Struct MonteCarlo

Source
pub struct MonteCarlo<S: Interpolatable, Distr: Distribution<DispersedState<S>>>{
    pub seed: Option<u128>,
    pub random_state: Distr,
    pub scenario: String,
    pub nominal_state: S,
}
Expand description

A Monte Carlo framework, automatically running on all threads via a thread pool. This framework is targeted toward analysis of time-continuous variables. One caveat of the design is that the trajectory is used for post processing, not each individual state. This may prevent some event switching from being shown in GNC simulations.

Fields§

§seed: Option<u128>§random_state: Distr

Generator of states for the Monte Carlo run

§scenario: String

Name of this run, will be reflected in the progress bar and in the output structure

§nominal_state: S

Implementations§

Source§

impl<S: Interpolatable, Distr: Distribution<DispersedState<S>>> MonteCarlo<S, Distr>

Source

pub fn new( nominal_state: S, random_variable: Distr, scenario: String, seed: Option<u128>, ) -> Self

Examples found in repository?
examples/03_geo_analysis/stationkeeping.rs (lines 95-100)
28fn main() -> Result<(), Box<dyn Error>> {
29    pel::init();
30    // Set up the dynamics like in the orbit raise.
31    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
32    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
33
34    // Define the GEO orbit, and we're just going to maintain it very tightly.
35    let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
36    let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
37    println!("{orbit:x}");
38
39    let sc = Spacecraft::builder()
40        .orbit(orbit)
41        .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
42        .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
43        .thruster(Thruster {
44            // "NEXT-STEP" row in Table 2
45            isp_s: 4435.0,
46            thrust_N: 0.472,
47        })
48        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
49        .build();
50
51    // Set up the spacecraft dynamics like in the orbit raise example.
52
53    let prop_time = 30.0 * Unit::Day;
54
55    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
56    let objectives = &[
57        Objective::within_tolerance(StateParameter::SMA, 42_164.0, 5.0), // 5 km
58        Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
59        Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
60    ];
61
62    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2)?;
63    println!("{ruggiero_ctrl}");
64
65    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
66
67    let mut jgm3_meta = MetaFile {
68        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
69        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
70    };
71    jgm3_meta.process(true)?;
72
73    let harmonics = Harmonics::from_stor(
74        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
75        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true)?,
76    );
77    orbital_dyn.accel_models.push(harmonics);
78
79    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
80    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
81        .with_guidance_law(ruggiero_ctrl.clone());
82
83    println!("{sc_dynamics}");
84
85    // Finally, let's use the Monte Carlo framework built into Nyx to propagate spacecraft.
86
87    // Let's start by defining the dispersion.
88    // The MultivariateNormal structure allows us to define the dispersions in any of the orbital parameters, but these are applied directly in the Cartesian state space.
89    // Note that additional validation on the MVN is in progress -- https://github.com/nyx-space/nyx/issues/339.
90    let mc_rv = MvnSpacecraft::new(
91        sc,
92        vec![StateDispersion::zero_mean(StateParameter::SMA, 3.0)],
93    )?;
94
95    let my_mc = MonteCarlo::new(
96        sc, // Nominal state
97        mc_rv,
98        "03_geo_sk".to_string(), // Scenario name
99        None, // No specific seed specified, so one will be drawn from the computer's entropy.
100    );
101
102    // Build the propagator setup.
103    let setup = Propagator::rk89(
104        sc_dynamics.clone(),
105        IntegratorOptions::builder()
106            .min_step(10.0_f64.seconds())
107            .error_ctrl(ErrorControl::RSSCartesianStep)
108            .build(),
109    );
110
111    let num_runs = 25;
112    let rslts = my_mc.run_until_epoch(setup, almanac.clone(), sc.epoch() + prop_time, num_runs);
113
114    assert_eq!(rslts.runs.len(), num_runs);
115
116    // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
117
118    rslts.to_parquet(
119        "03_geo_sk.parquet",
120        Some(vec![
121            &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
122        ]),
123        ExportCfg::default(),
124        almanac,
125    )?;
126
127    Ok(())
128}
More examples
Hide additional examples
examples/02_jwst_covar_monte_carlo/main.rs (lines 133-138)
26fn main() -> Result<(), Box<dyn Error>> {
27    pel::init();
28    // Dynamics models require planetary constants and ephemerides to be defined.
29    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
31
32    // Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
