pub struct Harmonics { /* private fields */ }Implementations§
Source§impl Harmonics
impl Harmonics
Sourcepub fn from_stor(compute_frame: Frame, stor: HarmonicsMem) -> Arc<Self>
pub fn from_stor(compute_frame: Frame, stor: HarmonicsMem) -> Arc<Self>
Create a new Harmonics dynamical model from the provided gravity potential storage instance.
Examples found in repository?
examples/03_geo_analysis/stationkeeping.rs (lines 85-88)
28fn main() -> Result<(), Box<dyn Error>> {
29 pel::init();
30 // Set up the dynamics like in the orbit raise.
31 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
32 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
33
34 // Define the GEO orbit, and we're just going to maintain it very tightly.
35 let earth_j2000 = almanac.frame_info(EARTH_J2000)?;
36 let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
37 println!("{orbit:x}");
38
39 let sc = Spacecraft::builder()
40 .orbit(orbit)
41 .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
42 .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
43 .thruster(Thruster {
44 // "NEXT-STEP" row in Table 2
45 isp_s: 4435.0,
46 thrust_N: 0.472,
47 })
48 .mode(GuidanceMode::Thrust) // Start thrusting immediately.
49 .build();
50
51 // Set up the spacecraft dynamics like in the orbit raise example.
52
53 let prop_time = 30.0 * Unit::Day;
54
55 // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
56 let objectives = &[
57 Objective::within_tolerance(
58 StateParameter::Element(OrbitalElement::SemiMajorAxis),
59 42_165.0,
60 20.0,
61 ),
62 Objective::within_tolerance(
63 StateParameter::Element(OrbitalElement::Eccentricity),
64 0.001,
65 5e-5,
66 ),
67 Objective::within_tolerance(
68 StateParameter::Element(OrbitalElement::Inclination),
69 0.05,
70 1e-2,
71 ),
72 ];
73
74 let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2)?;
75 println!("{ruggiero_ctrl}");
76
77 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
78
79 let mut jgm3_meta = MetaFile {
80 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
81 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
82 };
83 jgm3_meta.process(true)?;
84
85 let harmonics = Harmonics::from_stor(
86 almanac.frame_info(IAU_EARTH_FRAME)?,
87 HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true)?,
88 );
89 orbital_dyn.accel_models.push(harmonics);
90
91 let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
92 let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
93 .with_guidance_law(ruggiero_ctrl.clone());
94
95 println!("{sc_dynamics}");
96
97 // Finally, let's use the Monte Carlo framework built into Nyx to propagate spacecraft.
98
99 // Let's start by defining the dispersion.
100 // The MultivariateNormal structure allows us to define the dispersions in any of the orbital parameters, but these are applied directly in the Cartesian state space.
101 // Note that additional validation on the MVN is in progress -- https://github.com/nyx-space/nyx/issues/339.
102 let mc_rv = MvnSpacecraft::new(
103 sc,
104 vec![StateDispersion::zero_mean(
105 StateParameter::Element(OrbitalElement::SemiMajorAxis),
106 3.0,
107 )],
108 )?;
109
110 let my_mc = MonteCarlo::new(
111 sc, // Nominal state
112 mc_rv,
113 "03_geo_sk".to_string(), // Scenario name
114 None, // No specific seed specified, so one will be drawn from the computer's entropy.
115 );
116
117 // Build the propagator setup.
118 let setup = Propagator::rk89(
119 sc_dynamics.clone(),
120 IntegratorOptions::builder()
121 .min_step(10.0_f64.seconds())
122 .error_ctrl(ErrorControl::RSSCartesianStep)
123 .build(),
124 );
125
126 let num_runs = 25;
127 let rslts = my_mc.run_until_epoch(setup, almanac.clone(), sc.epoch() + prop_time, num_runs);
128
129 assert_eq!(rslts.runs.len(), num_runs);
130
131 rslts.to_parquet("03_geo_sk.parquet", ExportCfg::default())?;
132
133 Ok(())
134}More examples
examples/03_geo_analysis/raise.rs (lines 109-112)
27fn main() -> Result<(), Box<dyn Error>> {
28 pel::init();
29
30 // Dynamics models require planetary constants and ephemerides to be defined.
31 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
32 // This will automatically download the DE440s planetary ephemeris,
33 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
34 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
35 // planetary constants kernels.
36 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
37 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
38 // references to many functions.
39 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
40 // Fetch the EME2000 frame from the Almabac
41 let eme2k = almanac.frame_info(EARTH_J2000).unwrap();
42 // Define the orbit epoch
43 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45 // Build the spacecraft itself.
