pub trait Estimate<T: State>where
Self: Clone + PartialEq + Sized + Display,
DefaultAllocator: Allocator<<T as State>::Size> + Allocator<<T as State>::Size, <T as State>::Size> + Allocator<<T as State>::VecLength>,{
Show 14 methods
// Required methods
fn zeros(state: T) -> Self;
fn state_deviation(&self) -> OVector<f64, <T as State>::Size>;
fn nominal_state(&self) -> T;
fn covar(&self) -> OMatrix<f64, <T as State>::Size, <T as State>::Size>;
fn predicted_covar(
&self,
) -> OMatrix<f64, <T as State>::Size, <T as State>::Size>;
fn set_state_deviation(
&mut self,
new_state: OVector<f64, <T as State>::Size>,
);
fn set_covar(
&mut self,
new_covar: OMatrix<f64, <T as State>::Size, <T as State>::Size>,
);
fn predicted(&self) -> bool;
fn stm(&self) -> &OMatrix<f64, <T as State>::Size, <T as State>::Size>;
// Provided methods
fn epoch(&self) -> Epoch { ... }
fn set_epoch(&mut self, dt: Epoch) { ... }
fn state(&self) -> T { ... }
fn within_sigma(&self, sigma: f64) -> bool { ... }
fn within_3sigma(&self) -> bool { ... }
}
Expand description
Stores an Estimate, as the result of a time_update
or measurement_update
.
Required Methods§
Sourcefn zeros(state: T) -> Self
fn zeros(state: T) -> Self
An empty estimate. This is useful if wanting to store an estimate outside the scope of a filtering loop.
Sourcefn state_deviation(&self) -> OVector<f64, <T as State>::Size>
fn state_deviation(&self) -> OVector<f64, <T as State>::Size>
The state deviation as computed by the filter.
Sourcefn nominal_state(&self) -> T
fn nominal_state(&self) -> T
The nominal state as reported by the filter dynamics
Sourcefn covar(&self) -> OMatrix<f64, <T as State>::Size, <T as State>::Size>
fn covar(&self) -> OMatrix<f64, <T as State>::Size, <T as State>::Size>
The Covariance of this estimate. Will return the predicted covariance if this is a time update/prediction.
Sourcefn predicted_covar(
&self,
) -> OMatrix<f64, <T as State>::Size, <T as State>::Size>
fn predicted_covar( &self, ) -> OMatrix<f64, <T as State>::Size, <T as State>::Size>
The predicted covariance of this estimate from the time update
Sourcefn set_state_deviation(&mut self, new_state: OVector<f64, <T as State>::Size>)
fn set_state_deviation(&mut self, new_state: OVector<f64, <T as State>::Size>)
Sets the state deviation.
Sourcefn set_covar(
&mut self,
new_covar: OMatrix<f64, <T as State>::Size, <T as State>::Size>,
)
fn set_covar( &mut self, new_covar: OMatrix<f64, <T as State>::Size, <T as State>::Size>, )
Sets the Covariance of this estimate
Provided Methods§
Sourcefn epoch(&self) -> Epoch
fn epoch(&self) -> Epoch
Epoch of this Estimate
Examples found in repository?
33fn main() -> Result<(), Box<dyn Error>> {
34 pel::init();
35
36 // ====================== //
37 // === ALMANAC SET UP === //
38 // ====================== //
39
40 // Dynamics models require planetary constants and ephemerides to be defined.
41 // Let's start by grabbing those by using ANISE's MetaAlmanac.
42
43 let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
44 .iter()
45 .collect();
46
47 let meta = data_folder.join("lro-dynamics.dhall");
48
49 // Load this ephem in the general Almanac we're using for this analysis.
50 let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
51 .map_err(Box::new)?
52 .process(true)
53 .map_err(Box::new)?;
54
55 let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
56 moon_pc.mu_km3_s2 = 4902.74987;
57 almanac.planetary_data.set_by_id(MOON, moon_pc)?;
58
59 let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
60 earth_pc.mu_km3_s2 = 398600.436;
61 almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
62
63 // Save this new kernel for reuse.
