pub struct GaussMarkov {
pub tau: Duration,
pub process_noise: f64,
pub constant: Option<f64>,
pub prev_epoch: Option<Epoch>,
pub init_sample: Option<f64>,
}
Expand description
A first order Gauss-Markov process for modeling biases as described in section 5.2.4 of the NASA Best Practices for Navigation Filters (D’Souza et al.).
The process is defined by the following stochastic differential equation:
\dot{b(t)} = -1/τ * b(t) + w(t)
Programmatically, it’s calculated by sampling from b(t) ~ 𝓝(0, p_b(t)), where
p_b(t) = exp((-2 / τ) * (t - t_0)) * p_b(t_0) + s(t - t_0)
s(t - t_0) = ((q * τ) / 2) * (1 - exp((-2 / τ) * (t - t_0)))
Fields§
§tau: Duration
The time constant, tau gives the correlation time, or the time over which the intensity of the time correlation will fade to 1/e of its prior value. (This is sometimes incorrectly referred to as the “half-life” of the process.)
process_noise: f64
§constant: Option<f64>
An optional constant offset on top of the noise, defaults to zero.
prev_epoch: Option<Epoch>
Epoch of the previous realization, used to compute the time delta for the process noise.
init_sample: Option<f64>
Sample of previous realization
Implementations§
Source§impl GaussMarkov
impl GaussMarkov
Sourcepub fn new(tau: Duration, process_noise: f64) -> Result<Self, ConfigError>
pub fn new(tau: Duration, process_noise: f64) -> Result<Self, ConfigError>
Create a new first order Gauss-Markov process.
§Arguments
tau
- The time constant, tau gives the correlation time, or the time over which the intensity of the time correlation will fade to 1/e of its prior value.process_noise
- process noise of the system.
Sourcepub fn default_range_km() -> Self
pub fn default_range_km() -> Self
Default Gauss Markov noise of the Deep Space Network, as per DESCANSO Chapter 3, Table 3-3. Used the range value of 60 cm over a 60 second average.
Sourcepub fn default_doppler_km_s() -> Self
pub fn default_doppler_km_s() -> Self
Default Gauss Markov noise of the Deep Space Network, as per DESCANSO Chapter 3, Table 3-3. Used the Doppler value of 0.03 mm/s over a 60 second average.
Trait Implementations§
Source§impl Clone for GaussMarkov
impl Clone for GaussMarkov
Source§fn clone(&self) -> GaussMarkov
fn clone(&self) -> GaussMarkov
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl ConfigRepr for GaussMarkov
impl ConfigRepr for GaussMarkov
Source§fn load<P>(path: P) -> Result<Self, ConfigError>
fn load<P>(path: P) -> Result<Self, ConfigError>
Source§fn load_many<P>(path: P) -> Result<Vec<Self>, ConfigError>
fn load_many<P>(path: P) -> Result<Vec<Self>, ConfigError>
Source§fn load_named<P>(path: P) -> Result<BTreeMap<String, Self>, ConfigError>
fn load_named<P>(path: P) -> Result<BTreeMap<String, Self>, ConfigError>
Source§fn loads_many(data: &str) -> Result<Vec<Self>, ConfigError>
fn loads_many(data: &str) -> Result<Vec<Self>, ConfigError>
Source§fn loads_named(data: &str) -> Result<BTreeMap<String, Self>, ConfigError>
fn loads_named(data: &str) -> Result<BTreeMap<String, Self>, ConfigError>
Source§impl Debug for GaussMarkov
impl Debug for GaussMarkov
Source§impl<'de> Deserialize<'de> for GaussMarkov
impl<'de> Deserialize<'de> for GaussMarkov
Source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
Source§impl Display for GaussMarkov
impl Display for GaussMarkov
Source§impl Mul<f64> for GaussMarkov
impl Mul<f64> for GaussMarkov
Source§impl MulAssign<f64> for GaussMarkov
impl MulAssign<f64> for GaussMarkov
Source§fn mul_assign(&mut self, rhs: f64)
fn mul_assign(&mut self, rhs: f64)
*=
operation. Read moreSource§impl PartialEq for GaussMarkov
impl PartialEq for GaussMarkov
Source§impl Serialize for GaussMarkov
impl Serialize for GaussMarkov
Source§impl Stochastics for GaussMarkov
impl Stochastics for GaussMarkov
impl Copy for GaussMarkov
impl StructuralPartialEq for GaussMarkov
Auto Trait Implementations§
impl Freeze for GaussMarkov
impl RefUnwindSafe for GaussMarkov
impl Send for GaussMarkov
impl Sync for GaussMarkov
impl Unpin for GaussMarkov
impl UnwindSafe for GaussMarkov
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
Source§impl<T> FromDhall for Twhere
T: DeserializeOwned,
impl<T> FromDhall for Twhere
T: DeserializeOwned,
fn from_dhall(v: &Value) -> Result<T, Error>
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.