nyx_space::propagators

Struct IntegratorOptionsBuilder

source
pub struct IntegratorOptionsBuilder<TypedBuilderFields = ((), (), (), (), (), (), (), ())> { /* private fields */ }
Expand description

Builder for IntegratorOptions instances.

See IntegratorOptions::builder() for more info.

Implementations§

source§

impl<__min_step, __max_step, __tolerance, __attempts, __fixed_step, __error_ctrl, __integration_frame> IntegratorOptionsBuilder<((), __min_step, __max_step, __tolerance, __attempts, __fixed_step, __error_ctrl, __integration_frame)>

source

pub fn init_step( self, init_step: Duration, ) -> IntegratorOptionsBuilder<((Duration,), __min_step, __max_step, __tolerance, __attempts, __fixed_step, __error_ctrl, __integration_frame)>

source§

impl<__init_step, __max_step, __tolerance, __attempts, __fixed_step, __error_ctrl, __integration_frame> IntegratorOptionsBuilder<(__init_step, (), __max_step, __tolerance, __attempts, __fixed_step, __error_ctrl, __integration_frame)>

source

pub fn min_step( self, min_step: Duration, ) -> IntegratorOptionsBuilder<(__init_step, (Duration,), __max_step, __tolerance, __attempts, __fixed_step, __error_ctrl, __integration_frame)>

Examples found in repository?
examples/03_geo_analysis/stationkeeping.rs (line 107)
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();
    // Set up the dynamics like in the orbit raise.
    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);

    // Define the GEO orbit, and we're just going to maintain it very tightly.
    let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
    let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
    println!("{orbit:x}");

    let sc = Spacecraft::builder()
        .orbit(orbit)
        .dry_mass_kg(1000.0) // 1000 kg of dry mass
        .fuel_mass_kg(1000.0) // 1000 kg of fuel, totalling 2.0 tons
        .srp(SrpConfig::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
        .thruster(Thruster {
            // "NEXT-STEP" row in Table 2
            isp_s: 4435.0,
            thrust_N: 0.472,
        })
        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
        .build();

    // Set up the spacecraft dynamics like in the orbit raise example.

    let prop_time = 30.0 * Unit::Day;

    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
    let objectives = &[
        Objective::within_tolerance(StateParameter::SMA, 42_164.0, 5.0), // 5 km
        Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
        Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
    ];

    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2)?;
    println!("{ruggiero_ctrl}");

    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);

    let mut jgm3_meta = MetaFile {
        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
    };
    jgm3_meta.process(true)?;

    let harmonics = Harmonics::from_stor(
        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true)?,
    );
    orbital_dyn.accel_models.push(harmonics);

    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
        .with_guidance_law(ruggiero_ctrl.clone());

    println!("{sc_dynamics}");

    // Finally, let's use the Monte Carlo framework built into Nyx to propagate spacecraft.

    // Let's start by defining the dispersion.
    // The MultivariateNormal structure allows us to define the dispersions in any of the orbital parameters, but these are applied directly in the Cartesian state space.
    // Note that additional validation on the MVN is in progress -- https://github.com/nyx-space/nyx/issues/339.
    let mc_rv = MultivariateNormal::new(
        sc,
        vec![StateDispersion::zero_mean(StateParameter::SMA, 3.0)],
    )?;

    let my_mc = MonteCarlo::new(
        sc, // Nominal state
        mc_rv,
        "03_geo_sk".to_string(), // Scenario name
        None, // No specific seed specified, so one will be drawn from the computer's entropy.
    );

    // Build the propagator setup.
    let setup = Propagator::rk89(
        sc_dynamics.clone(),
        IntegratorOptions::builder()
            .min_step(10.0_f64.seconds())
            .error_ctrl(ErrorControl::RSSCartesianStep)
            .build(),
    );

    let num_runs = 25;
    let rslts = my_mc.run_until_epoch(setup, almanac.clone(), sc.epoch() + prop_time, num_runs);

    assert_eq!(rslts.runs.len(), num_runs);

    // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.

    rslts.to_parquet(
        "03_geo_sk.parquet",
        Some(vec![
            &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
        ]),
        ExportCfg::default(),
        almanac,
    )?;

    Ok(())
}
More examples
Hide additional examples
examples/03_geo_analysis/raise.rs (line 121)
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();

    // Dynamics models require planetary constants and ephemerides to be defined.
    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
    // This will automatically download the DE440s planetary ephemeris,
    // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
    // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
    // planetary constants kernels.
    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
    // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
    // references to many functions.
    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
    // Fetch the EME2000 frame from the Almabac
    let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
    // Define the orbit epoch
    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);

    // Build the spacecraft itself.
    // Using slide 6 of https://aerospace.org/sites/default/files/2018-11/Davis-Mayberry_HPSEP_11212018.pdf
    // for the "next gen" SEP characteristics.

