StochasticNoise

Struct StochasticNoise 

Source
pub struct StochasticNoise {
    pub white_noise: Option<WhiteNoise>,
    pub bias: Option<GaussMarkov>,
}
Expand description

Stochastic noise modeling used primarily for synthetic orbit determination measurements.

This implementation distinguishes between the white noise model and the bias model. It also includes a constant offset.

Fields§

§white_noise: Option<WhiteNoise>§bias: Option<GaussMarkov>

Implementations§

Source§

impl StochasticNoise

Source

pub fn from_hardware_range_km( allan_deviation: f64, integration_time: Duration, chip_rate: ChipRate, s_n0: SN0, ) -> Self

Constructs a high precision zero-mean range noise model (accounting for clock error and thermal error) from the Allan deviation of the clock, integration time, chip rate (depends on the ranging code), and signal-power-to-noise-density ratio (S/N₀).

NOTE: The Allan Deviation should be provided given the integration time. For example, if the integration time is one second, the Allan Deviation should be the deviation over one second.

IMPORTANT: These do NOT include atmospheric noises, which add up to ~10 cm one-sigma.

Examples found in repository?
examples/05_cislunar_spacecraft_link_od/main.rs (lines 130-135)
34fn main() -> Result<(), Box<dyn Error>> {
35    pel::init();
36
37    // ====================== //
38    // === ALMANAC SET UP === //
39    // ====================== //
40
41    let manifest_dir =
42        PathBuf::from(std::env::var("CARGO_MANIFEST_DIR").unwrap_or(".".to_string()));
43
44    let out = manifest_dir.join("data/04_output/");
45
46    let almanac = Arc::new(
47        Almanac::new(
48            &manifest_dir
49                .join("data/01_planetary/pck08.pca")
50                .to_string_lossy(),
51        )
52        .unwrap()
53        .load(
54            &manifest_dir
55                .join("data/01_planetary/de440s.bsp")
56                .to_string_lossy(),
57        )
58        .unwrap(),
59    );
60
61    let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
62    let moon_iau = almanac.frame_from_uid(IAU_MOON_FRAME).unwrap();
63
64    let epoch = Epoch::from_gregorian_tai(2021, 5, 29, 19, 51, 16, 852_000);
65    let nrho = Orbit::cartesian(
66        166_473.631_302_239_7,
67        -274_715.487_253_382_7,
68        -211_233.210_176_686_7,
69        0.933_451_604_520_018_4,
70        0.436_775_046_841_900_9,
71        -0.082_211_021_250_348_95,
72        epoch,
73        eme2k,
74    );
75
76    let tx_nrho_sc = Spacecraft::from(nrho);
77
78    let state_luna = almanac.transform_to(nrho, MOON_J2000, None).unwrap();
79    println!("Start state (dynamics: Earth, Moon, Sun gravity):\n{state_luna}");
80
81    let bodies = vec![EARTH, SUN];
82    let dynamics = SpacecraftDynamics::new(OrbitalDynamics::point_masses(bodies));
83
84    let setup = Propagator::rk89(
85        dynamics,
86        IntegratorOptions::builder().max_step(0.5.minutes()).build(),
87    );
88
89    /* == Propagate the NRHO vehicle == */
90    let prop_time = 1.1 * state_luna.period().unwrap();
91
92    let (nrho_final, mut tx_traj) = setup
93        .with(tx_nrho_sc, almanac.clone())
94        .for_duration_with_traj(prop_time)
95        .unwrap();
96
97    tx_traj.name = Some("NRHO Tx SC".to_string());
98
99    println!("{tx_traj}");
100
101    /* == Propagate an LLO vehicle == */
102    let llo_orbit =
103        Orbit::try_keplerian_altitude(110.0, 1e-4, 90.0, 0.0, 0.0, 0.0, epoch, moon_iau).unwrap();
104
105    let llo_sc = Spacecraft::builder().orbit(llo_orbit).build();
106
107    let (_, llo_traj) = setup
108        .with(llo_sc, almanac.clone())
109        .until_epoch_with_traj(nrho_final.epoch())
110        .unwrap();
111
112    // Export the subset of the first two hours.
113    llo_traj
114        .clone()
115        .filter_by_offset(..2.hours())
116        .to_parquet_simple(out.join("05_caps_llo_truth.pq"), almanac.clone())?;
117
118    /* == Setup the interlink == */
119
120    let mut measurement_types = IndexSet::new();
121    measurement_types.insert(MeasurementType::Range);
122    measurement_types.insert(MeasurementType::Doppler);
123
124    let mut stochastics = IndexMap::new();
125
126    let sa45_csac_allan_dev = 1e-11;
127
128    stochastics.insert(
129        MeasurementType::Range,
130        StochasticNoise::from_hardware_range_km(
131            sa45_csac_allan_dev,
132            10.0.seconds(),
133            link_specific::ChipRate::StandardT4B,
134            link_specific::SN0::Average,
135        ),
136    );
137
138    stochastics.insert(
139        MeasurementType::Doppler,