64 // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
65 almanac
66 .planetary_data
67 .save_as(&data_folder.join("lro-specific.pca"), true)?;
68
69 // Lock the almanac (an Arc is a read only structure).
70 let almanac = Arc::new(almanac);
71
72 // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
73 // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
74 // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
75 // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
76 let lro_frame = Frame::from_ephem_j2000(-85);
77
78 // To build the trajectory we need to provide a spacecraft template.
79 let sc_template = Spacecraft::builder()
80 .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
81 .srp(SRPData {
82 // SRP configuration is arbitrary, but we will be estimating it anyway.
83 area_m2: 3.9 * 2.7,
84 coeff_reflectivity: 0.96,
85 })
86 .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
87 .build();
88 // Now we can build the trajectory from the BSP file.
89 // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
90 let traj_as_flown = Traj::from_bsp(
91 lro_frame,
92 MOON_J2000,
93 almanac.clone(),
94 sc_template,
95 5.seconds(),
96 Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
97 Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
98 Aberration::LT,
99 Some("LRO".to_string()),
100 )?;
101
102 println!("{traj_as_flown}");
103
104 // ====================== //
105 // === MODEL MATCHING === //
106 // ====================== //
107
108 // Set up the spacecraft dynamics.
109
110 // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
111 // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
112 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
113
114 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
115 // We're using the GRAIL JGGRX model.
116 let mut jggrx_meta = MetaFile {
117 uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
118 crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
119 };
120 // And let's download it if we don't have it yet.
121 jggrx_meta.process(true)?;
122
123 // Build the spherical harmonics.
124 // The harmonics must be computed in the body fixed frame.
125 // We're using the long term prediction of the Moon principal axes frame.
126 let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
127 let sph_harmonics = Harmonics::from_stor(
128 almanac.frame_from_uid(moon_pa_frame)?,
129 HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
130 );
131
132 // Include the spherical harmonics into the orbital dynamics.
133 orbital_dyn.accel_models.push(sph_harmonics);
134
135 // We define the solar radiation pressure, using the default solar flux and accounting only
136 // for the eclipsing caused by the Earth and Moon.
137 // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
138 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
139
140 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
141 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
142 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
143
144 println!("{dynamics}");
145
146 // Now we can build the propagator.
147 let setup = Propagator::default_dp78(dynamics.clone());
148
149 // For reference, let's build the trajectory with Nyx's models from that LRO state.
150 let (sim_final, traj_as_sim) = setup
151 .with(*traj_as_flown.first(), almanac.clone())
152 .until_epoch_with_traj(traj_as_flown.last().epoch())?;
153
154 println!("SIM INIT: {:x}", traj_as_flown.first());
155 println!("SIM FINAL: {sim_final:x}");
156 // Compute RIC difference between SIM and LRO ephem
157 let sim_lro_delta = sim_final
158 .orbit
159 .ric_difference(&traj_as_flown.last().orbit)?;
160 println!("{traj_as_sim}");
161 println!(
162 "SIM v LRO - RIC Position (m): {:.3}",
163 sim_lro_delta.radius_km * 1e3
164 );
165 println!(
166 "SIM v LRO - RIC Velocity (m/s): {:.3}",
167 sim_lro_delta.velocity_km_s * 1e3
168 );
169
170 traj_as_sim.ric_diff_to_parquet(
171 &traj_as_flown,
172 "./04_lro_sim_truth_error.parquet",
173 ExportCfg::default(),
174 )?;
175
176 // ==================== //
177 // === OD SIMULATOR === //
178 // ==================== //
179
180 // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
181 // and the truth LRO state.
182
183 // Therefore, we will actually run an estimation from a dispersed LRO state.
184 // The sc_seed is the true LRO state from the BSP.
185 let sc_seed = *traj_as_flown.first();
186
187 // Load the Deep Space Network ground stations.