33    // Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
34    let mut latest_jwst_ephem = MetaFile {
35        uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
36        crc32: None,
37    };
38    latest_jwst_ephem.process(true)?;
39
40    // Load this ephem in the general Almanac we're using for this analysis.
41    let almanac = Arc::new(
42        MetaAlmanac::latest()
43            .map_err(Box::new)?
44            .load_from_metafile(latest_jwst_ephem, true)?,
45    );
46
47    // By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
48    // in the BSP. We need this ID in order to query the ephemeris.
49    const JWST_NAIF_ID: i32 = -170;
50    // Let's build a frame in the J2000 orientation centered on the JWST.
51    const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);
52
53    // Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
54    let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
55    println!("JWST defined from {earliest_epoch} to {latest_epoch}");
56    // Fetch the state, printing it in the Earth J2000 frame.
57    let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
58    println!("{jwst_orbit:x}");
59
60    // Build the spacecraft
61    // SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
62    // SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
63    let jwst = Spacecraft::builder()
64        .orbit(jwst_orbit)
65        .srp(SRPData {
66            area_m2: 21.197 * 14.162,
67            coeff_reflectivity: 1.56,
68        })
69        .mass(Mass::from_dry_mass(6200.0))
70        .build();
71
72    // Build up the spacecraft uncertainty builder.
73    // We can use the spacecraft uncertainty structure to build this up.
74    // We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
75    // in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
76    // Nyx can also estimate the deviation of the spacecraft parameters.
77    let jwst_uncertainty = SpacecraftUncertainty::builder()
78        .nominal(jwst)
79        .frame(LocalFrame::RIC)
80        .x_km(0.5)
81        .y_km(0.3)
82        .z_km(1.5)
83        .vx_km_s(1e-4)
84        .vy_km_s(0.6e-3)
85        .vz_km_s(3e-3)
86        .build();
87
88    println!("{jwst_uncertainty}");
89
90    // Build the Kalman filter estimate.
91    // Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
92    // but this approach requires quite a bit more boilerplate code.
93    let jwst_estimate = jwst_uncertainty.to_estimate()?;
94
95    // Set up the spacecraft dynamics.
96    // We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
97    // We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.
98
99    let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
100    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102    // Finalize setting up the dynamics.
103    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
104
105    // Build the propagator set up to use for the whole analysis.
106    let setup = Propagator::default(dynamics);
107
108    // All of the analysis will use this duration.
109    let prediction_duration = 6.5 * Unit::Day;
110
111    // === Covariance mapping ===
112    // For the covariance mapping / prediction, we'll use the common orbit determination approach.
113    // This is done by setting up a spacecraft Kalman filter OD process, and predicting for the analysis duration.
114
115    // Build the propagation instance for the OD process.
116    let odp = SpacecraftKalmanOD::new(
117        setup.clone(),
118        KalmanVariant::DeviationTracking,
119        None,
120        BTreeMap::new(),
121        almanac.clone(),
122    );
123
124    // The prediction step is 1 minute by default, configured in the OD process, i.e. how often we want to know the covariance.
125    assert_eq!(odp.max_step, 1_i64.minutes());
126    // Finally, predict, and export the trajectory with covariance to a parquet file.
127    let od_sol = odp.predict_for(jwst_estimate, prediction_duration)?;
128    od_sol.to_parquet("./02_jwst_covar_map.parquet", ExportCfg::default())?;
129
130    // === Monte Carlo framework ===
131    // Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.
132
133    let my_mc = MonteCarlo::new(
134        jwst, // Nominal state
135        jwst_estimate.to_random_variable()?,
136        "02_jwst".to_string(), // Scenario name
137        None, // No specific seed specified, so one will be drawn from the computer's entropy.
138    );
139
140    let num_runs = 5_000;
141    let rslts = my_mc.run_until_epoch(
142        setup,
143        almanac.clone(),
144        jwst.epoch() + prediction_duration,
145        num_runs,
146    );
147
148    assert_eq!(rslts.runs.len(), num_runs);
149    // Finally, export these results, computing the eclipse percentage for all of these results.
150
151    // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
152    let eclipse_loc = EclipseLocator::cislunar(almanac.clone());
153    let umbra_event = eclipse_loc.to_umbra_event();
154    let penumbra_event = eclipse_loc.to_penumbra_event();
155
156    rslts.to_parquet(
157        "02_jwst_monte_carlo.parquet",
158        Some(vec![&umbra_event, &penumbra_event]),
159        ExportCfg::default(),
160        almanac,
161    )?;
162
163    Ok(())
164}
Source