140        StochasticNoise::from_hardware_doppler_km_s(
141            sa45_csac_allan_dev,
142            10.0.seconds(),
143            link_specific::CarrierFreq::SBand,
144            link_specific::CN0::Average,
145        ),
146    );
147
148    let interlink = InterlinkTxSpacecraft {
149        traj: tx_traj,
150        measurement_types,
151        integration_time: None,
152        timestamp_noise_s: None,
153        ab_corr: Aberration::LT,
154        stochastic_noises: Some(stochastics),
155    };
156
157    // Devices are the transmitter, which is our NRHO vehicle.
158    let mut devices = BTreeMap::new();
159    devices.insert("NRHO Tx SC".to_string(), interlink);
160
161    let mut configs = BTreeMap::new();
162    configs.insert(
163        "NRHO Tx SC".to_string(),
164        TrkConfig::builder()
165            .strands(vec![Strand {
166                start: epoch,
167                end: nrho_final.epoch(),
168            }])
169            .build(),
170    );
171
172    let mut trk_sim =
173        TrackingArcSim::with_seed(devices.clone(), llo_traj.clone(), configs, 0).unwrap();
174    println!("{trk_sim}");
175
176    let trk_data = trk_sim.generate_measurements(almanac.clone()).unwrap();
177    println!("{trk_data}");
178
179    trk_data
180        .to_parquet_simple(out.clone().join("nrho_interlink_msr.pq"))
181        .unwrap();
182
183    // Run a truth OD where we estimate the LLO position
184    let llo_uncertainty = SpacecraftUncertainty::builder()
185        .nominal(llo_sc)
186        .x_km(1.0)
187        .y_km(1.0)
188        .z_km(1.0)
189        .vx_km_s(1e-3)
190        .vy_km_s(1e-3)
191        .vz_km_s(1e-3)
192        .build();
193
194    let mut proc_devices = devices.clone();
195
196    // Define the initial estimate, randomized, seed for reproducibility
197    let mut initial_estimate = llo_uncertainty.to_estimate_randomized(Some(0)).unwrap();
198    // Inflate the covariance -- https://github.com/nyx-space/nyx/issues/339
199    initial_estimate.covar *= 2.5;
200
201    // Increase the noise in the devices to accept more measurements.
202
203    for link in proc_devices.values_mut() {
204        for noise in &mut link.stochastic_noises.as_mut().unwrap().values_mut() {
205            *noise.white_noise.as_mut().unwrap() *= 3.0;
206        }
207    }
208
209    let init_err = initial_estimate
210        .orbital_state()
211        .ric_difference(&llo_orbit)
212        .unwrap();
213
214    println!("initial estimate:\n{initial_estimate}");
215    println!("RIC errors = {init_err}",);
216
217    let odp = InterlinkKalmanOD::new(
218        setup.clone(),
219        KalmanVariant::ReferenceUpdate,
220        Some(ResidRejectCrit::default()),
221        proc_devices,
222        almanac.clone(),
223    );
224
225    // Shrink the data to process.
226    let arc = trk_data.filter_by_offset(..2.hours());
227
228    let od_sol = odp.process_arc(initial_estimate, &arc).unwrap();
229
230    println!("{od_sol}");
231
232    od_sol
233        .to_parquet(
234            out.join(format!("05_caps_interlink_od_sol.pq")),
235            ExportCfg::default(),
236        )
237        .unwrap();
238
239    let od_traj = od_sol.to_traj().unwrap();
240
241    od_traj
242        .ric_diff_to_parquet(
243            &llo_traj,
244            out.join(format!("05_caps_interlink_llo_est_error.pq")),
245            ExportCfg::default(),
246        )
247        .unwrap();
248
249    let final_est = od_sol.estimates.last().unwrap();
250    assert!(final_est.within_3sigma(), "should be within 3 sigma");
251
252    println!("ESTIMATE\n{final_est:x}\n");
253    let truth = llo_traj.at(final_est.epoch()).unwrap();
254    println!("TRUTH\n{truth:x}");
255
256    let final_err = truth
257        .orbit
258        .ric_difference(&final_est.orbital_state())
259        .unwrap();
260    println!("ERROR {final_err}");
261
262    // Build the residuals versus reference plot.
263    let rvr_sol = odp
264        .process_arc(initial_estimate, &arc.resid_vs_ref_check())
265        .unwrap();
266
267    rvr_sol
268        .to_parquet(
269            out.join(format!("05_caps_interlink_resid_v_ref.pq")),
270            ExportCfg::default(),
271        )
272        .unwrap();
273
274    let final_rvr = rvr_sol.estimates.last().unwrap();
275
276    println!("RMAG error {:.3} m", final_err.rmag_km() * 1e3);
277    println!(
278        "Pure prop error {:.3} m",
279        final_rvr
280            .orbital_state()
281            .ric_difference(&final_est.orbital_state())
282            .unwrap()
283            .rmag_km()
284            * 1e3
285    );
286
287    Ok(())
288}
Source