188 // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
189 let ground_station_file: PathBuf = [
190 env!("CARGO_MANIFEST_DIR"),
191 "examples",
192 "04_lro_od",
193 "dsn-network.yaml",
194 ]
195 .iter()
196 .collect();
197
198 let devices = GroundStation::load_named(ground_station_file)?;
199
200 // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
201 // Nyx can build a tracking schedule for you based on the first station with access.
202 let trkconfg_yaml: PathBuf = [
203 env!("CARGO_MANIFEST_DIR"),
204 "examples",
205 "04_lro_od",
206 "tracking-cfg.yaml",
207 ]
208 .iter()
209 .collect();
210
211 let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
212
213 // Build the tracking arc simulation to generate a "standard measurement".
214 let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::new(
215 devices.clone(),
216 traj_as_flown.clone(),
217 configs,
218 )?;
219
220 trk.build_schedule(almanac.clone())?;
221 let arc = trk.generate_measurements(almanac.clone())?;
222 // Save the simulated tracking data
223 arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
224
225 // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
226 println!("{arc}");
227
228 // Now that we have simulated measurements, we'll run the orbit determination.
229
230 // ===================== //
231 // === OD ESTIMATION === //
232 // ===================== //
233
234 let sc = SpacecraftUncertainty::builder()
235 .nominal(sc_seed)
236 .frame(LocalFrame::RIC)
237 .x_km(0.5)
238 .y_km(0.5)
239 .z_km(0.5)
240 .vx_km_s(5e-3)
241 .vy_km_s(5e-3)
242 .vz_km_s(5e-3)
243 .build();
244
245 // Build the filter initial estimate, which we will reuse in the filter.
246 let initial_estimate = sc.to_estimate()?;
247
248 println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
249
250 let kf = KF::new(
251 // Increase the initial covariance to account for larger deviation.
252 initial_estimate,
253 // Until https://github.com/nyx-space/nyx/issues/351, we need to specify the SNC in the acceleration of the Moon J2000 frame.
254 SNC3::from_diagonal(10 * Unit::Minute, &[1e-12, 1e-12, 1e-12]),
255 );
256
257 // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
258 let mut odp = SpacecraftODProcess::ckf(
259 setup.with(initial_estimate.state().with_stm(), almanac.clone()),
260 kf,
261 devices,
262 Some(ResidRejectCrit::default()),
263 almanac.clone(),
264 );
265
266 odp.process_arc(&arc)?;
267
268 let ric_err = traj_as_flown
269 .at(odp.estimates.last().unwrap().epoch())?
270 .orbit
271 .ric_difference(&odp.estimates.last().unwrap().orbital_state())?;
272 println!("== RIC at end ==");
273 println!("RIC Position (m): {}", ric_err.radius_km * 1e3);
274 println!("RIC Velocity (m/s): {}", ric_err.velocity_km_s * 1e3);
275
276 odp.to_parquet(&arc, "./04_lro_od_results.parquet", ExportCfg::default())?;
277
278 // In our case, we have the truth trajectory from NASA.
279 // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
280 // Export the OD trajectory first.
281 let od_trajectory = odp.to_traj()?;
282 // Build the RIC difference.
283 od_trajectory.ric_diff_to_parquet(
284 &traj_as_flown,
285 "./04_lro_od_truth_error.parquet",
286 ExportCfg::default(),
287 )?;
288
289 Ok(())
290}
fn set_epoch(&mut self, dt: Epoch)
Sourcefn state(&self) -> T
fn state(&self) -> T
The estimated state
Examples found in repository?
33fn main() -> Result<(), Box<dyn Error>> {
34 pel::init();
35
36 // ====================== //
37 // === ALMANAC SET UP === //
38 // ====================== //
39
40 // Dynamics models require planetary constants and ephemerides to be defined.
41 // Let's start by grabbing those by using ANISE's MetaAlmanac.
42
43 let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
44 .iter()
45 .collect();
46
47 let meta = data_folder.join("lro-dynamics.dhall");
48
49 // Load this ephem in the general Almanac we're using for this analysis.
50 let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
51 .map_err(Box::new)?