pub fn run_until_nth_event<D, F>( self, prop: Propagator<D>, almanac: Arc<Almanac>, max_duration: Duration, event: &F, trigger: usize, num_runs: usize, ) -> Results<S, PropResult<S>>

Generate states and propagate each independently until a specific event is found trigger times.

Source

pub fn resume_run_until_nth_event<D, F>( &self, prop: Propagator<D>, almanac: Arc<Almanac>, skip: usize, max_duration: Duration, event: &F, trigger: usize, num_runs: usize, ) -> Results<S, PropResult<S>>

Generate states and propagate each independently until a specific event is found trigger times.

Source

pub fn run_until_epoch<D>( self, prop: Propagator<D>, almanac: Arc<Almanac>, end_epoch: Epoch, num_runs: usize, ) -> Results<S, PropResult<S>>

Generate states and propagate each independently until a specific event is found trigger times.

Examples found in repository?
examples/03_geo_analysis/stationkeeping.rs (line 112)
28fn main() -> Result<(), Box<dyn Error>> {
29    pel::init();
30    // Set up the dynamics like in the orbit raise.
31    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
32    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
33
34    // Define the GEO orbit, and we're just going to maintain it very tightly.
35    let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
36    let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
37    println!("{orbit:x}");
38
39    let sc = Spacecraft::builder()
40        .orbit(orbit)
41        .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
42        .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
43        .thruster(Thruster {
44            // "NEXT-STEP" row in Table 2
45            isp_s: 4435.0,
46            thrust_N: 0.472,
47        })
48        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
49        .build();
50
51    // Set up the spacecraft dynamics like in the orbit raise example.
52
53    let prop_time = 30.0 * Unit::Day;
54
55    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
56    let objectives = &[
57        Objective::within_tolerance(StateParameter::SMA, 42_164.0, 5.0), // 5 km
58        Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
59        Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
60    ];
61
62    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2)?;
63    println!("{ruggiero_ctrl}");
64
65    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
66
67    let mut jgm3_meta = MetaFile {
68        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
69        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
70    };
71    jgm3_meta.process(true)?;
72
73    let harmonics = Harmonics::from_stor(
74        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
75        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true)?,
76    );
77    orbital_dyn.accel_models.push(harmonics);
78
79    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
80    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
81        .with_guidance_law(ruggiero_ctrl.clone());
82
83    println!("{sc_dynamics}");
84
85    // Finally, let's use the Monte Carlo framework built into Nyx to propagate spacecraft.
86
87    // Let's start by defining the dispersion.
88    // The MultivariateNormal structure allows us to define the dispersions in any of the orbital parameters, but these are applied directly in the Cartesian state space.
89    // Note that additional validation on the MVN is in progress -- https://github.com/nyx-space/nyx/issues/339.
90    let mc_rv = MvnSpacecraft::new(
91        sc,
92        vec![StateDispersion::zero_mean(StateParameter::SMA, 3.0)],
93    )?;
94
95    let my_mc = MonteCarlo::new(
96        sc, // Nominal state
97        mc_rv,
98        "03_geo_sk".to_string(), // Scenario name
99        None, // No specific seed specified, so one will be drawn from the computer's entropy.
100    );
101
102    // Build the propagator setup.
103    let setup = Propagator::rk89(
104        sc_dynamics.clone(),
105        IntegratorOptions::builder()
106            .min_step(10.0_f64.seconds())
107            .error_ctrl(ErrorControl::RSSCartesianStep)
108            .build(),
109    );
110
111    let num_runs = 25;
112    let rslts = my_mc.run_until_epoch(setup, almanac.clone(), sc.epoch() + prop_time, num_runs);
113
114    assert_eq!(rslts.runs.len(), num_runs);
115
116    // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
117
118    rslts.to_parquet(
119        "03_geo_sk.parquet",
120        Some(vec![
121            &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
122        ]),
123        ExportCfg::default(),
124        almanac,
125    )?;
126
127    Ok(())
128}
More examples
Hide additional examples
examples/02_jwst_covar_monte_carlo/main.rs (lines 141-146)
26fn main() -> Result<(), Box<dyn Error>> {
27    pel::init();
28    // Dynamics models require planetary constants and ephemerides to be defined.
29    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
31
32    // Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
33    // Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
34    let mut latest_jwst_ephem = MetaFile {