46 // Using slide 6 of https://aerospace.org/sites/default/files/2018-11/Davis-Mayberry_HPSEP_11212018.pdf
47 // for the "next gen" SEP characteristics.
48
49 // GTO start
50 let orbit = Orbit::keplerian(24505.9, 0.725, 7.05, 0.0, 0.0, 0.0, epoch, eme2k);
51
52 let sc = Spacecraft::builder()
53 .orbit(orbit)
54 .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
55 .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
56 .thruster(Thruster {
57 // "NEXT-STEP" row in Table 2
58 isp_s: 4435.0,
59 thrust_N: 0.472,
60 })
61 .mode(GuidanceMode::Thrust) // Start thrusting immediately.
62 .build();
63
64 let prop_time = 180.0 * Unit::Day;
65
66 // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
67 let objectives = &[
68 Objective::within_tolerance(
69 StateParameter::Element(OrbitalElement::SemiMajorAxis),
70 42_165.0,
71 20.0,
72 ),
73 Objective::within_tolerance(
74 StateParameter::Element(OrbitalElement::Eccentricity),
75 0.001,
76 5e-5,
77 ),
78 Objective::within_tolerance(
79 StateParameter::Element(OrbitalElement::Inclination),
80 0.05,
81 1e-2,
82 ),
83 ];
84
85 // Ensure that we only thrust if we have more than 20% illumination.
86 let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2).unwrap();
87 println!("{ruggiero_ctrl}");
88
89 // Define the high fidelity dynamics
90
91 // Set up the spacecraft dynamics.
92
93 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
94 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
95 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
96
97 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
98 // We're using the JGM3 model here, which is the default in GMAT.
99 let mut jgm3_meta = MetaFile {
100 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
101 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
102 };
103 // And let's download it if we don't have it yet.
104 jgm3_meta.process(true)?;
105
106 // Build the spherical harmonics.
107 // The harmonics must be computed in the body fixed frame.
108 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
109 let harmonics = Harmonics::from_stor(
110 almanac.frame_info(IAU_EARTH_FRAME)?,
111 HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true).unwrap(),
112 );
113
114 // Include the spherical harmonics into the orbital dynamics.
115 orbital_dyn.accel_models.push(harmonics);
116
117 // We define the solar radiation pressure, using the default solar flux and accounting only
118 // for the eclipsing caused by the Earth.
119 let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
120
121 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
122 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
123 let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
124 .with_guidance_law(ruggiero_ctrl.clone());
125
126 println!("{orbit:x}");
127
128 // We specify a minimum step in the propagator because the Ruggiero control would otherwise drive this step very low.
129 let (final_state, traj) = Propagator::rk89(
130 sc_dynamics.clone(),
131 IntegratorOptions::builder()
132 .min_step(10.0_f64.seconds())
133 .error_ctrl(ErrorControl::RSSCartesianStep)
134 .build(),
135 )
136 .with(sc, almanac.clone())
137 .for_duration_with_traj(prop_time)?;
138
139 let prop_usage = sc.mass.prop_mass_kg - final_state.mass.prop_mass_kg;
140 println!("{:x}", final_state.orbit);
141 println!("prop usage: {prop_usage:.3} kg");
142
143 // Finally, export the results for analysis, including the penumbra percentage throughout the orbit raise.
144 traj.to_parquet("./03_geo_raise.parquet", ExportCfg::default())?;
145
146 for status_line in ruggiero_ctrl.status(&final_state) {
147 println!("{status_line}");
148 }
149
150 ruggiero_ctrl
151 .achieved(&final_state)
152 .expect("objective not achieved");
153
154 Ok(())
155}examples/03_geo_analysis/drift.rs (lines 90-93)
26fn main() -> Result<(), Box<dyn Error>> {
27 pel::init();
28 // Dynamics models require planetary constants and ephemerides to be defined.
29 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30 // This will automatically download the DE440s planetary ephemeris,
31 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
32 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
33 // planetary constants kernels.
34 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
35 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
36 // references to many functions.
37 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
38 // Define the orbit epoch
39 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
40
41 // Define the orbit.
42 // First we need to fetch the Earth J2000 from information from the Almanac.
43 // This allows the frame to include the gravitational parameters and the shape of the Earth,
44 // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
45 // by loading a different set of planetary constants.
46 let earth_j2000 = almanac.frame_info(EARTH_J2000)?;
47
48 // Placing this GEO bird just above Colorado.
49 // In theory, the eccentricity is zero, but in practice, it's about 1e-5 to 1e-6 at best.