52 .process(true)
53 .map_err(Box::new)?;
54
55 let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
56 moon_pc.mu_km3_s2 = 4902.74987;
57 almanac.planetary_data.set_by_id(MOON, moon_pc)?;
58
59 let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
60 earth_pc.mu_km3_s2 = 398600.436;
61 almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
62
63 // Save this new kernel for reuse.
64 // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
65 almanac
66 .planetary_data
67 .save_as(&data_folder.join("lro-specific.pca"), true)?;
68
69 // Lock the almanac (an Arc is a read only structure).
70 let almanac = Arc::new(almanac);
71
72 // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
73 // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
74 // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
75 // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
76 let lro_frame = Frame::from_ephem_j2000(-85);
77
78 // To build the trajectory we need to provide a spacecraft template.
79 let sc_template = Spacecraft::builder()
80 .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
81 .srp(SRPData {
82 // SRP configuration is arbitrary, but we will be estimating it anyway.
83 area_m2: 3.9 * 2.7,
84 coeff_reflectivity: 0.96,
85 })
86 .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
87 .build();
88 // Now we can build the trajectory from the BSP file.
89 // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
90 let traj_as_flown = Traj::from_bsp(
91 lro_frame,
92 MOON_J2000,
93 almanac.clone(),
94 sc_template,
95 5.seconds(),
96 Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
97 Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
98 Aberration::LT,
99 Some("LRO".to_string()),
100 )?;
101
102 println!("{traj_as_flown}");
103
104 // ====================== //
105 // === MODEL MATCHING === //
106 // ====================== //
107
108 // Set up the spacecraft dynamics.
109
110 // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
111 // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
112 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
113
114 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
115 // We're using the GRAIL JGGRX model.
116 let mut jggrx_meta = MetaFile {
117 uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
118 crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
119 };
120 // And let's download it if we don't have it yet.
121 jggrx_meta.process(true)?;
122
123 // Build the spherical harmonics.
124 // The harmonics must be computed in the body fixed frame.
125 // We're using the long term prediction of the Moon principal axes frame.
126 let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
127 let sph_harmonics = Harmonics::from_stor(
128 almanac.frame_from_uid(moon_pa_frame)?,
129 HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
130 );
131
132 // Include the spherical harmonics into the orbital dynamics.
133 orbital_dyn.accel_models.push(sph_harmonics);
134
135 // We define the solar radiation pressure, using the default solar flux and accounting only
136 // for the eclipsing caused by the Earth and Moon.
137 // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
138 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
139
140 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
141 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
142 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
143
144 println!("{dynamics}");
145
146 // Now we can build the propagator.
147 let setup = Propagator::default_dp78(dynamics.clone());
148
149 // For reference, let's build the trajectory with Nyx's models from that LRO state.
150 let (sim_final, traj_as_sim) = setup
151 .with(*traj_as_flown.first(), almanac.clone())
152 .until_epoch_with_traj(traj_as_flown.last().epoch())?;
153
154 println!("SIM INIT: {:x}", traj_as_flown.first());
155 println!("SIM FINAL: {sim_final:x}");
156 // Compute RIC difference between SIM and LRO ephem
157 let sim_lro_delta = sim_final
158 .orbit
159 .ric_difference(&traj_as_flown.last().orbit)?;
160 println!("{traj_as_sim}");
161 println!(
162 "SIM v LRO - RIC Position (m): {:.3}",
163 sim_lro_delta.radius_km * 1e3
164 );
165 println!(
166 "SIM v LRO - RIC Velocity (m/s): {:.3}",
167 sim_lro_delta.velocity_km_s * 1e3
168 );
169
170 traj_as_sim.ric_diff_to_parquet(
171 &traj_as_flown,
172 "./04_lro_sim_truth_error.parquet",
173 ExportCfg::default(),
174 )?;
175
176 // ==================== //
177 // === OD SIMULATOR === //
178 // ==================== //
179
180 // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
181 // and the truth LRO state.
182
183 // Therefore, we will actually run an estimation from a dispersed LRO state.
184 // The sc_seed is the true LRO state from the BSP.
