty = SpacecraftUncertainty::builder()
185        .nominal(llo_sc)
186        .x_km(1.0)
187        .y_km(1.0)
188        .z_km(1.0)
189        .vx_km_s(1e-3)
190        .vy_km_s(1e-3)
191        .vz_km_s(1e-3)
192        .build();
193
194    let mut proc_devices = devices.clone();
195
196    // Define the initial estimate, randomized, seed for reproducibility
197    let mut initial_estimate = llo_uncertainty.to_estimate_randomized(Some(0)).unwrap();
198    // Inflate the covariance -- https://github.com/nyx-space/nyx/issues/339
199    initial_estimate.covar *= 2.5;
200
201    // Increase the noise in the devices to accept more measurements.
202
203    for link in proc_devices.values_mut() {
204        for noise in &mut link.stochastic_noises.as_mut().unwrap().values_mut() {
205            *noise.white_noise.as_mut().unwrap() *= 3.0;
206        }
207    }
208
209    let init_err = initial_estimate
210        .orbital_state()
211        .ric_difference(&llo_orbit)
212        .unwrap();
213
214    println!("initial estimate:\n{initial_estimate}");
215    println!("RIC errors = {init_err}",);
216
217    let odp = InterlinkKalmanOD::new(
218        setup.clone(),
219        KalmanVariant::ReferenceUpdate,
220        Some(ResidRejectCrit::default()),
221        proc_devices,
222        almanac.clone(),
223    );
224
225    // Shrink the data to process.
226    let arc = trk_data.filter_by_offset(..2.hours());
227
228    let od_sol = odp.process_arc(initial_estimate, &arc).unwrap();
229
230    println!("{od_sol}");
231
232    od_sol
233        .to_parquet(
234            out.join("05_caps_interlink_od_sol.pq"),
235            ExportCfg::default(),
236        )
237        .unwrap();
238
239    let od_traj = od_sol.to_traj().unwrap();
240
241    od_traj
242        .ric_diff_to_parquet(
243            &llo_traj,
244            out.join("05_caps_interlink_llo_est_error.pq"),
245            ExportCfg::default(),
246        )
247        .unwrap();
248
249    let final_est = od_sol.estimates.last().unwrap();
250    assert!(final_est.within_3sigma(), "should be within 3 sigma");
251
252    println!("ESTIMATE\n{final_est:x}\n");
253    let truth = llo_traj.at(final_est.epoch()).unwrap();
254    println!("TRUTH\n{truth:x}");
255
256    let final_err = truth
257        .orbit
258        .ric_difference(&final_est.orbital_state())
259        .unwrap();
260    println!("ERROR {final_err}");
261
262    // Build the residuals versus reference plot.
263    let rvr_sol = odp
264        .process_arc(initial_estimate, &arc.resid_vs_ref_check())
265        .unwrap();
266
267    rvr_sol
268        .to_parquet(
269            out.join("05_caps_interlink_resid_v_ref.pq"),
270            ExportCfg::default(),
271        )
272        .unwrap();
273
274    let final_rvr = rvr_sol.estimates.last().unwrap();
275
276    println!("RMAG error {:.3} m", final_err.rmag_km() * 1e3);
277    println!(
278        "Pure prop error {:.3} m",
279        final_rvr
280            .orbital_state()
281            .ric_difference(&final_est.orbital_state())
282            .unwrap()
283            .rmag_km()
284            * 1e3
285    );
286
287    Ok(())
288}

fn seconds(self) -> Duration

Examples found in repository?
examples/03_geo_analysis/stationkeeping.rs (line 121)
28fn main() -> Result<(), Box<dyn Error>> {
29    pel::init();
30    // Set up the dynamics like in the orbit raise.
31    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
32    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
33
34    // Define the GEO orbit, and we're just going to maintain it very tightly.
