Struct Duration
#[repr(C)]pub struct Duration { /* private fields */ }
Expand description
Defines generally usable durations for nanosecond precision valid for 32,768 centuries in either direction, and only on 80 bits / 10 octets.
Important conventions:
- The negative durations can be mentally modeled “BC” years. One hours before 01 Jan 0000, it was “-1” years but 365 days and 23h into the current day. It was decided that the nanoseconds corresponds to the nanoseconds into the current century. In other words, a duration with centuries = -1 and nanoseconds = 0 is a greater duration (further from zero) than centuries = -1 and nanoseconds = 1. Duration zero minus one nanosecond returns a century of -1 and a nanosecond set to the number of nanoseconds in one century minus one. That difference is exactly 1 nanoseconds, where the former duration is “closer to zero” than the latter. As such, the largest negative duration that can be represented sets the centuries to i16::MAX and its nanoseconds to NANOSECONDS_PER_CENTURY.
- It was also decided that opposite durations are equal, e.g. -15 minutes == 15 minutes. If the direction of time matters, use the signum function.
(Python documentation hints) :type string_repr: str :rtype: Duration
Implementations§
§impl Duration
impl Duration
pub const MIN_POSITIVE: Duration = Self::EPSILON
pub const MIN_POSITIVE: Duration = Self::EPSILON
Minimum positive duration is one nanoseconds
pub const MIN_NEGATIVE: Duration = _
pub const MIN_NEGATIVE: Duration = _
Minimum negative duration is minus one nanosecond
pub fn from_parts(centuries: i16, nanoseconds: u64) -> Duration
pub fn from_parts(centuries: i16, nanoseconds: u64) -> Duration
Create a normalized duration from its parts
pub fn from_total_nanoseconds(nanos: i128) -> Duration
pub fn from_total_nanoseconds(nanos: i128) -> Duration
Converts the total nanoseconds as i128 into this Duration (saving 48 bits)
pub fn from_truncated_nanoseconds(nanos: i64) -> Duration
pub fn from_truncated_nanoseconds(nanos: i64) -> Duration
Create a new duration from the truncated nanoseconds (+/- 2927.1 years of duration)
pub fn from_hours(value: f64) -> Duration
pub fn from_hours(value: f64) -> Duration
Creates a new duration from the provided number of hours
pub fn from_seconds(value: f64) -> Duration
pub fn from_seconds(value: f64) -> Duration
Creates a new duration from the provided number of seconds
pub fn from_milliseconds(value: f64) -> Duration
pub fn from_milliseconds(value: f64) -> Duration
Creates a new duration from the provided number of milliseconds
pub fn from_microseconds(value: f64) -> Duration
pub fn from_microseconds(value: f64) -> Duration
Creates a new duration from the provided number of microsecond
pub fn from_nanoseconds(value: f64) -> Duration
pub fn from_nanoseconds(value: f64) -> Duration
Creates a new duration from the provided number of nanoseconds
pub fn compose(
sign: i8,
days: u64,
hours: u64,
minutes: u64,
seconds: u64,
milliseconds: u64,
microseconds: u64,
nanoseconds: u64,
) -> Duration
pub fn compose( sign: i8, days: u64, hours: u64, minutes: u64, seconds: u64, milliseconds: u64, microseconds: u64, nanoseconds: u64, ) -> Duration
Creates a new duration from its parts. Set the sign to a negative number for the duration to be negative.
pub fn compose_f64(
sign: i8,
days: f64,
hours: f64,
minutes: f64,
seconds: f64,
milliseconds: f64,
microseconds: f64,
nanoseconds: f64,
) -> Duration
pub fn compose_f64( sign: i8, days: f64, hours: f64, minutes: f64, seconds: f64, milliseconds: f64, microseconds: f64, nanoseconds: f64, ) -> Duration
Creates a new duration from its parts. Set the sign to a negative number for the duration to be negative.
pub fn from_tz_offset(sign: i8, hours: i64, minutes: i64) -> Duration
pub fn from_tz_offset(sign: i8, hours: i64, minutes: i64) -> Duration
Initializes a Duration from a timezone offset
§impl Duration
impl Duration
pub const fn to_parts(&self) -> (i16, u64)
pub const fn to_parts(&self) -> (i16, u64)
Returns the centuries and nanoseconds of this duration NOTE: These items are not public to prevent incorrect durations from being created by modifying the values of the structure directly.