185 let sc_seed = *traj_as_flown.first();
186
187 // Load the Deep Space Network ground stations.
188 // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
189 let ground_station_file: PathBuf = [
190 env!("CARGO_MANIFEST_DIR"),
191 "examples",
192 "04_lro_od",
193 "dsn-network.yaml",
194 ]
195 .iter()
196 .collect();
197
198 let devices = GroundStation::load_named(ground_station_file)?;
199
200 // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
201 // Nyx can build a tracking schedule for you based on the first station with access.
202 let trkconfg_yaml: PathBuf = [
203 env!("CARGO_MANIFEST_DIR"),
204 "examples",
205 "04_lro_od",
206 "tracking-cfg.yaml",
207 ]
208 .iter()
209 .collect();
210
211 let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
212
213 // Build the tracking arc simulation to generate a "standard measurement".
214 let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::new(
215 devices.clone(),
216 traj_as_flown.clone(),
217 configs,
218 )?;
219
220 trk.build_schedule(almanac.clone())?;
221 let arc = trk.generate_measurements(almanac.clone())?;
222 // Save the simulated tracking data
223 arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
224
225 // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
226 println!("{arc}");
227
228 // Now that we have simulated measurements, we'll run the orbit determination.
229
230 // ===================== //
231 // === OD ESTIMATION === //
232 // ===================== //
233
234 let sc = SpacecraftUncertainty::builder()
235 .nominal(sc_seed)
236 .frame(LocalFrame::RIC)
237 .x_km(0.5)
238 .y_km(0.5)
239 .z_km(0.5)
240 .vx_km_s(5e-3)
241 .vy_km_s(5e-3)
242 .vz_km_s(5e-3)
243 .build();
244
245 // Build the filter initial estimate, which we will reuse in the filter.
246 let initial_estimate = sc.to_estimate()?;
247
248 println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
249
250 let kf = KF::new(
251 // Increase the initial covariance to account for larger deviation.
252 initial_estimate,
253 // Until https://github.com/nyx-space/nyx/issues/351, we need to specify the SNC in the acceleration of the Moon J2000 frame.
254 SNC3::from_diagonal(10 * Unit::Minute, &[1e-12, 1e-12, 1e-12]),
255 );
256
257 // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
258 let mut odp = SpacecraftODProcess::ckf(
259 setup.with(initial_estimate.state().with_stm(), almanac.clone()),
260 kf,
261 devices,
262 Some(ResidRejectCrit::default()),
263 almanac.clone(),
264 );
265
266 odp.process_arc(&arc)?;
267
268 let ric_err = traj_as_flown
269 .at(odp.estimates.last().unwrap().epoch())?
270 .orbit
271 .ric_difference(&odp.estimates.last().unwrap().orbital_state())?;
272 println!("== RIC at end ==");
273 println!("RIC Position (m): {}", ric_err.radius_km * 1e3);
274 println!("RIC Velocity (m/s): {}", ric_err.velocity_km_s * 1e3);
275
276 odp.to_parquet(&arc, "./04_lro_od_results.parquet", ExportCfg::default())?;
277
278 // In our case, we have the truth trajectory from NASA.
279 // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
280 // Export the OD trajectory first.
281 let od_trajectory = odp.to_traj()?;
282 // Build the RIC difference.
283 od_trajectory.ric_diff_to_parquet(
284 &traj_as_flown,
285 "./04_lro_od_truth_error.parquet",
286 ExportCfg::default(),
287 )?;
288
289 Ok(())
290}
Sourcefn within_sigma(&self, sigma: f64) -> bool
fn within_sigma(&self, sigma: f64) -> bool
Returns whether this estimate is within some bound The 68-95-99.7 rule is a good way to assess whether the filter is operating normally
Sourcefn within_3sigma(&self) -> bool
fn within_3sigma(&self) -> bool
Returns whether this estimate is within 3 sigma, which represent 99.7% for a Normal distribution
Dyn Compatibility§
This trait is not dyn compatible.
In older versions of Rust, dyn compatibility was called "object safety", so this trait is not object safe.