pub struct IntegratorOptions {
pub init_step: Duration,
pub min_step: Duration,
pub max_step: Duration,
pub tolerance: f64,
pub attempts: u8,
pub fixed_step: bool,
pub error_ctrl: ErrorControl,
pub integration_frame: Option<Frame>,
}
Expand description
Stores the integrator options, including the minimum and maximum step sizes, and the central body to perform the integration.
Note that different step sizes and max errors are only used for adaptive
methods. To use a fixed step integrator, initialize the options using with_fixed_step
, and
use whichever adaptive step integrator is desired. For example, initializing an RK45 with
fixed step options will lead to an RK4 being used instead of an RK45.
Fields§
§init_step: Duration
§min_step: Duration
§max_step: Duration
§tolerance: f64
§attempts: u8
§fixed_step: bool
§error_ctrl: ErrorControl
§integration_frame: Option<Frame>
If a frame is specified and the propagator state is in a different frame, it it changed to this frame prior to integration.
Note, when setting this, it’s recommended to call strip
on the Frame.
Implementations§
source§impl IntegratorOptions
impl IntegratorOptions
sourcepub fn builder() -> IntegratorOptionsBuilder<((), (), (), (), (), (), (), ())>
pub fn builder() -> IntegratorOptionsBuilder<((), (), (), (), (), (), (), ())>
Create a builder for building IntegratorOptions
.
On the builder, call .init_step(...)
(optional), .min_step(...)
(optional), .max_step(...)
(optional), .tolerance(...)
(optional), .attempts(...)
(optional), .fixed_step(...)
(optional), .error_ctrl(...)
(optional), .integration_frame(...)
(optional) to set the values of the fields.
Finally, call .build()
to create the instance of IntegratorOptions
.
Examples found in repository?
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
fn main() -> Result<(), Box<dyn Error>> {
pel::init();
// Set up the dynamics like in the orbit raise.
let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
// Define the GEO orbit, and we're just going to maintain it very tightly.
let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
println!("{orbit:x}");
let sc = Spacecraft::builder()
.orbit(orbit)
.dry_mass_kg(1000.0) // 1000 kg of dry mass
.fuel_mass_kg(1000.0) // 1000 kg of fuel, totalling 2.0 tons
.srp(SrpConfig::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
.thruster(Thruster {
// "NEXT-STEP" row in Table 2
isp_s: 4435.0,
thrust_N: 0.472,
})
.mode(GuidanceMode::Thrust) // Start thrusting immediately.
.build();
// Set up the spacecraft dynamics like in the orbit raise example.
let prop_time = 30.0 * Unit::Day;
// Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
let objectives = &[
Objective::within_tolerance(StateParameter::SMA, 42_164.0, 5.0), // 5 km
Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
];
let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2)?;
println!("{ruggiero_ctrl}");
let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
let mut jgm3_meta = MetaFile {
uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
};
jgm3_meta.process(true)?;
let harmonics = Harmonics::from_stor(
almanac.frame_from_uid(IAU_EARTH_FRAME)?,
HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true)?,
);
orbital_dyn.accel_models.push(harmonics);
let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
.with_guidance_law(ruggiero_ctrl.clone());
println!("{sc_dynamics}");
// Finally, let's use the Monte Carlo framework built into Nyx to propagate spacecraft.
// Let's start by defining the dispersion.
// The MultivariateNormal structure allows us to define the dispersions in any of the orbital parameters, but these are applied directly in the Cartesian state space.
// Note that additional validation on the MVN is in progress -- https://github.com/nyx-space/nyx/issues/339.
let mc_rv = MultivariateNormal::new(
sc,
vec![StateDispersion::zero_mean(StateParameter::SMA, 3.0)],
)?;
let my_mc = MonteCarlo::new(
sc, // Nominal state
mc_rv,
"03_geo_sk".to_string(), // Scenario name
None, // No specific seed specified, so one will be drawn from the computer's entropy.
);
// Build the propagator setup.
let setup = Propagator::rk89(
sc_dynamics.clone(),
IntegratorOptions::builder()
.min_step(10.0_f64.seconds())
.error_ctrl(ErrorControl::RSSCartesianStep)
.build(),
);
let num_runs = 25;
let rslts = my_mc.run_until_epoch(setup, almanac.clone(), sc.epoch() + prop_time, num_runs);
assert_eq!(rslts.runs.len(), num_runs);
// For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
rslts.to_parquet(
"03_geo_sk.parquet",
Some(vec![
&EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
]),
ExportCfg::default(),
almanac,
)?;
Ok(())
}
More examples
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
fn main() -> Result<(), Box<dyn Error>> {
pel::init();
// Dynamics models require planetary constants and ephemerides to be defined.
// Let's start by grabbing those by using ANISE's latest MetaAlmanac.
// This will automatically download the DE440s planetary ephemeris,
// the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
// parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
// planetary constants kernels.
// For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
// Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
// references to many functions.
let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
// Fetch the EME2000 frame from the Almabac
let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
// Define the orbit epoch
let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
// Build the spacecraft itself.
// Using slide 6 of https://aerospace.org/sites/default/files/2018-11/Davis-Mayberry_HPSEP_11212018.pdf
// for the "next gen" SEP characteristics.
// GTO start
let orbit = Orbit::keplerian(24505.9, 0.725, 7.05, 0.0, 0.0, 0.0, epoch, eme2k);
let sc = Spacecraft::builder()
.orbit(orbit)
.dry_mass_kg(1000.0) // 1000 kg of dry mass
.fuel_mass_kg(1000.0) // 1000 kg of fuel, totalling 2.0 tons
.srp(SrpConfig::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
.thruster(Thruster {
// "NEXT-STEP" row in Table 2
isp_s: 4435.0,
thrust_N: 0.472,
})
.mode(GuidanceMode::Thrust) // Start thrusting immediately.