pub fn total_nanoseconds(&self) -> i128
pub fn total_nanoseconds(&self) -> i128
Returns the total nanoseconds in a signed 128 bit integer
pub fn try_truncated_nanoseconds(&self) -> Result<i64, HifitimeError>
pub fn try_truncated_nanoseconds(&self) -> Result<i64, HifitimeError>
Returns the truncated nanoseconds in a signed 64 bit integer, if the duration fits.
pub fn truncated_nanoseconds(&self) -> i64
pub fn truncated_nanoseconds(&self) -> i64
Returns the truncated nanoseconds in a signed 64 bit integer, if the duration fits. WARNING: This function will NOT fail and will return the i64::MIN or i64::MAX depending on the sign of the centuries if the Duration does not fit on aa i64
pub fn to_seconds(&self) -> f64
pub fn to_seconds(&self) -> f64
Returns this duration in seconds f64. For high fidelity comparisons, it is recommended to keep using the Duration structure.
Examples found in repository?
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
fn main() -> Result<(), Box<dyn Error>> {
pel::init();
// Dynamics models require planetary constants and ephemerides to be defined.
// Let's start by grabbing those by using ANISE's latest MetaAlmanac.
// This will automatically download the DE440s planetary ephemeris,
// the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
// parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
// planetary constants kernels.
// For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
// Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
// references to many functions.
let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
// Define the orbit epoch
let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
// Define the orbit.
// First we need to fetch the Earth J2000 from information from the Almanac.
// This allows the frame to include the gravitational parameters and the shape of the Earth,
// defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
// by loading a different set of planetary constants.
let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
// Placing this GEO bird just above Colorado.
// In theory, the eccentricity is zero, but in practice, it's about 1e-5 to 1e-6 at best.
let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
// Print in in Keplerian form.
println!("{orbit:x}");
let state_bf = almanac.transform_to(orbit, IAU_EARTH_FRAME, None)?;
let (orig_lat_deg, orig_long_deg, orig_alt_km) = state_bf.latlongalt()?;
// Nyx is used for high fidelity propagation, not Keplerian propagation as above.
// Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
// models such as solar radiation pressure.
// Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
let sc = Spacecraft::builder()
.orbit(orbit)
.dry_mass_kg(9.60)
.srp(SrpConfig {
area_m2: 10e-4,
cr: 1.1,
})
.build();
println!("{sc:x}");
// Set up the spacecraft dynamics.
// Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
// The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
// We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
// We're using the JGM3 model here, which is the default in GMAT.
let mut jgm3_meta = MetaFile {
uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
};
// And let's download it if we don't have it yet.
jgm3_meta.process(true)?;
// Build the spherical harmonics.
// The harmonics must be computed in the body fixed frame.
// We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
let harmonics_21x21 = Harmonics::from_stor(
almanac.frame_from_uid(IAU_EARTH_FRAME)?,
HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
);
// Include the spherical harmonics into the orbital dynamics.
orbital_dyn.accel_models.push(harmonics_21x21);
// We define the solar radiation pressure, using the default solar flux and accounting only
// for the eclipsing caused by the Earth and Moon.
let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
// Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
// acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
println!("{dynamics}");
// Finally, let's propagate this orbit to the same epoch as above.
// The first returned value is the spacecraft state at the final epoch.
// The second value is the full trajectory where the step size is variable step used by the propagator.
let (future_sc, trajectory) = Propagator::default(dynamics)
.with(sc, almanac.clone())
.until_epoch_with_traj(epoch + Unit::Century * 0.03)?;
println!("=== High fidelity propagation ===");
println!(
"SMA changed by {:.3} km",
orbit.sma_km()? - future_sc.orbit.sma_km()?
);
println!(
"ECC changed by {:.6}",
orbit.ecc()? - future_sc.orbit.ecc()?
);
println!(
"INC changed by {:.3e} deg",
orbit.inc_deg()? - future_sc.orbit.inc_deg()?
);
println!(
"RAAN changed by {:.3} deg",
orbit.raan_deg()? - future_sc.orbit.raan_deg()?
);
println!(
"AOP changed by {:.3} deg",
orbit.aop_deg()? - future_sc.orbit.aop_deg()?