35        uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
36        crc32: None,
37    };
38    latest_jwst_ephem.process(true)?;
39
40    // Load this ephem in the general Almanac we're using for this analysis.
41    let almanac = Arc::new(
42        MetaAlmanac::latest()
43            .map_err(Box::new)?
44            .load_from_metafile(latest_jwst_ephem, true)?,
45    );
46
47    // By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
48    // in the BSP. We need this ID in order to query the ephemeris.
49    const JWST_NAIF_ID: i32 = -170;
50    // Let's build a frame in the J2000 orientation centered on the JWST.
51    const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);
52
53    // Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
54    let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
55    println!("JWST defined from {earliest_epoch} to {latest_epoch}");
56    // Fetch the state, printing it in the Earth J2000 frame.
57    let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
58    println!("{jwst_orbit:x}");
59
60    // Build the spacecraft
61    // SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
62    // SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
63    let jwst = Spacecraft::builder()
64        .orbit(jwst_orbit)
65        .srp(SRPData {
66            area_m2: 21.197 * 14.162,
67            coeff_reflectivity: 1.56,
68        })
69        .mass(Mass::from_dry_mass(6200.0))
70        .build();
71
72    // Build up the spacecraft uncertainty builder.
73    // We can use the spacecraft uncertainty structure to build this up.
74    // We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
75    // in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
76    // Nyx can also estimate the deviation of the spacecraft parameters.
77    let jwst_uncertainty = SpacecraftUncertainty::builder()
78        .nominal(jwst)
79        .frame(LocalFrame::RIC)
80        .x_km(0.5)
81        .y_km(0.3)
82        .z_km(1.5)
83        .vx_km_s(1e-4)
84        .vy_km_s(0.6e-3)
85        .vz_km_s(3e-3)
86        .build();
87
88    println!("{jwst_uncertainty}");
89
90    // Build the Kalman filter estimate.
91    // Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
92    // but this approach requires quite a bit more boilerplate code.
93    let jwst_estimate = jwst_uncertainty.to_estimate()?;
94
95    // Set up the spacecraft dynamics.
96    // We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
97    // We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.
98
99    let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
100    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102    // Finalize setting up the dynamics.
103    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
104
105    // Build the propagator set up to use for the whole analysis.
106    let setup = Propagator::default(dynamics);
107
108    // All of the analysis will use this duration.
109    let prediction_duration = 6.5 * Unit::Day;
110
111    // === Covariance mapping ===
112    // For the covariance mapping / prediction, we'll use the common orbit determination approach.
113    // This is done by setting up a spacecraft Kalman filter OD process, and predicting for the analysis duration.
114
115    // Build the propagation instance for the OD process.
116    let odp = SpacecraftKalmanOD::new(
117        setup.clone(),
118        KalmanVariant::DeviationTracking,
119        None,
120        BTreeMap::new(),
121        almanac.clone(),
122    );
123
124    // The prediction step is 1 minute by default, configured in the OD process, i.e. how often we want to know the covariance.
125    assert_eq!(odp.max_step, 1_i64.minutes());
126    // Finally, predict, and export the trajectory with covariance to a parquet file.
127    let od_sol = odp.predict_for(jwst_estimate, prediction_duration)?;
128    od_sol.to_parquet("./02_jwst_covar_map.parquet", ExportCfg::default())?;
129
130    // === Monte Carlo framework ===
131    // Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.
132
133    let my_mc = MonteCarlo::new(
134        jwst, // Nominal state
135        jwst_estimate.to_random_variable()?,
136        "02_jwst".to_string(), // Scenario name
137        None, // No specific seed specified, so one will be drawn from the computer's entropy.
138    );
139
140    let num_runs = 5_000;
141    let rslts = my_mc.run_until_epoch(
142        setup,
143        almanac.clone(),
144        jwst.epoch() + prediction_duration,
145        num_runs,
146    );
147
148    assert_eq!(rslts.runs.len(), num_runs);
149    // Finally, export these results, computing the eclipse percentage for all of these results.
150
151    // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
152    let eclipse_loc = EclipseLocator::cislunar(almanac.clone());
153    let umbra_event = eclipse_loc.to_umbra_event();
154    let penumbra_event = eclipse_loc.to_penumbra_event();
155
156    rslts.to_parquet(
157        "02_jwst_monte_carlo.parquet",
158        Some(vec![&umbra_event, &penumbra_event]),
159        ExportCfg::default(),
160        almanac,
161    )?;
162
163    Ok(())
164}
Source