35    let earth_j2000 = almanac.frame_info(EARTH_J2000)?;
36    let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
37    println!("{orbit:x}");
38
39    let sc = Spacecraft::builder()
40        .orbit(orbit)
41        .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
42        .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
43        .thruster(Thruster {
44            // "NEXT-STEP" row in Table 2
45            isp_s: 4435.0,
46            thrust_N: 0.472,
47        })
48        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
49        .build();
50
51    // Set up the spacecraft dynamics like in the orbit raise example.
52
53    let prop_time = 30.0 * Unit::Day;
54
55    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
56    let objectives = &[
57        Objective::within_tolerance(
58            StateParameter::Element(OrbitalElement::SemiMajorAxis),
59            42_165.0,
60            20.0,
61        ),
62        Objective::within_tolerance(
63            StateParameter::Element(OrbitalElement::Eccentricity),
64            0.001,
65            5e-5,
66        ),
67        Objective::within_tolerance(
68            StateParameter::Element(OrbitalElement::Inclination),
69            0.05,
70            1e-2,
71        ),
72    ];
73
74    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2)?;
75    println!("{ruggiero_ctrl}");
76
77    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
78
79    let mut jgm3_meta = MetaFile {
80        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
81        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
82    };
83    jgm3_meta.process(true)?;
84
85    let harmonics = Harmonics::from_stor(
86        almanac.frame_info(IAU_EARTH_FRAME)?,
87        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true)?,
88    );
89    orbital_dyn.accel_models.push(harmonics);
90
91    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
92    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
93        .with_guidance_law(ruggiero_ctrl.clone());
94
95    println!("{sc_dynamics}");
96
97    // Finally, let's use the Monte Carlo framework built into Nyx to propagate spacecraft.
98
99    // Let's start by defining the dispersion.
100    // The MultivariateNormal structure allows us to define the dispersions in any of the orbital parameters, but these are applied directly in the Cartesian state space.
101    // Note that additional validation on the MVN is in progress -- https://github.com/nyx-space/nyx/issues/339.
102    let mc_rv = MvnSpacecraft::new(
103        sc,
104        vec![StateDispersion::zero_mean(
105            StateParameter::Element(OrbitalElement::SemiMajorAxis),
106            3.0,
107        )],
108    )?;
109
110    let my_mc = MonteCarlo::new(
111        sc, // Nominal state
112        mc_rv,
113        "03_geo_sk".to_string(), // Scenario name
114        None, // No specific seed specified, so one will be drawn from the computer's entropy.
115    );
116
117    // Build the propagator setup.
118    let setup = Propagator::rk89(
119        sc_dynamics.clone(),
120        IntegratorOptions::builder()
121            .min_step(10.0_f64.seconds())
122            .error_ctrl(ErrorControl::RSSCartesianStep)
123            .build(),
124    );
125
126    let num_runs = 25;
127    let rslts = my_mc.run_until_epoch(setup, almanac.clone(), sc.epoch() + prop_time, num_runs);
128
129    assert_eq!(rslts.runs.len(), num_runs);
130
131    rslts.to_parquet("03_geo_sk.parquet", ExportCfg::default())?;
132
133    Ok(())
134}
More examples
Hide additional examples
examples/03_geo_analysis/raise.rs (line 132)
27fn main() -> Result<(), Box<dyn Error>> {
28    pel::init();
29
30    // Dynamics models require planetary constants and ephemerides to be defined.
31    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
32    // This will automatically download the DE440s planetary ephemeris,
33    // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
34    // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
35    // planetary constants kernels.
36    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
37    // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
38    // references to many functions.
39    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
40    // Fetch the EME2000 frame from the Almabac
41    let eme2k = almanac.frame_info(EARTH_J2000).unwrap();
42    // Define the orbit epoch
43    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45    // Build the spacecraft itself.
46    // Using slide 6 of https://aerospace.org/sites/default/files/2018-11/Davis-Mayberry_HPSEP_11212018.pdf
47    // for the "next gen" SEP characteristics.