);
println!(
"TA changed by {:.3} deg",
orbit.ta_deg()? - future_sc.orbit.ta_deg()?
);
// We also have access to the full trajectory throughout the propagation.
println!("{trajectory}");
println!("Spacecraft params after 3 years without active control:\n{future_sc:x}");
// With the trajectory, let's build a few data products.
// 1. Export the trajectory as a parquet file, which includes the Keplerian orbital elements.
let analysis_step = Unit::Minute * 5;
trajectory.to_parquet(
"./03_geo_hf_prop.parquet",
Some(vec![
&EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
]),
ExportCfg::builder().step(analysis_step).build(),
almanac.clone(),
)?;
// 2. Compute the latitude, longitude, and altitude throughout the trajectory by rotating the spacecraft position into the Earth body fixed frame.
// We iterate over the trajectory, grabbing a state every two minutes.
let mut offset_s = vec![];
let mut epoch_str = vec![];
let mut longitude_deg = vec![];
let mut latitude_deg = vec![];
let mut altitude_km = vec![];
for state in trajectory.every(analysis_step) {
// Convert the GEO bird state into the body fixed frame, and keep track of its latitude, longitude, and altitude.
// These define the GEO stationkeeping box.
let this_epoch = state.epoch();
offset_s.push((this_epoch - orbit.epoch).to_seconds());
epoch_str.push(this_epoch.to_isoformat());
let state_bf = almanac.transform_to(state.orbit, IAU_EARTH_FRAME, None)?;
let (lat_deg, long_deg, alt_km) = state_bf.latlongalt()?;
longitude_deg.push(long_deg);
latitude_deg.push(lat_deg);
altitude_km.push(alt_km);
}
println!(
"Longitude changed by {:.3} deg -- Box is 0.1 deg E-W",
orig_long_deg - longitude_deg.last().unwrap()
);
println!(
"Latitude changed by {:.3} deg -- Box is 0.05 deg N-S",
orig_lat_deg - latitude_deg.last().unwrap()
);
println!(
"Altitude changed by {:.3} km -- Box is 30 km",
orig_alt_km - altitude_km.last().unwrap()
);
// Build the station keeping data frame.
let mut sk_df = df!(
"Offset (s)" => offset_s.clone(),
"Epoch (UTC)" => epoch_str.clone(),
"Longitude E-W (deg)" => longitude_deg,
"Latitude N-S (deg)" => latitude_deg,
"Altitude (km)" => altitude_km,
)?;
// Create a file to write the Parquet to
let file = File::create("./03_geo_lla.parquet").expect("Could not create file");
// Create a ParquetWriter and write the DataFrame to the file
ParquetWriter::new(file).finish(&mut sk_df)?;
Ok(())
}
More examples
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
fn main() -> Result<(), Box<dyn Error>> {
pel::init();
// Dynamics models require planetary constants and ephemerides to be defined.
// Let's start by grabbing those by using ANISE's latest MetaAlmanac.
// This will automatically download the DE440s planetary ephemeris,
// the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
// parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
// planetary constants kernels.
// For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
// Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
// references to many functions.
let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
// Define the orbit epoch
let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
// Define the orbit.
// First we need to fetch the Earth J2000 from information from the Almanac.
// This allows the frame to include the gravitational parameters and the shape of the Earth,
// defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
// by loading a different set of planetary constants.
let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
let orbit =
Orbit::try_keplerian_altitude(300.0, 0.015, 68.5, 65.2, 75.0, 0.0, epoch, earth_j2000)?;
// Print in in Keplerian form.
println!("{orbit:x}");
// There are two ways to propagate an orbit. We can make a quick approximation assuming only two-body
// motion. This is a useful first order approximation but it isn't used in real-world applications.
// This approach is a feature of ANISE.
let future_orbit_tb = orbit.at_epoch(epoch + Unit::Day * 3)?;
println!("{future_orbit_tb:x}");
// Two body propagation relies solely on Kepler's laws, so only the true anomaly will change.
println!(
"SMA changed by {:.3e} km",
orbit.sma_km()? - future_orbit_tb.sma_km()?
);
println!(
"ECC changed by {:.3e}",
orbit.ecc()? - future_orbit_tb.ecc()?