50 let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
51 // Print in in Keplerian form.
52 println!("{orbit:x}");
53
54 let state_bf = almanac.transform_to(orbit, IAU_EARTH_FRAME, None)?;
55 let (orig_lat_deg, orig_long_deg, orig_alt_km) = state_bf.latlongalt()?;
56
57 // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
58 // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
59 // models such as solar radiation pressure.
60
61 // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
62 let sc = Spacecraft::builder()
63 .orbit(orbit)
64 .mass(Mass::from_dry_mass(9.60))
65 .srp(SRPData {
66 area_m2: 10e-4,
67 coeff_reflectivity: 1.1,
68 })
69 .build();
70 println!("{sc:x}");
71
72 // Set up the spacecraft dynamics.
73
74 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
75 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
76 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
77
78 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
79 // We're using the JGM3 model here, which is the default in GMAT.
80 let mut jgm3_meta = MetaFile {
81 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
82 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
83 };
84 // And let's download it if we don't have it yet.
85 jgm3_meta.process(true)?;
86
87 // Build the spherical harmonics.
88 // The harmonics must be computed in the body fixed frame.
89 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
90 let harmonics_21x21 = Harmonics::from_stor(
91 almanac.frame_info(IAU_EARTH_FRAME)?,
92 HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
93 );
94
95 // Include the spherical harmonics into the orbital dynamics.
96 orbital_dyn.accel_models.push(harmonics_21x21);
97
98 // We define the solar radiation pressure, using the default solar flux and accounting only
99 // for the eclipsing caused by the Earth and Moon.
100 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
103 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
104 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
105
106 println!("{dynamics}");
107
108 // Finally, let's propagate this orbit to the same epoch as above.
109 // The first returned value is the spacecraft state at the final epoch.
110 // The second value is the full trajectory where the step size is variable step used by the propagator.
111 let (future_sc, trajectory) = Propagator::default(dynamics)
112 .with(sc, almanac.clone())
113 .until_epoch_with_traj(epoch + Unit::Century * 0.03)?;
114
115 println!("=== High fidelity propagation ===");
116 println!(
117 "SMA changed by {:.3} km",
118 orbit.sma_km()? - future_sc.orbit.sma_km()?
119 );
120 println!(
121 "ECC changed by {:.6}",
122 orbit.ecc()? - future_sc.orbit.ecc()?
123 );
124 println!(
125 "INC changed by {:.3e} deg",
126 orbit.inc_deg()? - future_sc.orbit.inc_deg()?
127 );
128 println!(
129 "RAAN changed by {:.3} deg",
130 orbit.raan_deg()? - future_sc.orbit.raan_deg()?
131 );
132 println!(
133 "AOP changed by {:.3} deg",
134 orbit.aop_deg()? - future_sc.orbit.aop_deg()?
135 );
136 println!(
137 "TA changed by {:.3} deg",
138 orbit.ta_deg()? - future_sc.orbit.ta_deg()?
139 );
140
141 // We also have access to the full trajectory throughout the propagation.
142 println!("{trajectory}");
143
144 println!("Spacecraft params after 3 years without active control:\n{future_sc:x}");
145
146 // With the trajectory, let's build a few data products.
147
148 // 1. Export the trajectory as a parquet file, which includes the Keplerian orbital elements.
149
150 let analysis_step = Unit::Minute * 5;
151
152 trajectory.to_parquet(
153 "./03_geo_hf_prop.parquet",
154 ExportCfg::builder().step(analysis_step).build(),
155 )?;
156
157 // 2. Compute the latitude, longitude, and altitude throughout the trajectory by rotating the spacecraft position into the Earth body fixed frame.
158
159 // We iterate over the trajectory, grabbing a state every two minutes.
160 let mut offset_s = vec![];
161 let mut epoch_str = vec![];
162 let mut longitude_deg = vec![];
163 let mut latitude_deg = vec![];
164 let mut altitude_km = vec![];
165
166 for state in trajectory.every(analysis_step) {
167 // Convert the GEO bird state into the body fixed frame, and keep track of its latitude, longitude, and altitude.
168 // These define the GEO stationkeeping box.