pub fn from_hardware_doppler_km_s( allan_deviation: f64, integration_time: Duration, carrier: CarrierFreq, c_n0: CN0, ) -> Self

Examples found in repository?
examples/05_cislunar_spacecraft_link_od/main.rs (lines 140-145)
34fn main() -> Result<(), Box<dyn Error>> {
35    pel::init();
36
37    // ====================== //
38    // === ALMANAC SET UP === //
39    // ====================== //
40
41    let manifest_dir =
42        PathBuf::from(std::env::var("CARGO_MANIFEST_DIR").unwrap_or(".".to_string()));
43
44    let out = manifest_dir.join("data/04_output/");
45
46    let almanac = Arc::new(
47        Almanac::new(
48            &manifest_dir
49                .join("data/01_planetary/pck08.pca")
50                .to_string_lossy(),
51        )
52        .unwrap()
53        .load(
54            &manifest_dir
55                .join("data/01_planetary/de440s.bsp")
56                .to_string_lossy(),
57        )
58        .unwrap(),
59    );
60
61    let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
62    let moon_iau = almanac.frame_from_uid(IAU_MOON_FRAME).unwrap();
63
64    let epoch = Epoch::from_gregorian_tai(2021, 5, 29, 19, 51, 16, 852_000);
65    let nrho = Orbit::cartesian(
66        166_473.631_302_239_7,
67        -274_715.487_253_382_7,
68        -211_233.210_176_686_7,
69        0.933_451_604_520_018_4,
70        0.436_775_046_841_900_9,
71        -0.082_211_021_250_348_95,
72        epoch,
73        eme2k,
74    );
75
76    let tx_nrho_sc = Spacecraft::from(nrho);
77
78    let state_luna = almanac.transform_to(nrho, MOON_J2000, None).unwrap();
79    println!("Start state (dynamics: Earth, Moon, Sun gravity):\n{state_luna}");
80
81    let bodies = vec![EARTH, SUN];
82    let dynamics = SpacecraftDynamics::new(OrbitalDynamics::point_masses(bodies));
83
84    let setup = Propagator::rk89(
85        dynamics,
86        IntegratorOptions::builder().max_step(0.5.minutes()).build(),
87    );
88
89    /* == Propagate the NRHO vehicle == */
90    let prop_time = 1.1 * state_luna.period().unwrap();
91
92    let (nrho_final, mut tx_traj) = setup
93        .with(tx_nrho_sc, almanac.clone())
94        .for_duration_with_traj(prop_time)
95        .unwrap();
96
97    tx_traj.name = Some("NRHO Tx SC".to_string());
98
99    println!("{tx_traj}");
100
101    /* == Propagate an LLO vehicle == */
102    let llo_orbit =
103        Orbit::try_keplerian_altitude(110.0, 1e-4, 90.0, 0.0, 0.0, 0.0, epoch, moon_iau).unwrap();
104
105    let llo_sc = Spacecraft::builder().orbit(llo_orbit).build();
106
107    let (_, llo_traj) = setup
108        .with(llo_sc, almanac.clone())
109        .until_epoch_with_traj(nrho_final.epoch())
110        .unwrap();
111
112    // Export the subset of the first two hours.
113    llo_traj
114        .clone()
115        .filter_by_offset(..2.hours())
116        .to_parquet_simple(out.join("05_caps_llo_truth.pq"), almanac.clone())?;
117
118    /* == Setup the interlink == */
119
120    let mut measurement_types = IndexSet::new();
121    measurement_types.insert(MeasurementType::Range);
122    measurement_types.insert(MeasurementType::Doppler);
123
124    let mut stochastics = IndexMap::new();
125
126    let sa45_csac_allan_dev = 1e-11;
127
128    stochastics.insert(
129        MeasurementType::Range,
130        StochasticNoise::from_hardware_range_km(
131            sa45_csac_allan_dev,
132            10.0.seconds(),
133            link_specific::ChipRate::StandardT4B,
134            link_specific::SN0::Average,
135        ),
136    );
137
138    stochastics.insert(
139        MeasurementType::Doppler,
140        StochasticNoise::from_hardware_doppler_km_s(
141            sa45_csac_allan_dev,
142            10.0.seconds(),
143            link_specific::CarrierFreq::SBand,
144            link_specific::CN0::Average,
145        ),
146    );
147
148    let interlink = InterlinkTxSpacecraft {
149        traj: tx_traj,
150        measurement_types,
151        integration_time: None,
152        timestamp_noise_s: None,
153        ab_corr: Aberration::LT,
154        stochastic_noises: Some(stochastics),
155    };
156