48
49    // GTO start
50    let orbit = Orbit::keplerian(24505.9, 0.725, 7.05, 0.0, 0.0, 0.0, epoch, eme2k);
51
52    let sc = Spacecraft::builder()
53        .orbit(orbit)
54        .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
55        .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
56        .thruster(Thruster {
57            // "NEXT-STEP" row in Table 2
58            isp_s: 4435.0,
59            thrust_N: 0.472,
60        })
61        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
62        .build();
63
64    let prop_time = 180.0 * Unit::Day;
65
66    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
67    let objectives = &[
68        Objective::within_tolerance(
69            StateParameter::Element(OrbitalElement::SemiMajorAxis),
70            42_165.0,
71            20.0,
72        ),
73        Objective::within_tolerance(
74            StateParameter::Element(OrbitalElement::Eccentricity),
75            0.001,
76            5e-5,
77        ),
78        Objective::within_tolerance(
79            StateParameter::Element(OrbitalElement::Inclination),
80            0.05,
81            1e-2,
82        ),
83    ];
84
85    // Ensure that we only thrust if we have more than 20% illumination.
86    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2).unwrap();
87    println!("{ruggiero_ctrl}");
88
89    // Define the high fidelity dynamics
90
91    // Set up the spacecraft dynamics.
92
93    // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
94    // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
95    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
96
97    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
98    // We're using the JGM3 model here, which is the default in GMAT.
99    let mut jgm3_meta = MetaFile {
100        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
101        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
102    };
103    // And let's download it if we don't have it yet.
104    jgm3_meta.process(true)?;
105
106    // Build the spherical harmonics.
107    // The harmonics must be computed in the body fixed frame.
108    // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
109    let harmonics = Harmonics::from_stor(
110        almanac.frame_info(IAU_EARTH_FRAME)?,
111        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true).unwrap(),
112    );
113
114    // Include the spherical harmonics into the orbital dynamics.
115    orbital_dyn.accel_models.push(harmonics);
116
117    // We define the solar radiation pressure, using the default solar flux and accounting only
118    // for the eclipsing caused by the Earth.
119    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
120
121    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
122    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
123    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
124        .with_guidance_law(ruggiero_ctrl.clone());
125
126    println!("{orbit:x}");
127
128    // We specify a minimum step in the propagator because the Ruggiero control would otherwise drive this step very low.
129    let (final_state, traj) = Propagator::rk89(
130        sc_dynamics.clone(),
131        IntegratorOptions::builder()
132            .min_step(10.0_f64.seconds())
133            .error_ctrl(ErrorControl::RSSCartesianStep)
134            .build(),
135    )
136    .with(sc, almanac.clone())
137    .for_duration_with_traj(prop_time)?;
138
139    let prop_usage = sc.mass.prop_mass_kg - final_state.mass.prop_mass_kg;
140    println!("{:x}", final_state.orbit);
141    println!("prop usage: {prop_usage:.3} kg");
142
143    // Finally, export the results for analysis, including the penumbra percentage throughout the orbit raise.