    // GTO start
    let orbit = Orbit::keplerian(24505.9, 0.725, 7.05, 0.0, 0.0, 0.0, epoch, eme2k);

    let sc = Spacecraft::builder()
        .orbit(orbit)
        .dry_mass_kg(1000.0) // 1000 kg of dry mass
        .fuel_mass_kg(1000.0) // 1000 kg of fuel, totalling 2.0 tons
        .srp(SrpConfig::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
        .thruster(Thruster {
            // "NEXT-STEP" row in Table 2
            isp_s: 4435.0,
            thrust_N: 0.472,
        })
        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
        .build();

    let prop_time = 180.0 * Unit::Day;

    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
    let objectives = &[
        Objective::within_tolerance(StateParameter::SMA, 42_165.0, 20.0),
        Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
        Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
    ];

    // Ensure that we only thrust if we have more than 20% illumination.
    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2).unwrap();
    println!("{ruggiero_ctrl}");

    // Define the high fidelity dynamics

    // Set up the spacecraft dynamics.

    // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
    // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);

    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
    // We're using the JGM3 model here, which is the default in GMAT.
    let mut jgm3_meta = MetaFile {
        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
    };
    // And let's download it if we don't have it yet.
    jgm3_meta.process(true)?;

    // Build the spherical harmonics.
    // The harmonics must be computed in the body fixed frame.
    // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
    let harmonics = Harmonics::from_stor(
        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true).unwrap(),
    );

    // Include the spherical harmonics into the orbital dynamics.
    orbital_dyn.accel_models.push(harmonics);

    // We define the solar radiation pressure, using the default solar flux and accounting only
    // for the eclipsing caused by the Earth.
    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;

    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
        .with_guidance_law(ruggiero_ctrl.clone());

    println!("{:x}", orbit);

    // We specify a minimum step in the propagator because the Ruggiero control would otherwise drive this step very low.
    let (final_state, traj) = Propagator::rk89(
        sc_dynamics.clone(),
        IntegratorOptions::builder()
            .min_step(10.0_f64.seconds())
            .error_ctrl(ErrorControl::RSSCartesianStep)
            .build(),
    )
    .with(sc, almanac.clone())
    .for_duration_with_traj(prop_time)?;

    let fuel_usage = sc.fuel_mass_kg - final_state.fuel_mass_kg;
    println!("{:x}", final_state.orbit);
    println!("fuel usage: {:.3} kg", fuel_usage);

    // Finally, export the results for analysis, including the penumbra percentage throughout the orbit raise.
    traj.to_parquet(
        "./03_geo_raise.parquet",
        Some(vec![
            &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
        ]),
        ExportCfg::default(),
        almanac,
    )?;

    for status_line in ruggiero_ctrl.status(&final_state) {
        println!("{status_line}");
    }

    ruggiero_ctrl
        .achieved(&final_state)
        .expect("objective not achieved");

    Ok(())
}
source§

impl<__init_step, __min_step, __tolerance, __attempts, __fixed_step, __error_ctrl, __integration_frame> IntegratorOptionsBuilder<(__init_step, __min_step, (), __tolerance, __attempts, __fixed_step, __error_ctrl, __integration_frame)>

source

pub fn max_step( self, max_step: Duration, ) -> IntegratorOptionsBuilder<(__init_step, __min_step, (Duration,), __tolerance, __attempts, __fixed_step, __error_ctrl, __integration_frame)>

source§

impl<__init_step, __min_step, __max_step, __attempts, __fixed_step, __error_ctrl, __integration_frame> IntegratorOptionsBuilder<(__init_step, __min_step, __max_step, (), __attempts, __fixed_step, __error_ctrl, __integration_frame)>