);
println!(
"INC changed by {:.3e} deg",
orbit.inc_deg()? - future_orbit_tb.inc_deg()?
);
println!(
"RAAN changed by {:.3e} deg",
orbit.raan_deg()? - future_orbit_tb.raan_deg()?
);
println!(
"AOP changed by {:.3e} deg",
orbit.aop_deg()? - future_orbit_tb.aop_deg()?
);
println!(
"TA changed by {:.3} deg",
orbit.ta_deg()? - future_orbit_tb.ta_deg()?
);
// Nyx is used for high fidelity propagation, not Keplerian propagation as above.
// Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
// models such as solar radiation pressure.
// Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
let sc = Spacecraft::builder()
.orbit(orbit)
.dry_mass_kg(9.60)
.srp(SrpConfig {
area_m2: 10e-4,
cr: 1.1,
})
.build();
println!("{sc:x}");
// Set up the spacecraft dynamics.
// Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
// The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
// We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
// We're using the JGM3 model here, which is the default in GMAT.
let mut jgm3_meta = MetaFile {
uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
};
// And let's download it if we don't have it yet.
jgm3_meta.process(true)?;
// Build the spherical harmonics.
// The harmonics must be computed in the body fixed frame.
// We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
let harmonics_21x21 = Harmonics::from_stor(
almanac.frame_from_uid(IAU_EARTH_FRAME)?,
HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
);
// Include the spherical harmonics into the orbital dynamics.
orbital_dyn.accel_models.push(harmonics_21x21);
// We define the solar radiation pressure, using the default solar flux and accounting only
// for the eclipsing caused by the Earth.
let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
// Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
// acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
println!("{dynamics}");
// Finally, let's propagate this orbit to the same epoch as above.
// The first returned value is the spacecraft state at the final epoch.
// The second value is the full trajectory where the step size is variable step used by the propagator.
let (future_sc, trajectory) = Propagator::default(dynamics)
.with(sc, almanac.clone())
.until_epoch_with_traj(future_orbit_tb.epoch)?;
println!("=== High fidelity propagation ===");
println!(
"SMA changed by {:.3} km",
orbit.sma_km()? - future_sc.orbit.sma_km()?
);
println!(
"ECC changed by {:.6}",
orbit.ecc()? - future_sc.orbit.ecc()?
);
println!(
"INC changed by {:.3e} deg",
orbit.inc_deg()? - future_sc.orbit.inc_deg()?
);
println!(
"RAAN changed by {:.3} deg",
orbit.raan_deg()? - future_sc.orbit.raan_deg()?
);
println!(
"AOP changed by {:.3} deg",
orbit.aop_deg()? - future_sc.orbit.aop_deg()?
);
println!(
"TA changed by {:.3} deg",
orbit.ta_deg()? - future_sc.orbit.ta_deg()?
);
// We also have access to the full trajectory throughout the propagation.
println!("{trajectory}");
// With the trajectory, let's build a few data products.
// 1. Export the trajectory as a CCSDS OEM version 2.0 file and as a parquet file, which includes the Keplerian orbital elements.
trajectory.to_oem_file(
"./01_cubesat_hf_prop.oem",
ExportCfg::builder().step(Unit::Minute * 2).build(),
)?;
trajectory.to_parquet_with_cfg(
"./01_cubesat_hf_prop.parquet",
ExportCfg::builder().step(Unit::Minute * 2).build(),
almanac.clone(),
)?;
// 2. Compare the difference in the radial-intrack-crosstrack frame between the high fidelity
// and Keplerian propagation. The RIC frame is commonly used to compute the difference in position
// and velocity of different spacecraft.
// 3. Compute the azimuth, elevation, range, and range-rate data of that spacecraft as seen from Boulder, CO, USA.
let boulder_station = GroundStation::from_point(
"Boulder, CO, USA".to_string(),
40.014984, // latitude in degrees
-105.270546, // longitude in degrees
1.6550, // altitude in kilometers
almanac.frame_from_uid(IAU_EARTH_FRAME)?,
);
// We iterate over the trajectory, grabbing a state every two minutes.
let mut offset_s = vec![];
let mut epoch_str = vec![];
let mut ric_x_km = vec![];
let mut ric_y_km = vec![];
let mut ric_z_km = vec![];
let mut ric_vx_km_s = vec![];
let mut ric_vy_km_s = vec![];
let mut ric_vz_km_s = vec![];
let mut azimuth_deg = vec![];
let mut elevation_deg = vec![];
let mut range_km = vec![];
let mut range_rate_km_s = vec![];
for state in trajectory.every(Unit::Minute * 2) {
// Try to compute the Keplerian/two body state just in time.