169
170 let this_epoch = state.epoch();
171
172 offset_s.push((this_epoch - orbit.epoch).to_seconds());
173 epoch_str.push(this_epoch.to_isoformat());
174
175 let state_bf = almanac.transform_to(state.orbit, IAU_EARTH_FRAME, None)?;
176 let (lat_deg, long_deg, alt_km) = state_bf.latlongalt()?;
177 longitude_deg.push(long_deg);
178 latitude_deg.push(lat_deg);
179 altitude_km.push(alt_km);
180 }
181
182 println!(
183 "Longitude changed by {:.3} deg -- Box is 0.1 deg E-W",
184 orig_long_deg - longitude_deg.last().unwrap()
185 );
186
187 println!(
188 "Latitude changed by {:.3} deg -- Box is 0.05 deg N-S",
189 orig_lat_deg - latitude_deg.last().unwrap()
190 );
191
192 println!(
193 "Altitude changed by {:.3} km -- Box is 30 km",
194 orig_alt_km - altitude_km.last().unwrap()
195 );
196
197 // Build the station keeping data frame.
198 let mut sk_df = df!(
199 "Offset (s)" => offset_s.clone(),
200 "Epoch (UTC)" => epoch_str.clone(),
201 "Longitude E-W (deg)" => longitude_deg,
202 "Latitude N-S (deg)" => latitude_deg,
203 "Altitude (km)" => altitude_km,
204
205 )?;
206
207 // Create a file to write the Parquet to
208 let file = File::create("./03_geo_lla.parquet").expect("Could not create file");
209
210 // Create a ParquetWriter and write the DataFrame to the file
211 ParquetWriter::new(file).finish(&mut sk_df)?;
212
213 Ok(())
214}examples/01_orbit_prop/main.rs (lines 123-126)
30fn main() -> Result<(), Box<dyn Error>> {
31 pel::init();
32 // Dynamics models require planetary constants and ephemerides to be defined.
33 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
34 // This will automatically download the DE440s planetary ephemeris,
35 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
36 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
37 // planetary constants kernels.
38 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
39 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
40 // references to many functions.
41 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
42 // Define the orbit epoch
43 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45 // Define the orbit.
46 // First we need to fetch the Earth J2000 from information from the Almanac.
47 // This allows the frame to include the gravitational parameters and the shape of the Earth,
48 // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
49 // by loading a different set of planetary constants.
50 let earth_j2000 = almanac.frame_info(EARTH_J2000)?;
51
52 let orbit =
53 Orbit::try_keplerian_altitude(300.0, 0.015, 68.5, 65.2, 75.0, 0.0, epoch, earth_j2000)?;
54 // Print in in Keplerian form.
55 println!("{orbit:x}");
56
57 // There are two ways to propagate an orbit. We can make a quick approximation assuming only two-body
58 // motion. This is a useful first order approximation but it isn't used in real-world applications.
59
60 // This approach is a feature of ANISE.
61 let future_orbit_tb = orbit.at_epoch(epoch + Unit::Day * 3)?;
62 println!("{future_orbit_tb:x}");
63
64 // Two body propagation relies solely on Kepler's laws, so only the true anomaly will change.
65 println!(
66 "SMA changed by {:.3e} km",
67 orbit.sma_km()? - future_orbit_tb.sma_km()?
68 );
69 println!(
70 "ECC changed by {:.3e}",
71 orbit.ecc()? - future_orbit_tb.ecc()?
72 );
73 println!(
74 "INC changed by {:.3e} deg",
75 orbit.inc_deg()? - future_orbit_tb.inc_deg()?
76 );
77 println!(
78 "RAAN changed by {:.3e} deg",
79 orbit.raan_deg()? - future_orbit_tb.raan_deg()?
80 );
81 println!(
82 "AOP changed by {:.3e} deg",
83 orbit.aop_deg()? - future_orbit_tb.aop_deg()?
84 );
85 println!(
86 "TA changed by {:.3} deg",
87 orbit.ta_deg()? - future_orbit_tb.ta_deg()?
88 );
89
90 // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
91 // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
92 // models such as solar radiation pressure.
93
94 // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
95 let sc = Spacecraft::builder()
96 .orbit(orbit)
97 .mass(Mass::from_dry_mass(9.60))
98 .srp(SRPData {
99 area_m2: 10e-4,
100 coeff_reflectivity: 1.1,
101 })
102 .build();
103 println!("{sc:x}");
104
105 // Set up the spacecraft dynamics.
106
107 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
108 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
109 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
110
111 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
112 // We're using the JGM3 model here, which is the default in GMAT.
113 let mut jgm3_meta = MetaFile {
114 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
115 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
116 };
117 // And let's download it if we don't have it yet.
118 jgm3_meta.process(true)?;
119
120 // Build the spherical harmonics.
121 // The harmonics must be computed in the body fixed frame.
122 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
123 let harmonics_21x21 = Harmonics::from_stor(
124 almanac.frame_info(IAU_EARTH_FRAME)?,
125 HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
126 );
127
128 // Include the spherical harmonics into the orbital dynamics.