source

pub fn tolerance( self, tolerance: f64, ) -> IntegratorOptionsBuilder<(__init_step, __min_step, __max_step, (f64,), __attempts, __fixed_step, __error_ctrl, __integration_frame)>

source§

impl<__init_step, __min_step, __max_step, __tolerance, __fixed_step, __error_ctrl, __integration_frame> IntegratorOptionsBuilder<(__init_step, __min_step, __max_step, __tolerance, (), __fixed_step, __error_ctrl, __integration_frame)>

source

pub fn attempts( self, attempts: u8, ) -> IntegratorOptionsBuilder<(__init_step, __min_step, __max_step, __tolerance, (u8,), __fixed_step, __error_ctrl, __integration_frame)>

source§

impl<__init_step, __min_step, __max_step, __tolerance, __attempts, __error_ctrl, __integration_frame> IntegratorOptionsBuilder<(__init_step, __min_step, __max_step, __tolerance, __attempts, (), __error_ctrl, __integration_frame)>

source

pub fn fixed_step( self, fixed_step: bool, ) -> IntegratorOptionsBuilder<(__init_step, __min_step, __max_step, __tolerance, __attempts, (bool,), __error_ctrl, __integration_frame)>

source§

impl<__init_step, __min_step, __max_step, __tolerance, __attempts, __fixed_step, __integration_frame> IntegratorOptionsBuilder<(__init_step, __min_step, __max_step, __tolerance, __attempts, __fixed_step, (), __integration_frame)>

source

pub fn error_ctrl( self, error_ctrl: ErrorControl, ) -> IntegratorOptionsBuilder<(__init_step, __min_step, __max_step, __tolerance, __attempts, __fixed_step, (ErrorControl,), __integration_frame)>

Examples found in repository?
examples/03_geo_analysis/stationkeeping.rs (line 108)
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();
    // Set up the dynamics like in the orbit raise.
    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);

    // Define the GEO orbit, and we're just going to maintain it very tightly.
    let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
    let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
    println!("{orbit:x}");

    let sc = Spacecraft::builder()
        .orbit(orbit)
        .dry_mass_kg(1000.0) // 1000 kg of dry mass
        .fuel_mass_kg(1000.0) // 1000 kg of fuel, totalling 2.0 tons
        .srp(SrpConfig::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
        .thruster(Thruster {
            // "NEXT-STEP" row in Table 2
            isp_s: 4435.0,
            thrust_N: 0.472,
        })
        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
        .build();

    // Set up the spacecraft dynamics like in the orbit raise example.

    let prop_time = 30.0 * Unit::Day;

    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
    let objectives = &[
        Objective::within_tolerance(StateParameter::SMA, 42_164.0, 5.0), // 5 km
        Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
        Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
    ];

    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2)?;
    println!("{ruggiero_ctrl}");

    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);

    let mut jgm3_meta = MetaFile {
        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
    };
    jgm3_meta.process(true)?;

    let harmonics = Harmonics::from_stor(
        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true)?,
    );
    orbital_dyn.accel_models.push(harmonics);

    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
        .with_guidance_law(ruggiero_ctrl.clone());

    println!("{sc_dynamics}");

    // Finally, let's use the Monte Carlo framework built into Nyx to propagate spacecraft.

    // Let's start by defining the dispersion.
    // The MultivariateNormal structure allows us to define the dispersions in any of the orbital parameters, but these are applied directly in the Cartesian state space.
    // Note that additional validation on the MVN is in progress -- https://github.com/nyx-space/nyx/issues/339.
    let mc_rv = MultivariateNormal::new(
        sc,
        vec![StateDispersion::zero_mean(StateParameter::SMA, 3.0)],
    )?;

    let my_mc = MonteCarlo::new(
        sc, // Nominal state
        mc_rv,
        "03_geo_sk".to_string(), // Scenario name
        None, // No specific seed specified, so one will be drawn from the computer's entropy.
    );

    // Build the propagator setup.
    let setup = Propagator::rk89(
        sc_dynamics.clone(),
        IntegratorOptions::builder()
            .min_step(10.0_f64.seconds())
            .error_ctrl(ErrorControl::RSSCartesianStep)
            .build(),
    );

    let num_runs = 25;
    let rslts = my_mc.run_until_epoch(setup, almanac.clone(), sc.epoch() + prop_time, num_runs);

    assert_eq!(rslts.runs.len(), num_runs);

    // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.

    rslts.to_parquet(
        "03_geo_sk.parquet",
        Some(vec![
            &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
        ]),
        ExportCfg::default(),
        almanac,
    )?;

    Ok(())
}
More examples
Hide additional examples
examples/03_geo_analysis/raise.rs (line 122)
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();

    // Dynamics models require planetary constants and ephemerides to be defined.
    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
    // This will automatically download the DE440s planetary ephemeris,
    // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
    // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
    // planetary constants kernels.
    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
    // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
    // references to many functions.
    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
    // Fetch the EME2000 frame from the Almabac
    let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
    // Define the orbit epoch
    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);

    // Build the spacecraft itself.
    // Using slide 6 of https://aerospace.org/sites/default/files/2018-11/Davis-Mayberry_HPSEP_11212018.pdf
    // for the "next gen" SEP characteristics.

    // GTO start
    let orbit = Orbit::keplerian(24505.9, 0.725, 7.05, 0.0, 0.0, 0.0, epoch, eme2k);

    let sc = Spacecraft::builder()
        .orbit(orbit)
        .dry_mass_kg(1000.0) // 1000 kg of dry mass
        .fuel_mass_kg(1000.0) // 1000 kg of fuel, totalling 2.0 tons
        .srp(SrpConfig::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
        .thruster(Thruster {
            // "NEXT-STEP" row in Table 2
            isp_s: 4435.0,
            thrust_N: 0.472,
        })
        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
        .build();

    let prop_time = 180.0 * Unit::Day;

    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
    let objectives = &[
        Objective::within_tolerance(StateParameter::SMA, 42_165.0, 20.0),
        Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
        Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
    ];

    // Ensure that we only thrust if we have more than 20% illumination.
    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2).unwrap();
    println!("{ruggiero_ctrl}");

    // Define the high fidelity dynamics

    // Set up the spacecraft dynamics.

    // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
    // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);

    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
    // We're using the JGM3 model here, which is the default in GMAT.
    let mut jgm3_meta = MetaFile {
        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
    };
    // And let's download it if we don't have it yet.
    jgm3_meta.process(true)?;

    // Build the spherical harmonics.
    // The harmonics must be computed in the body fixed frame.
    // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
    let harmonics = Harmonics::from_stor(
        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true).unwrap(),
    );

    // Include the spherical harmonics into the orbital dynamics.
    orbital_dyn.accel_models.push(harmonics);

    // We define the solar radiation pressure, using the default solar flux and accounting only
    // for the eclipsing caused by the Earth.
    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;

    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
        .with_guidance_law(ruggiero_ctrl.clone());

    println!("{:x}", orbit);

    // We specify a minimum step in the propagator because the Ruggiero control would otherwise drive this step very low.
    let (final_state, traj) = Propagator::rk89(
        sc_dynamics.clone(),
        IntegratorOptions::builder()
            .min_step(10.0_f64.seconds())
            .error_ctrl(ErrorControl::RSSCartesianStep)
            .build(),
    )
    .with(sc, almanac.clone())
    .for_duration_with_traj(prop_time)?;

    let fuel_usage = sc.fuel_mass_kg - final_state.fuel_mass_kg;
    println!("{:x}", final_state.orbit);
    println!("fuel usage: {:.3} kg", fuel_usage);

    // Finally, export the results for analysis, including the penumbra percentage throughout the orbit raise.
    traj.to_parquet(
        "./03_geo_raise.parquet",
        Some(vec![
            &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
        ]),
        ExportCfg::default(),
        almanac,
    )?;

    for status_line in ruggiero_ctrl.status(&final_state) {
        println!("{status_line}");
    }

    ruggiero_ctrl
        .achieved(&final_state)
        .expect("objective not achieved");

    Ok(())
}
source§

impl<__init_step, __min_step, __max_step, __tolerance, __attempts, __fixed_step, __error_ctrl> IntegratorOptionsBuilder<(__init_step, __min_step, __max_step, __tolerance, __attempts, __fixed_step, __error_ctrl, ())>

source

pub fn integration_frame( self, integration_frame: Frame, ) -> IntegratorOptionsBuilder<(__init_step, __min_step, __max_step, __tolerance, __attempts, __fixed_step, __error_ctrl, (Option<Frame>,))>