// This method occasionally fails to converge on an appropriate true anomaly
// from the mean anomaly. If that happens, we just skip this state.
// The high fidelity and Keplerian states diverge continuously, and we're curious
// about the divergence in this quick analysis.
let this_epoch = state.epoch();
match orbit.at_epoch(this_epoch) {
Ok(tb_then) => {
offset_s.push((this_epoch - orbit.epoch).to_seconds());
epoch_str.push(format!("{this_epoch}"));
// Compute the two body state just in time.
let ric = state.orbit.ric_difference(&tb_then)?;
ric_x_km.push(ric.radius_km.x);
ric_y_km.push(ric.radius_km.y);
ric_z_km.push(ric.radius_km.z);
ric_vx_km_s.push(ric.velocity_km_s.x);
ric_vy_km_s.push(ric.velocity_km_s.y);
ric_vz_km_s.push(ric.velocity_km_s.z);
// Compute the AER data for each state.
let aer = almanac.azimuth_elevation_range_sez(
state.orbit,
boulder_station.to_orbit(this_epoch, &almanac)?,
None,
None,
)?;
azimuth_deg.push(aer.azimuth_deg);
elevation_deg.push(aer.elevation_deg);
range_km.push(aer.range_km);
range_rate_km_s.push(aer.range_rate_km_s);
}
Err(e) => warn!("{} {e}", state.epoch()),
};
}
// Build the data frames.
let ric_df = df!(
"Offset (s)" => offset_s.clone(),
"Epoch" => epoch_str.clone(),
"RIC X (km)" => ric_x_km,
"RIC Y (km)" => ric_y_km,
"RIC Z (km)" => ric_z_km,
"RIC VX (km/s)" => ric_vx_km_s,
"RIC VY (km/s)" => ric_vy_km_s,
"RIC VZ (km/s)" => ric_vz_km_s,
)?;
println!("RIC difference at start\n{}", ric_df.head(Some(10)));
println!("RIC difference at end\n{}", ric_df.tail(Some(10)));
let aer_df = df!(
"Offset (s)" => offset_s.clone(),
"Epoch" => epoch_str.clone(),
"azimuth (deg)" => azimuth_deg,
"elevation (deg)" => elevation_deg,
"range (km)" => range_km,
"range rate (km/s)" => range_rate_km_s,
)?;
// Finally, let's see when the spacecraft is visible, assuming 15 degrees minimum elevation.
let mask = aer_df.column("elevation (deg)")?.gt(15.0)?;
let cubesat_visible = aer_df.filter(&mask)?;
println!("{cubesat_visible}");
Ok(())
}
pub fn to_unit(&self, unit: Unit) -> f64
pub const fn signum(&self) -> i8
pub const fn signum(&self) -> i8
Returns the sign of this duration
- 0 if the number is zero
- 1 if the number is positive
- -1 if the number is negative
pub fn decompose(&self) -> (i8, u64, u64, u64, u64, u64, u64, u64)
pub fn decompose(&self) -> (i8, u64, u64, u64, u64, u64, u64, u64)
Decomposes a Duration in its sign, days, hours, minutes, seconds, ms, us, ns
pub fn subdivision(&self, unit: Unit) -> Option<Duration>
pub fn subdivision(&self, unit: Unit) -> Option<Duration>
Returns the subdivision of duration in this unit, if such is available. Does not work with Week or Century.