.build();
let prop_time = 180.0 * Unit::Day;
// Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
let objectives = &[
Objective::within_tolerance(StateParameter::SMA, 42_165.0, 20.0),
Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
];
// Ensure that we only thrust if we have more than 20% illumination.
let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2).unwrap();
println!("{ruggiero_ctrl}");
// Define the high fidelity dynamics
// Set up the spacecraft dynamics.
// Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
// The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
// We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
// We're using the JGM3 model here, which is the default in GMAT.
let mut jgm3_meta = MetaFile {
uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
};
// And let's download it if we don't have it yet.
jgm3_meta.process(true)?;
// Build the spherical harmonics.
// The harmonics must be computed in the body fixed frame.
// We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
let harmonics = Harmonics::from_stor(
almanac.frame_from_uid(IAU_EARTH_FRAME)?,
HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true).unwrap(),
);
// Include the spherical harmonics into the orbital dynamics.
orbital_dyn.accel_models.push(harmonics);
// We define the solar radiation pressure, using the default solar flux and accounting only
// for the eclipsing caused by the Earth.
let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
// Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
// acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
.with_guidance_law(ruggiero_ctrl.clone());
println!("{:x}", orbit);
// We specify a minimum step in the propagator because the Ruggiero control would otherwise drive this step very low.
let (final_state, traj) = Propagator::rk89(
sc_dynamics.clone(),
IntegratorOptions::builder()
.min_step(10.0_f64.seconds())
.error_ctrl(ErrorControl::RSSCartesianStep)
.build(),
)
.with(sc, almanac.clone())
.for_duration_with_traj(prop_time)?;
let fuel_usage = sc.fuel_mass_kg - final_state.fuel_mass_kg;
println!("{:x}", final_state.orbit);
println!("fuel usage: {:.3} kg", fuel_usage);
// Finally, export the results for analysis, including the penumbra percentage throughout the orbit raise.
traj.to_parquet(
"./03_geo_raise.parquet",
Some(vec![
&EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
]),
ExportCfg::default(),
almanac,
)?;
for status_line in ruggiero_ctrl.status(&final_state) {
println!("{status_line}");
}
ruggiero_ctrl
.achieved(&final_state)
.expect("objective not achieved");
Ok(())
}
source§impl IntegratorOptions
impl IntegratorOptions
sourcepub fn with_adaptive_step(
min_step: Duration,
max_step: Duration,
tolerance: f64,
error_ctrl: ErrorControl,
) -> Self
pub fn with_adaptive_step( min_step: Duration, max_step: Duration, tolerance: f64, error_ctrl: ErrorControl, ) -> Self
with_adaptive_step
initializes an PropOpts
such that the integrator is used with an
adaptive step size. The number of attempts is currently fixed to 50 (as in GMAT).
pub fn with_adaptive_step_s( min_step: f64, max_step: f64, tolerance: f64, error_ctrl: ErrorControl, ) -> Self
sourcepub fn with_fixed_step(step: Duration) -> Self
pub fn with_fixed_step(step: Duration) -> Self
with_fixed_step
initializes an PropOpts
such that the integrator is used with a fixed
step size.
pub fn with_fixed_step_s(step: f64) -> Self
sourcepub fn with_tolerance(tolerance: f64) -> Self
pub fn with_tolerance(tolerance: f64) -> Self
Returns the default options with a specific tolerance.
sourcepub fn with_max_step(max_step: Duration) -> Self
pub fn with_max_step(max_step: Duration) -> Self
Creates a propagator with the provided max step, and sets the initial step to that value as well.
sourcepub fn set_max_step(&mut self, max_step: Duration)
pub fn set_max_step(&mut self, max_step: Duration)
Set the maximum step size and sets the initial step to that value if currently greater
sourcepub fn set_min_step(&mut self, min_step: Duration)
pub fn set_min_step(&mut self, min_step: Duration)
Set the minimum step size and sets the initial step to that value if currently smaller
Trait Implementations§
source§impl Clone for IntegratorOptions
impl Clone for IntegratorOptions
source§fn clone(&self) -> IntegratorOptions
fn clone(&self) -> IntegratorOptions
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for IntegratorOptions
impl Debug for IntegratorOptions
source§impl Default for IntegratorOptions
impl Default for IntegratorOptions
source§fn default() -> IntegratorOptions
fn default() -> IntegratorOptions
default
returns the same default options as GMAT.
source§impl<'de> Deserialize<'de> for IntegratorOptions
impl<'de> Deserialize<'de> for IntegratorOptions
source§fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>where
__D: Deserializer<'de>,
source§impl Display for IntegratorOptions
impl Display for IntegratorOptions
source§impl PartialEq for IntegratorOptions
impl PartialEq for IntegratorOptions
source§impl Serialize for IntegratorOptions
impl Serialize for IntegratorOptions
impl Copy for IntegratorOptions
impl StructuralPartialEq for IntegratorOptions
Auto Trait Implementations§
impl Freeze for IntegratorOptions
impl RefUnwindSafe for IntegratorOptions
impl Send for IntegratorOptions
impl Sync for IntegratorOptions
impl Unpin for IntegratorOptions
impl UnwindSafe for IntegratorOptions
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T> FromDhall for Twhere
T: DeserializeOwned,
impl<T> FromDhall for Twhere
T: DeserializeOwned,
fn from_dhall(v: &Value) -> Result<T, Error>
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.