144    traj.to_parquet("./03_geo_raise.parquet", ExportCfg::default())?;
145
146    for status_line in ruggiero_ctrl.status(&final_state) {
147        println!("{status_line}");
148    }
149
150    ruggiero_ctrl
151        .achieved(&final_state)
152        .expect("objective not achieved");
153
154    Ok(())
155}
examples/05_cislunar_spacecraft_link_od/main.rs (line 132)
34fn main() -> Result<(), Box<dyn Error>> {
35    pel::init();
36
37    // ====================== //
38    // === ALMANAC SET UP === //
39    // ====================== //
40
41    let manifest_dir =
42        PathBuf::from(std::env::var("CARGO_MANIFEST_DIR").unwrap_or(".".to_string()));
43
44    let out = manifest_dir.join("data/04_output/");
45
46    let almanac = Arc::new(
47        Almanac::new(
48            &manifest_dir
49                .join("data/01_planetary/pck08.pca")
50                .to_string_lossy(),
51        )
52        .unwrap()
53        .load(
54            &manifest_dir
55                .join("data/01_planetary/de440s.bsp")
56                .to_string_lossy(),
57        )
58        .unwrap(),
59    );
60
61    let eme2k = almanac.frame_info(EARTH_J2000).unwrap();
62    let moon_iau = almanac.frame_info(IAU_MOON_FRAME).unwrap();
63
64    let epoch = Epoch::from_gregorian_tai(2021, 5, 29, 19, 51, 16, 852_000);
65    let nrho = Orbit::cartesian(
66        166_473.631_302_239_7,
67        -274_715.487_253_382_7,
68        -211_233.210_176_686_7,
69        0.933_451_604_520_018_4,
70        0.436_775_046_841_900_9,
71        -0.082_211_021_250_348_95,
72        epoch,
73        eme2k,
74    );
75
76    let tx_nrho_sc = Spacecraft::from(nrho);
77
78    let state_luna = almanac.transform_to(nrho, MOON_J2000, None).unwrap();
79    println!("Start state (dynamics: Earth, Moon, Sun gravity):\n{state_luna}");
80
81    let bodies = vec![EARTH, SUN];
82    let dynamics = SpacecraftDynamics::new(OrbitalDynamics::point_masses(bodies));
83
84    let setup = Propagator::rk89(
85        dynamics,
86        IntegratorOptions::builder().max_step(0.5.minutes()).build(),
87    );
88
89    /* == Propagate the NRHO vehicle == */
90    let prop_time = 1.1 * state_luna.period().unwrap();
91
92    let (nrho_final, mut tx_traj) = setup
93        .with(tx_nrho_sc, almanac.clone())
94        .for_duration_with_traj(prop_time)
95        .unwrap();
96
97    tx_traj.name = Some("NRHO Tx SC".to_string());
98
99    println!("{tx_traj}");
100
101    /* == Propagate an LLO vehicle == */
102    let llo_orbit =
103        Orbit::try_keplerian_altitude(110.0, 1e-4, 90.0, 0.0, 0.0, 0.0, epoch, moon_iau).unwrap();
104
105    let llo_sc = Spacecraft::builder().orbit(llo_orbit).build();
106
107    let (_, llo_traj) = setup
108        .with(llo_sc, almanac.clone())
109        .until_epoch_with_traj(nrho_final.epoch())
110        .unwrap();
111
112    // Export the subset of the first two hours.
113    llo_traj
114        .clone()
115        .filter_by_offset(..2.hours())
116        .to_parquet_simple(out.join("05_caps_llo_truth.pq"))?;
117
118    /* == Setup the interlink == */
119
120    let mut measurement_types = IndexSet::new();
121    measurement_types.insert(MeasurementType::Range);
122    measurement_types.insert(MeasurementType::Doppler);
123
124    let mut stochastics = IndexMap::new();
125
126    let sa45_csac_allan_dev = 1e-11;
127
128    stochastics.insert(
129        MeasurementType::Range,
130        StochasticNoise::from_hardware_range_km(
131            sa45_csac_allan_dev,
132            10.0.seconds(),
133            link_specific::ChipRate::StandardT4B,
134            link_specific::SN0::Average,
135        ),
136    );
137
138    stochastics.insert(
139        MeasurementType::Doppler,
140        StochasticNoise::from_hardware_doppler_km_s(
141            sa45_csac_allan_dev,
142            10.0.seconds(),
143            link_specific::CarrierFreq::SBand,
144            link_specific::CN0::Average,
145        ),
146    );
147
148    let interlink = InterlinkTxSpacecraft {
149        traj: tx_traj,
150        measurement_types,
151        integration_time: None,
152        timestamp_noise_s: None,
153        ab_corr: Aberration::LT,
154        stochastic_noises: Some(stochastics),
155    };
156
157    // Devices are the transmitter, which is our NRHO vehicle.