157    // Devices are the transmitter, which is our NRHO vehicle.
158    let mut devices = BTreeMap::new();
159    devices.insert("NRHO Tx SC".to_string(), interlink);
160
161    let mut configs = BTreeMap::new();
162    configs.insert(
163        "NRHO Tx SC".to_string(),
164        TrkConfig::builder()
165            .strands(vec![Strand {
166                start: epoch,
167                end: nrho_final.epoch(),
168            }])
169            .build(),
170    );
171
172    let mut trk_sim =
173        TrackingArcSim::with_seed(devices.clone(), llo_traj.clone(), configs, 0).unwrap();
174    println!("{trk_sim}");
175
176    let trk_data = trk_sim.generate_measurements(almanac.clone()).unwrap();
177    println!("{trk_data}");
178
179    trk_data
180        .to_parquet_simple(out.clone().join("nrho_interlink_msr.pq"))
181        .unwrap();
182
183    // Run a truth OD where we estimate the LLO position
184    let llo_uncertainty = SpacecraftUncertainty::builder()
185        .nominal(llo_sc)
186        .x_km(1.0)
187        .y_km(1.0)
188        .z_km(1.0)
189        .vx_km_s(1e-3)
190        .vy_km_s(1e-3)
191        .vz_km_s(1e-3)
192        .build();
193
194    let mut proc_devices = devices.clone();
195
196    // Define the initial estimate, randomized, seed for reproducibility
197    let mut initial_estimate = llo_uncertainty.to_estimate_randomized(Some(0)).unwrap();
198    // Inflate the covariance -- https://github.com/nyx-space/nyx/issues/339
199    initial_estimate.covar *= 2.5;
200
201    // Increase the noise in the devices to accept more measurements.
202
203    for link in proc_devices.values_mut() {
204        for noise in &mut link.stochastic_noises.as_mut().unwrap().values_mut() {
205            *noise.white_noise.as_mut().unwrap() *= 3.0;
206        }
207    }
208
209    let init_err = initial_estimate
210        .orbital_state()
211        .ric_difference(&llo_orbit)
212        .unwrap();
213
214    println!("initial estimate:\n{initial_estimate}");
215    println!("RIC errors = {init_err}",);
216
217    let odp = InterlinkKalmanOD::new(
218        setup.clone(),
219        KalmanVariant::ReferenceUpdate,
220        Some(ResidRejectCrit::default()),
221        proc_devices,
222        almanac.clone(),
223    );
224
225    // Shrink the data to process.
226    let arc = trk_data.filter_by_offset(..2.hours());
227
228    let od_sol = odp.process_arc(initial_estimate, &arc).unwrap();
229
230    println!("{od_sol}");
231
232    od_sol
233        .to_parquet(
234            out.join(format!("05_caps_interlink_od_sol.pq")),
235            ExportCfg::default(),
236        )
237        .unwrap();
238
239    let od_traj = od_sol.to_traj().unwrap();
240
241    od_traj
242        .ric_diff_to_parquet(
243            &llo_traj,
244            out.join(format!("05_caps_interlink_llo_est_error.pq")),
245            ExportCfg::default(),
246        )
247        .unwrap();
248
249    let final_est = od_sol.estimates.last().unwrap();
250    assert!(final_est.within_3sigma(), "should be within 3 sigma");
251
252    println!("ESTIMATE\n{final_est:x}\n");
253    let truth = llo_traj.at(final_est.epoch()).unwrap();
254    println!("TRUTH\n{truth:x}");
255
256    let final_err = truth
257        .orbit
258        .ric_difference(&final_est.orbital_state())
259        .unwrap();
260    println!("ERROR {final_err}");
261
262    // Build the residuals versus reference plot.
263    let rvr_sol = odp
264        .process_arc(initial_estimate, &arc.resid_vs_ref_check())
265        .unwrap();
266
267    rvr_sol
268        .to_parquet(
269            out.join(format!("05_caps_interlink_resid_v_ref.pq")),
270            ExportCfg::default(),
271        )
272        .unwrap();
273
274    let final_rvr = rvr_sol.estimates.last().unwrap();
275
276    println!("RMAG error {:.3} m", final_err.rmag_km() * 1e3);
277    println!(
278        "Pure prop error {:.3} m",
279        final_rvr
280            .orbital_state()
281            .ric_difference(&final_est.orbital_state())
282            .unwrap()
283            .rmag_km()
284            * 1e3
285    );
286
287    Ok(())
288}
Source§

