pub struct EclipseLocator {
pub light_source: Frame,
pub shadow_bodies: Vec<Frame>,
}
Fields§
§light_source: Frame
§shadow_bodies: Vec<Frame>
Implementations§
Source§impl EclipseLocator
impl EclipseLocator
Sourcepub fn cislunar(almanac: Arc<Almanac>) -> Self
pub fn cislunar(almanac: Arc<Almanac>) -> Self
Creates a new typical eclipse locator. The light source is the Sun, and the shadow bodies are the Earth and the Moon.
Examples found in repository?
examples/03_geo_analysis/stationkeeping.rs (line 121)
28fn main() -> Result<(), Box<dyn Error>> {
29 pel::init();
30 // Set up the dynamics like in the orbit raise.
31 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
32 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
33
34 // Define the GEO orbit, and we're just going to maintain it very tightly.
35 let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
36 let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
37 println!("{orbit:x}");
38
39 let sc = Spacecraft::builder()
40 .orbit(orbit)
41 .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
42 .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
43 .thruster(Thruster {
44 // "NEXT-STEP" row in Table 2
45 isp_s: 4435.0,
46 thrust_N: 0.472,
47 })
48 .mode(GuidanceMode::Thrust) // Start thrusting immediately.
49 .build();
50
51 // Set up the spacecraft dynamics like in the orbit raise example.
52
53 let prop_time = 30.0 * Unit::Day;
54
55 // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
56 let objectives = &[
57 Objective::within_tolerance(StateParameter::SMA, 42_164.0, 5.0), // 5 km
58 Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
59 Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
60 ];
61
62 let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2)?;
63 println!("{ruggiero_ctrl}");
64
65 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
66
67 let mut jgm3_meta = MetaFile {
68 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
69 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
70 };
71 jgm3_meta.process(true)?;
72
73 let harmonics = Harmonics::from_stor(
74 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
75 HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true)?,
76 );
77 orbital_dyn.accel_models.push(harmonics);
78
79 let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
80 let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
81 .with_guidance_law(ruggiero_ctrl.clone());
82
83 println!("{sc_dynamics}");
84
85 // Finally, let's use the Monte Carlo framework built into Nyx to propagate spacecraft.
86
87 // Let's start by defining the dispersion.
88 // The MultivariateNormal structure allows us to define the dispersions in any of the orbital parameters, but these are applied directly in the Cartesian state space.
89 // Note that additional validation on the MVN is in progress -- https://github.com/nyx-space/nyx/issues/339.
90 let mc_rv = MvnSpacecraft::new(
91 sc,
92 vec![StateDispersion::zero_mean(StateParameter::SMA, 3.0)],
93 )?;
94
95 let my_mc = MonteCarlo::new(
96 sc, // Nominal state
97 mc_rv,
98 "03_geo_sk".to_string(), // Scenario name
99 None, // No specific seed specified, so one will be drawn from the computer's entropy.
100 );
101
102 // Build the propagator setup.
103 let setup = Propagator::rk89(
104 sc_dynamics.clone(),
105 IntegratorOptions::builder()
106 .min_step(10.0_f64.seconds())
107 .error_ctrl(ErrorControl::RSSCartesianStep)
108 .build(),
109 );
110
111 let num_runs = 25;
112 let rslts = my_mc.run_until_epoch(setup, almanac.clone(), sc.epoch() + prop_time, num_runs);
113
114 assert_eq!(rslts.runs.len(), num_runs);
115
116 // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
117
118 rslts.to_parquet(
119 "03_geo_sk.parquet",
120 Some(vec![
121 &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
122 ]),
123 ExportCfg::default(),
124 almanac,
125 )?;
126
127 Ok(())
128}
More examples
examples/03_geo_analysis/raise.rs (line 135)
27fn main() -> Result<(), Box<dyn Error>> {
28 pel::init();
29
30 // Dynamics models require planetary constants and ephemerides to be defined.
31 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
32 // This will automatically download the DE440s planetary ephemeris,
33 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
34 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
35 // planetary constants kernels.
36 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
37 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
38 // references to many functions.
39 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
40 // Fetch the EME2000 frame from the Almabac
41 let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
42 // Define the orbit epoch
43 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45 // Build the spacecraft itself.
46 // Using slide 6 of https://aerospace.org/sites/default/files/2018-11/Davis-Mayberry_HPSEP_11212018.pdf
47 // for the "next gen" SEP characteristics.
48
49 // GTO start
50 let orbit = Orbit::keplerian(24505.9, 0.725, 7.05, 0.0, 0.0, 0.0, epoch, eme2k);
51
52 let sc = Spacecraft::builder()
53 .orbit(orbit)
54 .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
55 .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
56 .thruster(Thruster {
57 // "NEXT-STEP" row in Table 2
58 isp_s: 4435.0,
59 thrust_N: 0.472,
60 })
61 .mode(GuidanceMode::Thrust) // Start thrusting immediately.