158    let mut devices = BTreeMap::new();
159    devices.insert("NRHO Tx SC".to_string(), interlink);
160
161    let mut configs = BTreeMap::new();
162    configs.insert(
163        "NRHO Tx SC".to_string(),
164        TrkConfig::builder()
165            .strands(vec![Strand {
166                start: epoch,
167                end: nrho_final.epoch(),
168            }])
169            .build(),
170    );
171
172    let mut trk_sim =
173        TrackingArcSim::with_seed(devices.clone(), llo_traj.clone(), configs, 0).unwrap();
174    println!("{trk_sim}");
175
176    let trk_data = trk_sim.generate_measurements(almanac.clone()).unwrap();
177    println!("{trk_data}");
178
179    trk_data
180        .to_parquet_simple(out.clone().join("nrho_interlink_msr.pq"))
181        .unwrap();
182
183    // Run a truth OD where we estimate the LLO position
184    let llo_uncertainty = SpacecraftUncertainty::builder()
185        .nominal(llo_sc)
186        .x_km(1.0)
187        .y_km(1.0)
188        .z_km(1.0)
189        .vx_km_s(1e-3)
190        .vy_km_s(1e-3)
191        .vz_km_s(1e-3)
192        .build();
193
194    let mut proc_devices = devices.clone();
195
196    // Define the initial estimate, randomized, seed for reproducibility
197    let mut initial_estimate = llo_uncertainty.to_estimate_randomized(Some(0)).unwrap();
198    // Inflate the covariance -- https://github.com/nyx-space/nyx/issues/339
199    initial_estimate.covar *= 2.5;
200
201    // Increase the noise in the devices to accept more measurements.
202
203    for link in proc_devices.values_mut() {
204        for noise in &mut link.stochastic_noises.as_mut().unwrap().values_mut() {
205            *noise.white_noise.as_mut().unwrap() *= 3.0;
206        }
207    }
208
209    let init_err = initial_estimate
210        .orbital_state()
211        .ric_difference(&llo_orbit)
212        .unwrap();
213
214    println!("initial estimate:\n{initial_estimate}");
215    println!("RIC errors = {init_err}",);
216
217    let odp = InterlinkKalmanOD::new(
218        setup.clone(),
219        KalmanVariant::ReferenceUpdate,
220        Some(ResidRejectCrit::default()),
221        proc_devices,
222        almanac.clone(),
223    );
224
225    // Shrink the data to process.
226    let arc = trk_data.filter_by_offset(..2.hours());
227
228    let od_sol = odp.process_arc(initial_estimate, &arc).unwrap();
229
230    println!("{od_sol}");
231
232    od_sol
233        .to_parquet(
234            out.join("05_caps_interlink_od_sol.pq"),
235            ExportCfg::default(),
236        )
237        .unwrap();
238
239    let od_traj = od_sol.to_traj().unwrap();
240
241    od_traj
242        .ric_diff_to_parquet(
243            &llo_traj,
244            out.join("05_caps_interlink_llo_est_error.pq"),
245            ExportCfg::default(),
246        )
247        .unwrap();
248
249    let final_est = od_sol.estimates.last().unwrap();
250    assert!(final_est.within_3sigma(), "should be within 3 sigma");
251
252    println!("ESTIMATE\n{final_est:x}\n");
253    let truth = llo_traj.at(final_est.epoch()).unwrap();
254    println!("TRUTH\n{truth:x}");
255
256    let final_err = truth
257        .orbit
258        .ric_difference(&final_est.orbital_state())
259        .unwrap();
260    println!("ERROR {final_err}");
261
262    // Build the residuals versus reference plot.