If a frame is specified and the propagator state is in a different frame, it it changed to this frame prior to integration. Note, when setting this, it’s recommended to call strip on the Frame.

source§

impl<__init_step: Optional<Duration>, __min_step: Optional<Duration>, __max_step: Optional<Duration>, __tolerance: Optional<f64>, __attempts: Optional<u8>, __fixed_step: Optional<bool>, __error_ctrl: Optional<ErrorControl>, __integration_frame: Optional<Option<Frame>>> IntegratorOptionsBuilder<(__init_step, __min_step, __max_step, __tolerance, __attempts, __fixed_step, __error_ctrl, __integration_frame)>

source

pub fn build(self) -> IntegratorOptions

Finalise the builder and create its IntegratorOptions instance

Examples found in repository?
examples/03_geo_analysis/stationkeeping.rs (line 109)
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();
    // Set up the dynamics like in the orbit raise.
    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);

    // Define the GEO orbit, and we're just going to maintain it very tightly.
    let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
    let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
    println!("{orbit:x}");

    let sc = Spacecraft::builder()
        .orbit(orbit)
        .dry_mass_kg(1000.0) // 1000 kg of dry mass
        .fuel_mass_kg(1000.0) // 1000 kg of fuel, totalling 2.0 tons
        .srp(SrpConfig::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
        .thruster(Thruster {
            // "NEXT-STEP" row in Table 2
            isp_s: 4435.0,
            thrust_N: 0.472,
        })
        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
        .build();

    // Set up the spacecraft dynamics like in the orbit raise example.

    let prop_time = 30.0 * Unit::Day;

    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
    let objectives = &[
        Objective::within_tolerance(StateParameter::SMA, 42_164.0, 5.0), // 5 km
        Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
        Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
    ];

    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2)?;
    println!("{ruggiero_ctrl}");

    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);

    let mut jgm3_meta = MetaFile {
        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
    };
    jgm3_meta.process(true)?;

    let harmonics = Harmonics::from_stor(
        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true)?,
    );
    orbital_dyn.accel_models.push(harmonics);

    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
        .with_guidance_law(ruggiero_ctrl.clone());

    println!("{sc_dynamics}");

    // Finally, let's use the Monte Carlo framework built into Nyx to propagate spacecraft.

    // Let's start by defining the dispersion.
    // The MultivariateNormal structure allows us to define the dispersions in any of the orbital parameters, but these are applied directly in the Cartesian state space.
    // Note that additional validation on the MVN is in progress -- https://github.com/nyx-space/nyx/issues/339.
    let mc_rv = MultivariateNormal::new(
        sc,
        vec![StateDispersion::zero_mean(StateParameter::SMA, 3.0)],
    )?;

    let my_mc = MonteCarlo::new(
        sc, // Nominal state
        mc_rv,
        "03_geo_sk".to_string(), // Scenario name
        None, // No specific seed specified, so one will be drawn from the computer's entropy.
    );

    // Build the propagator setup.
    let setup = Propagator::rk89(
        sc_dynamics.clone(),
        IntegratorOptions::builder()
            .min_step(10.0_f64.seconds())
            .error_ctrl(ErrorControl::RSSCartesianStep)
            .build(),
    );

    let num_runs = 25;
    let rslts = my_mc.run_until_epoch(setup, almanac.clone(), sc.epoch() + prop_time, num_runs);

    assert_eq!(rslts.runs.len(), num_runs);

    // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.

    rslts.to_parquet(
        "03_geo_sk.parquet",
        Some(vec![
            &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
        ]),
        ExportCfg::default(),
        almanac,
    )?;

    Ok(())
}
More examples
Hide additional examples
examples/03_geo_analysis/raise.rs (line 123)
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();

    // Dynamics models require planetary constants and ephemerides to be defined.
    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
    // This will automatically download the DE440s planetary ephemeris,
    // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
    // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
    // planetary constants kernels.
    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
    // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
    // references to many functions.
    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
    // Fetch the EME2000 frame from the Almabac
    let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
    // Define the orbit epoch
    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);

    // Build the spacecraft itself.
    // Using slide 6 of https://aerospace.org/sites/default/files/2018-11/Davis-Mayberry_HPSEP_11212018.pdf
    // for the "next gen" SEP characteristics.