§Example
use hifitime::{Duration, TimeUnits, Unit};
let two_hours_three_min = 2.hours() + 3.minutes();
assert_eq!(two_hours_three_min.subdivision(Unit::Hour), Some(2.hours()));
assert_eq!(two_hours_three_min.subdivision(Unit::Minute), Some(3.minutes()));
assert_eq!(two_hours_three_min.subdivision(Unit::Second), Some(Duration::ZERO));
assert_eq!(two_hours_three_min.subdivision(Unit::Week), None);
pub fn floor(&self, duration: Duration) -> Duration
pub fn floor(&self, duration: Duration) -> Duration
Floors this duration to the closest duration from the bottom
§Example
use hifitime::{Duration, TimeUnits};
let two_hours_three_min = 2.hours() + 3.minutes();
assert_eq!(two_hours_three_min.floor(1.hours()), 2.hours());
assert_eq!(two_hours_three_min.floor(30.minutes()), 2.hours());
// This is zero because we floor by a duration longer than the current duration, rounding it down
assert_eq!(two_hours_three_min.floor(4.hours()), 0.hours());
assert_eq!(two_hours_three_min.floor(1.seconds()), two_hours_three_min);
assert_eq!(two_hours_three_min.floor(1.hours() + 1.minutes()), 2.hours() + 2.minutes());
assert_eq!(two_hours_three_min.floor(1.hours() + 5.minutes()), 1.hours() + 5.minutes());
pub fn ceil(&self, duration: Duration) -> Duration
pub fn ceil(&self, duration: Duration) -> Duration
Ceils this duration to the closest provided duration
This simply floors then adds the requested duration
§Example
use hifitime::{Duration, TimeUnits};
let two_hours_three_min = 2.hours() + 3.minutes();
assert_eq!(two_hours_three_min.ceil(1.hours()), 3.hours());
assert_eq!(two_hours_three_min.ceil(30.minutes()), 2.hours() + 30.minutes());
assert_eq!(two_hours_three_min.ceil(4.hours()), 4.hours());
assert_eq!(two_hours_three_min.ceil(1.seconds()), two_hours_three_min + 1.seconds());
assert_eq!(two_hours_three_min.ceil(1.hours() + 5.minutes()), 2.hours() + 10.minutes());
pub fn round(&self, duration: Duration) -> Duration
pub fn round(&self, duration: Duration) -> Duration
Rounds this duration to the closest provided duration
This performs both a ceil
and floor
and returns the value which is the closest to current one.
§Example
use hifitime::{Duration, TimeUnits};
let two_hours_three_min = 2.hours() + 3.minutes();
assert_eq!(two_hours_three_min.round(1.hours()), 2.hours());
assert_eq!(two_hours_three_min.round(30.minutes()), 2.hours());
assert_eq!(two_hours_three_min.round(4.hours()), 4.hours());
assert_eq!(two_hours_three_min.round(1.seconds()), two_hours_three_min);
assert_eq!(two_hours_three_min.round(1.hours() + 5.minutes()), 2.hours() + 10.minutes());
pub fn approx(&self) -> Duration
pub fn approx(&self) -> Duration
Rounds this duration to the largest units represented in this duration.
This is useful to provide an approximate human duration. Under the hood, this function uses round
,
so the “tipping point” of the rounding is half way to the next increment of the greatest unit.
As shown below, one example is that 35 hours and 59 minutes rounds to 1 day, but 36 hours and 1 minute rounds
to 2 days because 2 days is closer to 36h 1 min than 36h 1 min is to 1 day.
§Example
use hifitime::{Duration, TimeUnits};
assert_eq!((2.hours() + 3.minutes()).approx(), 2.hours());
assert_eq!((24.hours() + 3.minutes()).approx(), 1.days());
assert_eq!((35.hours() + 59.minutes()).approx(), 1.days());
assert_eq!((36.hours() + 1.minutes()).approx(), 2.days());
assert_eq!((47.hours() + 3.minutes()).approx(), 2.days());
assert_eq!((49.hours() + 3.minutes()).approx(), 2.days());
pub fn min(self, other: Duration) -> Duration
pub fn min(self, other: Duration) -> Duration
use hifitime::TimeUnits;
let d0 = 20.seconds();
let d1 = 21.seconds();
assert_eq!(d0, d1.min(d0));
assert_eq!(d0, d0.min(d1));
pub fn max(self, other: Duration) -> Duration
pub fn max(self, other: Duration) -> Duration
Returns the maximum of the two durations.
use hifitime::TimeUnits;
let d0 = 20.seconds();
let d1 = 21.seconds();
assert_eq!(d1, d1.max(d0));
assert_eq!(d1, d0.max(d1));
pub const fn is_negative(&self) -> bool
pub const fn is_negative(&self) -> bool
Returns whether this is a negative or positive duration.