129 orbital_dyn.accel_models.push(harmonics_21x21);
130
131 // We define the solar radiation pressure, using the default solar flux and accounting only
132 // for the eclipsing caused by the Earth.
133 let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
134
135 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
136 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
137 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
138
139 println!("{dynamics}");
140
141 // Finally, let's propagate this orbit to the same epoch as above.
142 // The first returned value is the spacecraft state at the final epoch.
143 // The second value is the full trajectory where the step size is variable step used by the propagator.
144 let (future_sc, trajectory) = Propagator::default(dynamics)
145 .with(sc, almanac.clone())
146 .until_epoch_with_traj(future_orbit_tb.epoch)?;
147
148 println!("=== High fidelity propagation ===");
149 println!(
150 "SMA changed by {:.3} km",
151 orbit.sma_km()? - future_sc.orbit.sma_km()?
152 );
153 println!(
154 "ECC changed by {:.6}",
155 orbit.ecc()? - future_sc.orbit.ecc()?
156 );
157 println!(
158 "INC changed by {:.3e} deg",
159 orbit.inc_deg()? - future_sc.orbit.inc_deg()?
160 );
161 println!(
162 "RAAN changed by {:.3} deg",
163 orbit.raan_deg()? - future_sc.orbit.raan_deg()?
164 );
165 println!(
166 "AOP changed by {:.3} deg",
167 orbit.aop_deg()? - future_sc.orbit.aop_deg()?
168 );
169 println!(
170 "TA changed by {:.3} deg",
171 orbit.ta_deg()? - future_sc.orbit.ta_deg()?
172 );
173
174 // We also have access to the full trajectory throughout the propagation.
175 println!("{trajectory}");
176
177 // With the trajectory, let's build a few data products.
178
179 // 1. Export the trajectory as a CCSDS OEM version 2.0 file and as a parquet file, which includes the Keplerian orbital elements.
180
181 trajectory.to_oem_file(
182 "./01_cubesat_hf_prop.oem",
183 ExportCfg::builder().step(Unit::Minute * 2).build(),
184 )?;
185
186 trajectory.to_parquet_with_cfg(
187 "./01_cubesat_hf_prop.parquet",
188 ExportCfg::builder().step(Unit::Minute * 2).build(),
189 )?;
190
191 // 2. Compare the difference in the radial-intrack-crosstrack frame between the high fidelity
192 // and Keplerian propagation. The RIC frame is commonly used to compute the difference in position
193 // and velocity of different spacecraft.
194 // 3. Compute the azimuth, elevation, range, and range-rate data of that spacecraft as seen from Boulder, CO, USA.
195
196 let boulder_station = GroundStation::from_point(
197 "Boulder, CO, USA".to_string(),
198 40.014984, // latitude in degrees
199 -105.270546, // longitude in degrees
200 1.6550, // altitude in kilometers
201 almanac.frame_info(IAU_EARTH_FRAME)?,
202 );
203
204 // We iterate over the trajectory, grabbing a state every two minutes.
205 let mut offset_s = vec![];
206 let mut epoch_str = vec![];
207 let mut ric_x_km = vec![];
208 let mut ric_y_km = vec![];
209 let mut ric_z_km = vec![];
210 let mut ric_vx_km_s = vec![];
211 let mut ric_vy_km_s = vec![];
212 let mut ric_vz_km_s = vec![];
213
214 let mut azimuth_deg = vec![];
215 let mut elevation_deg = vec![];
216 let mut range_km = vec![];
217 let mut range_rate_km_s = vec![];
218 for state in trajectory.every(Unit::Minute * 2) {
219 // Try to compute the Keplerian/two body state just in time.
220 // This method occasionally fails to converge on an appropriate true anomaly
221 // from the mean anomaly. If that happens, we just skip this state.
222 // The high fidelity and Keplerian states diverge continuously, and we're curious
223 // about the divergence in this quick analysis.
224 let this_epoch = state.epoch();
225 match orbit.at_epoch(this_epoch) {
226 Ok(tb_then) => {
227 offset_s.push((this_epoch - orbit.epoch).to_seconds());
228 epoch_str.push(format!("{this_epoch}"));
229 // Compute the two body state just in time.
230 let ric = state.orbit.ric_difference(&tb_then)?;
231 ric_x_km.push(ric.radius_km.x);
232 ric_y_km.push(ric.radius_km.y);
233 ric_z_km.push(ric.radius_km.z);
234 ric_vx_km_s.push(ric.velocity_km_s.x);
235 ric_vy_km_s.push(ric.velocity_km_s.y);
236 ric_vz_km_s.push(ric.velocity_km_s.z);
237
238 // Compute the AER data for each state.