pub fn resume_run_until_epoch<D>( &self, prop: Propagator<D>, almanac: Arc<Almanac>, skip: usize, end_epoch: Epoch, num_runs: usize, ) -> Results<S, PropResult<S>>

Resumes a Monte Carlo run by skipping the first skip items, generating states only after that, and propagate each independently until the specified epoch.

Source

pub fn generate_states( &self, skip: usize, num_runs: usize, seed: Option<u128>, ) -> Vec<(usize, DispersedState<S>)>

Set up the seed and generate the states. This is useful for checking the generated states before running a large scale Monte Carlo.

Trait Implementations§

Source§

impl<S: Interpolatable, Distr: Distribution<DispersedState<S>>> Display for MonteCarlo<S, Distr>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<S: Interpolatable, Distr: Distribution<DispersedState<S>>> LowerHex for MonteCarlo<S, Distr>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Returns a filename friendly name

Auto Trait Implementations§

§

impl<S, Distr> Freeze for MonteCarlo<S, Distr>
where DefaultAllocator: Sized, Distr: Freeze, S: Freeze,

§

impl<S, Distr> RefUnwindSafe for MonteCarlo<S, Distr>

§

impl<S, Distr> Send for MonteCarlo<S, Distr>
where DefaultAllocator: Sized, Distr: Send,

§

impl<S, Distr> Sync for MonteCarlo<S, Distr>
where DefaultAllocator: Sized, Distr: Sync,

§

impl<S, Distr> Unpin for MonteCarlo<S, Distr>
where DefaultAllocator: Sized, Distr: Unpin, S: Unpin,

§

impl<S, Distr> UnwindSafe for MonteCarlo<S, Distr>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T> Allocation for T
where T: RefUnwindSafe + Send + Sync,

§

impl<T> ErasedDestructor for T
where T: 'static,

§

impl<T> MaybeSendSync for T