Trait Implementations§
§impl Add for Duration
impl Add for Duration
§fn add(self, rhs: Duration) -> Duration
fn add(self, rhs: Duration) -> Duration
§Addition of Durations
Durations are centered on zero duration. Of the tuple, only the centuries may be negative, the nanoseconds are always positive and represent the nanoseconds into the current centuries.
§Examples
Duration { centuries: 0, nanoseconds: 1 }
is a positive duration of zero centuries and one nanosecond.Duration { centuries: -1, nanoseconds: 1 }
is a negative duration representing “one century before zero minus one nanosecond”
§impl AddAssign<Duration> for Epoch
impl AddAssign<Duration> for Epoch
§fn add_assign(&mut self, duration: Duration)
fn add_assign(&mut self, duration: Duration)
+=
operation. Read more§impl AddAssign<Unit> for Duration
impl AddAssign<Unit> for Duration
§fn add_assign(&mut self, rhs: Unit)
fn add_assign(&mut self, rhs: Unit)
+=
operation. Read more§impl AddAssign for Duration
impl AddAssign for Duration
§fn add_assign(&mut self, rhs: Duration)
fn add_assign(&mut self, rhs: Duration)
+=
operation. Read more§impl<'de> Deserialize<'de> for Duration
impl<'de> Deserialize<'de> for Duration
§fn deserialize<D>(
deserializer: D,
) -> Result<Duration, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
fn deserialize<D>(
deserializer: D,
) -> Result<Duration, <D as Deserializer<'de>>::Error>where
D: Deserializer<'de>,
§impl FromStr for Duration
impl FromStr for Duration
§fn from_str(s_in: &str) -> Result<Duration, <Duration as FromStr>::Err>
fn from_str(s_in: &str) -> Result<Duration, <Duration as FromStr>::Err>
Attempts to convert a simple string to a Duration. Does not yet support complicated durations.
Identifiers:
- d, days, day
- h, hours, hour
- min, mins, minute
- s, second, seconds
- ms, millisecond, milliseconds
- us, microsecond, microseconds
- ns, nanosecond, nanoseconds
+
or-
indicates a timezone offset
§Example
use hifitime::{Duration, Unit};
use std::str::FromStr;
assert_eq!(Duration::from_str("1 d").unwrap(), Unit::Day * 1);
assert_eq!(Duration::from_str("10.598 days").unwrap(), Unit::Day * 10.598);
assert_eq!(Duration::from_str("10.598 min").unwrap(), Unit::Minute * 10.598);
assert_eq!(Duration::from_str("10.598 us").unwrap(), Unit::Microsecond * 10.598);
assert_eq!(Duration::from_str("10.598 seconds").unwrap(), Unit::Second * 10.598);
assert_eq!(Duration::from_str("10.598 nanosecond").unwrap(), Unit::Nanosecond * 10.598);
assert_eq!(Duration::from_str("5 h 256 ms 1 ns").unwrap(), 5 * Unit::Hour + 256 * Unit::Millisecond + Unit::Nanosecond);
assert_eq!(Duration::from_str("-01:15:30").unwrap(), -(1 * Unit::Hour + 15 * Unit::Minute + 30 * Unit::Second));
assert_eq!(Duration::from_str("+3615").unwrap(), 36 * Unit::Hour + 15 * Unit::Minute);
§type Err = HifitimeError
type Err = HifitimeError
§impl Ord for Duration
impl Ord for Duration
§impl PartialOrd<Unit> for Duration
impl PartialOrd<Unit> for Duration
§impl PartialOrd for Duration
impl PartialOrd for Duration
§impl Serialize for Duration
impl Serialize for Duration
§fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
fn serialize<S>(
&self,
serializer: S,
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>where
S: Serializer,
§impl Sub for Duration
impl Sub for Duration
§fn sub(self, rhs: Duration) -> Duration
fn sub(self, rhs: Duration) -> Duration
§Subtraction
This operation is a notch confusing with negative durations.
As described in the Duration
structure, a Duration of (-1, NANOSECONDS_PER_CENTURY-1) is closer to zero
than (-1, 0).