239 let aer = almanac.azimuth_elevation_range_sez(
240 state.orbit,
241 boulder_station.to_orbit(this_epoch, &almanac)?,
242 None,
243 None,
244 )?;
245 azimuth_deg.push(aer.azimuth_deg);
246 elevation_deg.push(aer.elevation_deg);
247 range_km.push(aer.range_km);
248 range_rate_km_s.push(aer.range_rate_km_s);
249 }
250 Err(e) => warn!("{} {e}", state.epoch()),
251 };
252 }
253
254 // Build the data frames.
255 let ric_df = df!(
256 "Offset (s)" => offset_s.clone(),
257 "Epoch" => epoch_str.clone(),
258 "RIC X (km)" => ric_x_km,
259 "RIC Y (km)" => ric_y_km,
260 "RIC Z (km)" => ric_z_km,
261 "RIC VX (km/s)" => ric_vx_km_s,
262 "RIC VY (km/s)" => ric_vy_km_s,
263 "RIC VZ (km/s)" => ric_vz_km_s,
264 )?;
265
266 println!("RIC difference at start\n{}", ric_df.head(Some(10)));
267 println!("RIC difference at end\n{}", ric_df.tail(Some(10)));
268
269 let aer_df = df!(
270 "Offset (s)" => offset_s.clone(),
271 "Epoch" => epoch_str.clone(),
272 "azimuth (deg)" => azimuth_deg,
273 "elevation (deg)" => elevation_deg,
274 "range (km)" => range_km,
275 "range rate (km/s)" => range_rate_km_s,
276 )?;
277
278 // Finally, let's see when the spacecraft is visible, assuming 15 degrees minimum elevation.
279 let mask = aer_df
280 .column("elevation (deg)")?
281 .gt(&Column::Scalar(ScalarColumn::new(
282 "elevation mask (deg)".into(),
283 Scalar::new(DataType::Float64, AnyValue::Float64(15.0)),
284 offset_s.len(),
285 )))?;
286 let cubesat_visible = aer_df.filter(&mask)?;
287
288 println!("{cubesat_visible}");
289
290 Ok(())
291}examples/04_lro_od/main.rs (lines 132-135)
35fn main() -> Result<(), Box<dyn Error>> {
36 pel::init();
37
38 // ====================== //
39 // === ALMANAC SET UP === //
40 // ====================== //
41
42 // Dynamics models require planetary constants and ephemerides to be defined.
43 // Let's start by grabbing those by using ANISE's MetaAlmanac.
44
45 let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
46 .iter()
47 .collect();
48
49 let meta = data_folder.join("lro-dynamics.dhall");
50
51 // Load this ephem in the general Almanac we're using for this analysis.
52 let mut almanac = MetaAlmanac::new(meta.to_string_lossy().as_ref())
53 .map_err(Box::new)?
54 .process(true)
55 .map_err(Box::new)?;
56
57 let mut moon_pc = almanac.get_planetary_data_from_id(MOON).unwrap();
58 moon_pc.mu_km3_s2 = 4902.74987;
59 almanac.set_planetary_data_from_id(MOON, moon_pc).unwrap();
60
61 let mut earth = almanac.get_planetary_data_from_id(EARTH).unwrap();
62 earth.mu_km3_s2 = 398600.436;
63 almanac.set_planetary_data_from_id(EARTH, earth).unwrap();
64
65 // Save this new kernel for reuse.
66 // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
67 almanac
68 .planetary_data
69 .values()
70 .next()
71 .unwrap()
72 .save_as(&data_folder.join("lro-specific.pca"), true)?;
73
74 // Lock the almanac (an Arc is a read only structure).
75 let almanac = Arc::new(almanac);
76
77 // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
78 // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
79 // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
80 // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
81 let lro_frame = Frame::from_ephem_j2000(-85);
82
83 // To build the trajectory we need to provide a spacecraft template.
84 let sc_template = Spacecraft::builder()
85 .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
86 .srp(SRPData {
87 // SRP configuration is arbitrary, but we will be estimating it anyway.
88 area_m2: 3.9 * 2.7,
89 coeff_reflectivity: 0.96,
90 })
91 .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
92 .build();
93 // Now we can build the trajectory from the BSP file.