263    let rvr_sol = odp
264        .process_arc(initial_estimate, &arc.resid_vs_ref_check())
265        .unwrap();
266
267    rvr_sol
268        .to_parquet(
269            out.join("05_caps_interlink_resid_v_ref.pq"),
270            ExportCfg::default(),
271        )
272        .unwrap();
273
274    let final_rvr = rvr_sol.estimates.last().unwrap();
275
276    println!("RMAG error {:.3} m", final_err.rmag_km() * 1e3);
277    println!(
278        "Pure prop error {:.3} m",
279        final_rvr
280            .orbital_state()
281            .ric_difference(&final_est.orbital_state())
282            .unwrap()
283            .rmag_km()
284            * 1e3
285    );
286
287    Ok(())
288}
examples/04_lro_od/main.rs (line 100)
35fn main() -> Result<(), Box<dyn Error>> {
36    pel::init();
37
38    // ====================== //
39    // === ALMANAC SET UP === //
40    // ====================== //
41
42    // Dynamics models require planetary constants and ephemerides to be defined.
43    // Let's start by grabbing those by using ANISE's MetaAlmanac.
44
45    let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
46        .iter()
47        .collect();
48
49    let meta = data_folder.join("lro-dynamics.dhall");
50
51    // Load this ephem in the general Almanac we're using for this analysis.
52    let mut almanac = MetaAlmanac::new(meta.to_string_lossy().as_ref())
53        .map_err(Box::new)?
54        .process(true)
55        .map_err(Box::new)?;
56
57    let mut moon_pc = almanac.get_planetary_data_from_id(MOON).unwrap();
58    moon_pc.mu_km3_s2 = 4902.74987;
59    almanac.set_planetary_data_from_id(MOON, moon_pc).unwrap();
60
61    let mut earth = almanac.get_planetary_data_from_id(EARTH).unwrap();
62    earth.mu_km3_s2 = 398600.436;
63    almanac.set_planetary_data_from_id(EARTH, earth).unwrap();
64
65    // Save this new kernel for reuse.
66    // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
67    almanac
68        .planetary_data
69        .values()
70        .next()
71        .unwrap()
72        .save_as(&data_folder.join("lro-specific.pca"), true)?;
73
74    // Lock the almanac (an Arc is a read only structure).
75    let almanac = Arc::new(almanac);
76
77    // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
78    // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
79    // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
80    // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
81    let lro_frame = Frame::from_ephem_j2000(-85);
82
83    // To build the trajectory we need to provide a spacecraft template.
84    let sc_template = Spacecraft::builder()
85        .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
86        .srp(SRPData {
87            // SRP configuration is arbitrary, but we will be estimating it anyway.
88            area_m2: 3.9 * 2.7,
89            coeff_reflectivity: 0.96,
90        })
91        .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
92        .build();
93    // Now we can build the trajectory from the BSP file.
94    // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
95    let traj_as_flown = Traj::from_bsp(
96        lro_frame,
97        MOON_J2000,
98        almanac.clone(),
99        sc_template,
100        5.seconds(),
101        Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
102        Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
103        Aberration::LT,
104        Some("LRO".to_string()),
105    )?;
106
107    println!("{traj_as_flown}");
108
109    // ====================== //
110    // === MODEL MATCHING === //
111    // ====================== //
112
113    // Set up the spacecraft dynamics.
114
115    // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
116    // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
117    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
118
119    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
120    // We're using the GRAIL JGGRX model.
121    let mut jggrx_meta = MetaFile {
122        uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
123        crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
124    };
125    // And let's download it if we don't have it yet.
126    jggrx_meta.process(true)?;
127
128    // Build the spherical harmonics.
129    // The harmonics must be computed in the body fixed frame.
130    // We're using the long term prediction of the Moon principal axes frame.
131    let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
132    let sph_harmonics = Harmonics::from_stor(
133        almanac.frame_info(moon_pa_frame)?,
134        HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
135    );
136
137    // Include the spherical harmonics into the orbital dynamics.
138    orbital_dyn.accel_models.push(sph_harmonics);
139
140    // We define the solar radiation pressure, using the default solar flux and accounting only
141    // for the eclipsing caused by the Earth and Moon.
142    // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
143    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
144
145    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
146    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
147    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
148
149    println!("{dynamics}");
150
151    // Now we can build the propagator.