impl StochasticNoise

Source

pub const ZERO: Self

Zero noise stochastic process.

Source

pub const MIN: Self

The minimum stochastic noise process with a zero mean white noise of 1e-6.

Source

pub fn default_range_km() -> Self

Default stochastic process of the Deep Space Network, as per DESCANSO Chapter 3, Table 3-3. Using the instrument bias as the white noise value, zero constant bias.

Source

pub fn default_doppler_km_s() -> Self

Default stochastic process of the Deep Space Network, using as per DESCANSO Chapter 3, Table 3-3 for the GM process.

Source

pub fn default_angle_deg() -> Self

Default stochastic process for an angle measurement (azimuth or elevation) Using the instrument bias as the white noise value, zero constant bias.

Source

pub fn sample<R: Rng>(&mut self, epoch: Epoch, rng: &mut R) -> f64

Sample these stochastics

Source

pub fn covariance(&self, epoch: Epoch) -> f64

Return the covariance of these stochastics at a given time.

Source

pub fn simulate<P: AsRef<Path>>( self, path: P, runs: Option<u32>, unit: Option<String>, ) -> Result<Vec<StochasticState>, Box<dyn Error>>

Simulate the configured stochastic model and store the bias in a parquet file. Python: call as simulate(path, runs=25, unit=None) where the path is the output Parquet file, runs is the number of runs, and unit is the unit of the bias, reflected only in the headers of the parquet file.

The unit is only used in the headers of the parquet file.

This will simulate the model with “runs” different seeds, sampling the process 500 times for a duration of 5 times the time constant.

Trait Implementations§

Source§

impl Clone for StochasticNoise

Source§

fn clone(&self) -> StochasticNoise

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for StochasticNoise

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for StochasticNoise

Source§

fn default() -> StochasticNoise

Returns the “default value” for a type. Read more
Source§

impl<'de> Deserialize<'de> for StochasticNoise

Source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl Mul<f64> for StochasticNoise

Source§

type Output = StochasticNoise

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: f64) -> Self::Output

Performs the * operation. Read more
Source§

impl MulAssign<f64> for StochasticNoise

Source§

fn mul_assign(&mut self, rhs: f64)

Performs the *= operation. Read more
Source§

impl PartialEq for StochasticNoise

Source§

fn eq(&self, other: &StochasticNoise) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl Serialize for StochasticNoise

Source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
Source§

impl Copy for StochasticNoise

Source§

impl StructuralPartialEq for StochasticNoise

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> FromDhall for T

Source§

fn from_dhall(v: &Value) -> Result<T, Error>

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToDhall for T
where T: Serialize,

Source§

fn to_dhall(&self, ty: Option<&SimpleType>) -> Result<Value, Error>

Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T> Allocation for T
where T: RefUnwindSafe + Send + Sync,

§

impl<T, Right> ClosedMul<Right> for T
where T: Mul<Right, Output = T> + MulAssign<Right>,

§

impl<T, Right> ClosedMulAssign<Right> for T
where T: ClosedMul<Right> + MulAssign<Right>,

Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

§

impl<T> ErasedDestructor for T
where T: 'static,

Source§

impl<T> Scalar for T
where T: 'static + Clone + PartialEq + Debug,