94 // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
95 let traj_as_flown = Traj::from_bsp(
96 lro_frame,
97 MOON_J2000,
98 almanac.clone(),
99 sc_template,
100 5.seconds(),
101 Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
102 Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
103 Aberration::LT,
104 Some("LRO".to_string()),
105 )?;
106
107 println!("{traj_as_flown}");
108
109 // ====================== //
110 // === MODEL MATCHING === //
111 // ====================== //
112
113 // Set up the spacecraft dynamics.
114
115 // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
116 // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
117 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
118
119 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
120 // We're using the GRAIL JGGRX model.
121 let mut jggrx_meta = MetaFile {
122 uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
123 crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
124 };
125 // And let's download it if we don't have it yet.
126 jggrx_meta.process(true)?;
127
128 // Build the spherical harmonics.
129 // The harmonics must be computed in the body fixed frame.
130 // We're using the long term prediction of the Moon principal axes frame.
131 let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
132 let sph_harmonics = Harmonics::from_stor(
133 almanac.frame_info(moon_pa_frame)?,
134 HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
135 );
136
137 // Include the spherical harmonics into the orbital dynamics.
138 orbital_dyn.accel_models.push(sph_harmonics);
139
140 // We define the solar radiation pressure, using the default solar flux and accounting only
141 // for the eclipsing caused by the Earth and Moon.
142 // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
143 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
144
145 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
146 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
147 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
148
149 println!("{dynamics}");
150
151 // Now we can build the propagator.
152 let setup = Propagator::default_dp78(dynamics.clone());
153
154 // For reference, let's build the trajectory with Nyx's models from that LRO state.
155 let (sim_final, traj_as_sim) = setup
156 .with(*traj_as_flown.first(), almanac.clone())
157 .until_epoch_with_traj(traj_as_flown.last().epoch())?;
158
159 println!("SIM INIT: {:x}", traj_as_flown.first());
160 println!("SIM FINAL: {sim_final:x}");
161 // Compute RIC difference between SIM and LRO ephem
162 let sim_lro_delta = sim_final
163 .orbit
164 .ric_difference(&traj_as_flown.last().orbit)?;
165 println!("{traj_as_sim}");
166 println!(
167 "SIM v LRO - RIC Position (m): {:.3}",
168 sim_lro_delta.radius_km * 1e3
169 );
170 println!(
171 "SIM v LRO - RIC Velocity (m/s): {:.3}",
172 sim_lro_delta.velocity_km_s * 1e3
173 );
174
175 traj_as_sim.ric_diff_to_parquet(
176 &traj_as_flown,
177 "./data/04_output/04_lro_sim_truth_error.parquet",
178 ExportCfg::default(),
179 )?;
180
181 // ==================== //
182 // === OD SIMULATOR === //
183 // ==================== //
184
185 // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
186 // and the truth LRO state.
187
188 // Therefore, we will actually run an estimation from a dispersed LRO state.
189 // The sc_seed is the true LRO state from the BSP.
190 let sc_seed = *traj_as_flown.first();
191
192 // Load the Deep Space Network ground stations.
193 // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
194 let ground_station_file: PathBuf = [
195 env!("CARGO_MANIFEST_DIR"),
196 "examples",
197 "04_lro_od",
198 "dsn-network.yaml",
199 ]
200 .iter()
201 .collect();
202
203 let devices = GroundStation::load_named(ground_station_file)?;
204
205 let mut proc_devices = devices.clone();
206
207 // Increase the noise in the devices to accept more measurements.
208 for gs in proc_devices.values_mut() {
209 if let Some(noise) = &mut gs
210 .stochastic_noises
211 .as_mut()
212 .unwrap()
213 .get_mut(&MeasurementType::Range)
214 {
215 *noise.white_noise.as_mut().unwrap() *= 3.0;
216 }
217 }
218
219 // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
220 // Nyx can build a tracking schedule for you based on the first station with access.
221 let trkconfg_yaml: PathBuf = [
222 env!("CARGO_MANIFEST_DIR"),
223 "examples",
224 "04_lro_od",
225 "tracking-cfg.yaml",
226 ]
227 .iter()
228 .collect();
229
230 let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
231
232 // Build the tracking arc simulation to generate a "standard measurement".
233 let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::with_seed(
234 devices.clone(),
235 traj_as_flown.clone(),
236 configs,
237 123, // Set a seed for reproducibility
238 )?;
239
240 trk.build_schedule(almanac.clone())?;
241 let arc = trk.generate_measurements(almanac.clone())?;
242 // Save the simulated tracking data
243 arc.to_parquet_simple("./data/04_output/04_lro_simulated_tracking.parquet")?;
244
245 // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
246 println!("{arc}");
247
248 // Now that we have simulated measurements, we'll run the orbit determination.