    // GTO start
    let orbit = Orbit::keplerian(24505.9, 0.725, 7.05, 0.0, 0.0, 0.0, epoch, eme2k);

    let sc = Spacecraft::builder()
        .orbit(orbit)
        .dry_mass_kg(1000.0) // 1000 kg of dry mass
        .fuel_mass_kg(1000.0) // 1000 kg of fuel, totalling 2.0 tons
        .srp(SrpConfig::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
        .thruster(Thruster {
            // "NEXT-STEP" row in Table 2
            isp_s: 4435.0,
            thrust_N: 0.472,
        })
        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
        .build();

    let prop_time = 180.0 * Unit::Day;

    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
    let objectives = &[
        Objective::within_tolerance(StateParameter::SMA, 42_165.0, 20.0),
        Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
        Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
    ];

    // Ensure that we only thrust if we have more than 20% illumination.
    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2).unwrap();
    println!("{ruggiero_ctrl}");

    // Define the high fidelity dynamics

    // Set up the spacecraft dynamics.

    // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
    // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);

    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
    // We're using the JGM3 model here, which is the default in GMAT.
    let mut jgm3_meta = MetaFile {
        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
    };
    // And let's download it if we don't have it yet.
    jgm3_meta.process(true)?;

    // Build the spherical harmonics.
    // The harmonics must be computed in the body fixed frame.
    // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
    let harmonics = Harmonics::from_stor(
        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true).unwrap(),
    );

    // Include the spherical harmonics into the orbital dynamics.
    orbital_dyn.accel_models.push(harmonics);

    // We define the solar radiation pressure, using the default solar flux and accounting only
    // for the eclipsing caused by the Earth.
    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;

    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
        .with_guidance_law(ruggiero_ctrl.clone());

    println!("{:x}", orbit);

    // We specify a minimum step in the propagator because the Ruggiero control would otherwise drive this step very low.
    let (final_state, traj) = Propagator::rk89(
        sc_dynamics.clone(),
        IntegratorOptions::builder()
            .min_step(10.0_f64.seconds())
            .error_ctrl(ErrorControl::RSSCartesianStep)
            .build(),
    )
    .with(sc, almanac.clone())
    .for_duration_with_traj(prop_time)?;

    let fuel_usage = sc.fuel_mass_kg - final_state.fuel_mass_kg;
    println!("{:x}", final_state.orbit);
    println!("fuel usage: {:.3} kg", fuel_usage);

    // Finally, export the results for analysis, including the penumbra percentage throughout the orbit raise.
    traj.to_parquet(
        "./03_geo_raise.parquet",
        Some(vec![
            &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
        ]),
        ExportCfg::default(),
        almanac,
    )?;

    for status_line in ruggiero_ctrl.status(&final_state) {
        println!("{status_line}");
    }

    ruggiero_ctrl
        .achieved(&final_state)
        .expect("objective not achieved");

    Ok(())
}

Trait Implementations§

source§

impl<TypedBuilderFields> Clone for IntegratorOptionsBuilder<TypedBuilderFields>
where TypedBuilderFields: Clone,

source§

fn clone(&self) -> Self

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more

Auto Trait Implementations§

§

impl<TypedBuilderFields> Freeze for IntegratorOptionsBuilder<TypedBuilderFields>
where TypedBuilderFields: Freeze,

§

impl<TypedBuilderFields> RefUnwindSafe for IntegratorOptionsBuilder<TypedBuilderFields>
where TypedBuilderFields: RefUnwindSafe,

§

impl<TypedBuilderFields> Send for IntegratorOptionsBuilder<TypedBuilderFields>
where TypedBuilderFields: Send,

§

impl<TypedBuilderFields> Sync for IntegratorOptionsBuilder<TypedBuilderFields>
where TypedBuilderFields: Sync,

§

impl<TypedBuilderFields> Unpin for IntegratorOptionsBuilder<TypedBuilderFields>
where TypedBuilderFields: Unpin,

§

impl<TypedBuilderFields> UnwindSafe for IntegratorOptionsBuilder<TypedBuilderFields>
where TypedBuilderFields: UnwindSafe,

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T> Same for T

source§

type Output = T

Should always be Self
§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
source§

impl<T> ToOwned for T
where T: Clone,

source§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

source§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T> Allocation for T
where T: RefUnwindSafe + Send + Sync,