152    let setup = Propagator::default_dp78(dynamics.clone());
153
154    // For reference, let's build the trajectory with Nyx's models from that LRO state.
155    let (sim_final, traj_as_sim) = setup
156        .with(*traj_as_flown.first(), almanac.clone())
157        .until_epoch_with_traj(traj_as_flown.last().epoch())?;
158
159    println!("SIM INIT:  {:x}", traj_as_flown.first());
160    println!("SIM FINAL: {sim_final:x}");
161    // Compute RIC difference between SIM and LRO ephem
162    let sim_lro_delta = sim_final
163        .orbit
164        .ric_difference(&traj_as_flown.last().orbit)?;
165    println!("{traj_as_sim}");
166    println!(
167        "SIM v LRO - RIC Position (m): {:.3}",
168        sim_lro_delta.radius_km * 1e3
169    );
170    println!(
171        "SIM v LRO - RIC Velocity (m/s): {:.3}",
172        sim_lro_delta.velocity_km_s * 1e3
173    );
174
175    traj_as_sim.ric_diff_to_parquet(
176        &traj_as_flown,
177        "./data/04_output/04_lro_sim_truth_error.parquet",
178        ExportCfg::default(),
179    )?;
180
181    // ==================== //
182    // === OD SIMULATOR === //
183    // ==================== //
184
185    // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
186    // and the truth LRO state.
187
188    // Therefore, we will actually run an estimation from a dispersed LRO state.
189    // The sc_seed is the true LRO state from the BSP.
190    let sc_seed = *traj_as_flown.first();
191
192    // Load the Deep Space Network ground stations.
193    // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
194    let ground_station_file: PathBuf = [
195        env!("CARGO_MANIFEST_DIR"),
196        "examples",
197        "04_lro_od",
198        "dsn-network.yaml",
199    ]
200    .iter()
201    .collect();
202
203    let devices = GroundStation::load_named(ground_station_file)?;
204
205    let mut proc_devices = devices.clone();
206
207    // Increase the noise in the devices to accept more measurements.
208    for gs in proc_devices.values_mut() {
209        if let Some(noise) = &mut gs
210            .stochastic_noises
211            .as_mut()
212            .unwrap()
213            .get_mut(&MeasurementType::Range)
214        {
215            *noise.white_noise.as_mut().unwrap() *= 3.0;
216        }
217    }
218
219    // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
220    // Nyx can build a tracking schedule for you based on the first station with access.
221    let trkconfg_yaml: PathBuf = [
222        env!("CARGO_MANIFEST_DIR"),
223        "examples",
224        "04_lro_od",
225        "tracking-cfg.yaml",
226    ]
227    .iter()
228    .collect();
229
230    let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
231
232    // Build the tracking arc simulation to generate a "standard measurement".
233    let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::with_seed(
234        devices.clone(),
235        traj_as_flown.clone(),
236        configs,
237        123, // Set a seed for reproducibility
238    )?;
239
240    trk.build_schedule(almanac.clone())?;
241    let arc = trk.generate_measurements(almanac.clone())?;
242    // Save the simulated tracking data
243    arc.to_parquet_simple("./data/04_output/04_lro_simulated_tracking.parquet")?;
244
245    // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
246    println!("{arc}");
247
248    // Now that we have simulated measurements, we'll run the orbit determination.
249
250    // ===================== //
251    // === OD ESTIMATION === //
252    // ===================== //
253
254    let sc = SpacecraftUncertainty::builder()
255        .nominal(sc_seed)
256        .frame(LocalFrame::RIC)
257        .x_km(0.5)
258        .y_km(0.5)
259        .z_km(0.5)
260        .vx_km_s(5e-3)
261        .vy_km_s(5e-3)
262        .vz_km_s(5e-3)
263        .build();
264
265    // Build the filter initial estimate, which we will reuse in the filter.