249
250 // ===================== //
251 // === OD ESTIMATION === //
252 // ===================== //
253
254 let sc = SpacecraftUncertainty::builder()
255 .nominal(sc_seed)
256 .frame(LocalFrame::RIC)
257 .x_km(0.5)
258 .y_km(0.5)
259 .z_km(0.5)
260 .vx_km_s(5e-3)
261 .vy_km_s(5e-3)
262 .vz_km_s(5e-3)
263 .build();
264
265 // Build the filter initial estimate, which we will reuse in the filter.
266 let mut initial_estimate = sc.to_estimate()?;
267 initial_estimate.covar *= 3.0;
268
269 println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
270
271 // Build the SNC in the Moon J2000 frame, specified as a velocity noise over time.
272 let process_noise = ProcessNoise3D::from_velocity_km_s(
273 &[1e-10, 1e-10, 1e-10],
274 1 * Unit::Hour,
275 10 * Unit::Minute,
276 None,
277 );
278
279 println!("{process_noise}");
280
281 // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
282 let odp = SpacecraftKalmanOD::new(
283 setup,
284 KalmanVariant::ReferenceUpdate,
285 Some(ResidRejectCrit::default()),
286 proc_devices,
287 almanac.clone(),
288 )
289 .with_process_noise(process_noise);
290
291 let od_sol = odp.process_arc(initial_estimate, &arc)?;
292
293 let final_est = od_sol.estimates.last().unwrap();
294
295 println!("{final_est}");
296
297 let ric_err = traj_as_flown
298 .at(final_est.epoch())?
299 .orbit
300 .ric_difference(&final_est.orbital_state())?;
301 println!("== RIC at end ==");
302 println!("RIC Position (m): {:.3}", ric_err.radius_km * 1e3);
303 println!("RIC Velocity (m/s): {:.3}", ric_err.velocity_km_s * 1e3);
304
305 println!(
306 "Num residuals rejected: #{}",
307 od_sol.rejected_residuals().len()
308 );
309 println!(
310 "Percentage within +/-3: {}",
311 od_sol.residual_ratio_within_threshold(3.0).unwrap()
312 );
313 println!("Ratios normal? {}", od_sol.is_normal(None).unwrap());
314
315 od_sol.to_parquet(
316 "./data/04_output/04_lro_od_results.parquet",
317 ExportCfg::default(),
318 )?;
319
320 // Create the ephemeris
321 let ephem = od_sol.to_ephemeris("LRO rebuilt".to_string());
322 let ephem_start = ephem.start_epoch().unwrap();
323 let ephem_end = ephem.end_epoch().unwrap();
324 // Check that the covariance is PSD throughout the ephemeris by interpolating it.
325 for epoch in TimeSeries::inclusive(ephem_start, ephem_end, Unit::Minute * 5) {
326 ephem
327 .covar_at(
328 epoch,
329 anise::ephemerides::ephemeris::LocalFrame::RIC,
330 &almanac,
331 )
332 .unwrap_or_else(|e| panic!("covar not PSD at {epoch}: {e}"));
333 }
334 // Export as BSP!
335 ephem
336 .write_spice_bsp(-85, "./data/04_output/04_lro_rebuilt.bsp", None)
337 .expect("could not built BSP");
338 let new_almanac = Almanac::default()
339 .load("./data/04_output/04_lro_rebuilt.bsp")
340 .unwrap();
341 new_almanac.describe(None, None, None, None, None, None, None, None);
342 let (spk_start, spk_end) = new_almanac.spk_domain(-85).unwrap();
343
344 assert!((ephem_start - spk_start).abs() < Unit::Microsecond * 1);
345 assert!((ephem_end - spk_end).abs() < Unit::Microsecond * 1);
346
347 // In our case, we have the truth trajectory from NASA.
348 // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
349 // Export the OD trajectory first.
350 let od_trajectory = od_sol.to_traj()?;
351 // Build the RIC difference.
352 od_trajectory.ric_diff_to_parquet(
353 &traj_as_flown,
354 "./data/04_output/04_lro_od_truth_error.parquet",
355 ExportCfg::default(),
356 )?;
357
358 Ok(())
359}Trait Implementations§
Source§impl AccelModel for Harmonics
impl AccelModel for Harmonics
Auto Trait Implementations§
impl Freeze for Harmonics
impl RefUnwindSafe for Harmonics
impl Send for Harmonics
impl Sync for Harmonics
impl Unpin for Harmonics
impl UnwindSafe for Harmonics
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self is actually part of its subset T (and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self to the equivalent element of its superset.