§Algorithm
§A > B, and both are positive
If A > B, then A.centuries is subtracted by B.centuries, and A.nanoseconds is subtracted by B.nanoseconds. If an overflow occurs, e.g. A.nanoseconds < B.nanoseconds, the number of nanoseconds is increased by the number of nanoseconds per century, and the number of centuries is decreased by one.
use hifitime::{Duration, NANOSECONDS_PER_CENTURY};
let a = Duration::from_parts(1, 1);
let b = Duration::from_parts(0, 10);
let c = Duration::from_parts(0, NANOSECONDS_PER_CENTURY - 9);
assert_eq!(a - b, c);
§A < B, and both are positive
In this case, the resulting duration will be negative. The number of centuries is a signed integer, so it is set to the difference of A.centuries - B.centuries. The number of nanoseconds however must be wrapped by the number of nanoseconds per century. For example:, let A = (0, 1) and B = (1, 10), then the resulting duration will be (-2, NANOSECONDS_PER_CENTURY - (10 - 1)). In this case, the centuries are set to -2 because B is two centuries into the future (the number of centuries into the future is zero-indexed).
use hifitime::{Duration, NANOSECONDS_PER_CENTURY};
let a = Duration::from_parts(0, 1);
let b = Duration::from_parts(1, 10);
let c = Duration::from_parts(-2, NANOSECONDS_PER_CENTURY - 9);
assert_eq!(a - b, c);
§A > B, both are negative
In this case, we try to stick to normal arithmatics: (-9 - -10) = (-9 + 10) = +1. In this case, we can simply add the components of the duration together. For example, let A = (-1, NANOSECONDS_PER_CENTURY - 2), and B = (-1, NANOSECONDS_PER_CENTURY - 1). Respectively, A is two nanoseconds before Duration::ZERO and B is one nanosecond before Duration::ZERO. Then, A-B should be one nanoseconds before zero, i.e. (-1, NANOSECONDS_PER_CENTURY - 1). This is because we subtract “negative one nanosecond” from a “negative minus two nanoseconds”, which corresponds to adding the opposite, and the opposite of “negative one nanosecond” is “positive one nanosecond”.
use hifitime::{Duration, NANOSECONDS_PER_CENTURY};
let a = Duration::from_parts(-1, NANOSECONDS_PER_CENTURY - 9);
let b = Duration::from_parts(-1, NANOSECONDS_PER_CENTURY - 10);
let c = Duration::from_parts(0, 1);
assert_eq!(a - b, c);
§A < B, both are negative
Just like in the prior case, we try to stick to normal arithmatics: (-10 - -9) = (-10 + 9) = -1.
use hifitime::{Duration, NANOSECONDS_PER_CENTURY};
let a = Duration::from_parts(-1, NANOSECONDS_PER_CENTURY - 10);
let b = Duration::from_parts(-1, NANOSECONDS_PER_CENTURY - 9);
let c = Duration::from_parts(-1, NANOSECONDS_PER_CENTURY - 1);
assert_eq!(a - b, c);
§MIN is the minimum
One cannot subtract anything from the MIN.
use hifitime::Duration;
let one_ns = Duration::from_parts(0, 1);
assert_eq!(Duration::MIN - one_ns, Duration::MIN);
§impl SubAssign<Duration> for Epoch
impl SubAssign<Duration> for Epoch
§fn sub_assign(&mut self, duration: Duration)
fn sub_assign(&mut self, duration: Duration)
-=
operation. Read more§impl SubAssign<Unit> for Duration
impl SubAssign<Unit> for Duration
§fn sub_assign(&mut self, rhs: Unit)
fn sub_assign(&mut self, rhs: Unit)
-=
operation. Read more§impl SubAssign for Duration
impl SubAssign for Duration
§fn sub_assign(&mut self, rhs: Duration)
fn sub_assign(&mut self, rhs: Duration)
-=
operation. Read moreimpl Copy for Duration
impl Eq for Duration
Auto Trait Implementations§
impl Freeze for Duration
impl RefUnwindSafe for Duration
impl Send for Duration
impl Sync for Duration
impl Unpin for Duration
impl UnwindSafe for Duration
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)§impl<Q, K> Comparable<K> for Q
impl<Q, K> Comparable<K> for Q
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
Source§impl<T> FromDhall for Twhere
T: DeserializeOwned,
impl<T> FromDhall for Twhere
T: DeserializeOwned,
fn from_dhall(v: &Value) -> Result<T, Error>
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.