266    let mut initial_estimate = sc.to_estimate()?;
267    initial_estimate.covar *= 3.0;
268
269    println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
270
271    // Build the SNC in the Moon J2000 frame, specified as a velocity noise over time.
272    let process_noise = ProcessNoise3D::from_velocity_km_s(
273        &[1e-10, 1e-10, 1e-10],
274        1 * Unit::Hour,
275        10 * Unit::Minute,
276        None,
277    );
278
279    println!("{process_noise}");
280
281    // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
282    let odp = SpacecraftKalmanOD::new(
283        setup,
284        KalmanVariant::ReferenceUpdate,
285        Some(ResidRejectCrit::default()),
286        proc_devices,
287        almanac.clone(),
288    )
289    .with_process_noise(process_noise);
290
291    let od_sol = odp.process_arc(initial_estimate, &arc)?;
292
293    let final_est = od_sol.estimates.last().unwrap();
294
295    println!("{final_est}");
296
297    let ric_err = traj_as_flown
298        .at(final_est.epoch())?
299        .orbit
300        .ric_difference(&final_est.orbital_state())?;
301    println!("== RIC at end ==");
302    println!("RIC Position (m): {:.3}", ric_err.radius_km * 1e3);
303    println!("RIC Velocity (m/s): {:.3}", ric_err.velocity_km_s * 1e3);
304
305    println!(
306        "Num residuals rejected: #{}",
307        od_sol.rejected_residuals().len()
308    );
309    println!(
310        "Percentage within +/-3: {}",
311        od_sol.residual_ratio_within_threshold(3.0).unwrap()
312    );
313    println!("Ratios normal? {}", od_sol.is_normal(None).unwrap());
314
315    od_sol.to_parquet(
316        "./data/04_output/04_lro_od_results.parquet",
317        ExportCfg::default(),
318    )?;
319
320    // Create the ephemeris
321    let ephem = od_sol.to_ephemeris("LRO rebuilt".to_string());
322    let ephem_start = ephem.start_epoch().unwrap();
323    let ephem_end = ephem.end_epoch().unwrap();
324    // Check that the covariance is PSD throughout the ephemeris by interpolating it.
325    for epoch in TimeSeries::inclusive(ephem_start, ephem_end, Unit::Minute * 5) {
326        ephem
327            .covar_at(
328                epoch,
329                anise::ephemerides::ephemeris::LocalFrame::RIC,
330                &almanac,
331            )
332            .unwrap_or_else(|e| panic!("covar not PSD at {epoch}: {e}"));
333    }
334    // Export as BSP!
335    ephem
336        .write_spice_bsp(-85, "./data/04_output/04_lro_rebuilt.bsp", None)
337        .expect("could not built BSP");
338    let new_almanac = Almanac::default()
339        .load("./data/04_output/04_lro_rebuilt.bsp")
340        .unwrap();
341    new_almanac.describe(None, None, None, None, None, None, None, None);
342    let (spk_start, spk_end) = new_almanac.spk_domain(-85).unwrap();
343
344    assert!((ephem_start - spk_start).abs() < Unit::Microsecond * 1);
345    assert!((ephem_end - spk_end).abs() < Unit::Microsecond * 1);
346
347    // In our case, we have the truth trajectory from NASA.
348    // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
349    // Export the OD trajectory first.
350    let od_trajectory = od_sol.to_traj()?;
351    // Build the RIC difference.
352    od_trajectory.ric_diff_to_parquet(
353        &traj_as_flown,
354        "./data/04_output/04_lro_od_truth_error.parquet",
355        ExportCfg::default(),
356    )?;
357
358    Ok(())
359}

fn milliseconds(self) -> Duration

fn microseconds(self) -> Duration

fn nanoseconds(self) -> Duration

Dyn Compatibility§

This trait is not dyn compatible.

In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.

Implementations on Foreign Types§

§

impl TimeUnits for f64

§

impl TimeUnits for i64

Implementors§