62 .build();
63
64 let prop_time = 180.0 * Unit::Day;
65
66 // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
67 let objectives = &[
68 Objective::within_tolerance(StateParameter::SMA, 42_165.0, 20.0),
69 Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
70 Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
71 ];
72
73 // Ensure that we only thrust if we have more than 20% illumination.
74 let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2).unwrap();
75 println!("{ruggiero_ctrl}");
76
77 // Define the high fidelity dynamics
78
79 // Set up the spacecraft dynamics.
80
81 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
82 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
83 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
84
85 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
86 // We're using the JGM3 model here, which is the default in GMAT.
87 let mut jgm3_meta = MetaFile {
88 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
89 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
90 };
91 // And let's download it if we don't have it yet.
92 jgm3_meta.process(true)?;
93
94 // Build the spherical harmonics.
95 // The harmonics must be computed in the body fixed frame.
96 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
97 let harmonics = Harmonics::from_stor(
98 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
99 HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true).unwrap(),
100 );
101
102 // Include the spherical harmonics into the orbital dynamics.
103 orbital_dyn.accel_models.push(harmonics);
104
105 // We define the solar radiation pressure, using the default solar flux and accounting only
106 // for the eclipsing caused by the Earth.
107 let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
108
109 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
110 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
111 let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
112 .with_guidance_law(ruggiero_ctrl.clone());
113
114 println!("{:x}", orbit);
115
116 // We specify a minimum step in the propagator because the Ruggiero control would otherwise drive this step very low.
117 let (final_state, traj) = Propagator::rk89(
118 sc_dynamics.clone(),
119 IntegratorOptions::builder()
120 .min_step(10.0_f64.seconds())
121 .error_ctrl(ErrorControl::RSSCartesianStep)
122 .build(),
123 )
124 .with(sc, almanac.clone())
125 .for_duration_with_traj(prop_time)?;
126
127 let prop_usage = sc.mass.prop_mass_kg - final_state.mass.prop_mass_kg;
128 println!("{:x}", final_state.orbit);
129 println!("prop usage: {:.3} kg", prop_usage);
130
131 // Finally, export the results for analysis, including the penumbra percentage throughout the orbit raise.
132 traj.to_parquet(
133 "./03_geo_raise.parquet",
134 Some(vec![
135 &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
136 ]),
137 ExportCfg::default(),
138 almanac,
139 )?;
140
141 for status_line in ruggiero_ctrl.status(&final_state) {
142 println!("{status_line}");
143 }
144
145 ruggiero_ctrl
146 .achieved(&final_state)
147 .expect("objective not achieved");
148
149 Ok(())
150}
examples/02_jwst_covar_monte_carlo/main.rs (line 153)
26fn main() -> Result<(), Box<dyn Error>> {
27 pel::init();
28 // Dynamics models require planetary constants and ephemerides to be defined.
29 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
31
32 // Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
33 // Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
34 let mut latest_jwst_ephem = MetaFile {
35 uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
36 crc32: None,
37 };
38 latest_jwst_ephem.process(true)?;
39
40 // Load this ephem in the general Almanac we're using for this analysis.
41 let almanac = Arc::new(
42 MetaAlmanac::latest()
43 .map_err(Box::new)?
44 .load_from_metafile(latest_jwst_ephem, true)?,
45 );
46
47 // By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
48 // in the BSP. We need this ID in order to query the ephemeris.
49 const JWST_NAIF_ID: i32 = -170;
50 // Let's build a frame in the J2000 orientation centered on the JWST.
51 const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);
52
53 // Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
54 let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
55 println!("JWST defined from {earliest_epoch} to {latest_epoch}");
56 // Fetch the state, printing it in the Earth J2000 frame.
57 let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
58 println!("{jwst_orbit:x}");
59
60 // Build the spacecraft
61 // SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
62 // SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
63 let jwst = Spacecraft::builder()
64 .orbit(jwst_orbit)
65 .srp(SRPData {
66 area_m2: 21.197 * 14.162,
67 coeff_reflectivity: 1.56,
68 })
69 .mass(Mass::from_dry_mass(6200.0))
70 .build();
71
72 // Build up the spacecraft uncertainty builder.
73 // We can use the spacecraft uncertainty structure to build this up.
74 // We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
75 // in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
76 // Nyx can also estimate the deviation of the spacecraft parameters.
77 let jwst_uncertainty = SpacecraftUncertainty::builder()
78 .nominal(jwst)
79 .frame(LocalFrame::RIC)
80 .x_km(0.5)
81 .y_km(0.3)
82 .z_km(1.5)
83 .vx_km_s(1e-4)
84 .vy_km_s(0.6e-3)
85 .vz_km_s(3e-3)
86 .build();
87
88 println!("{jwst_uncertainty}");
89
90 // Build the Kalman filter estimate.
91 // Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
92 // but this approach requires quite a bit more boilerplate code.
93 let jwst_estimate = jwst_uncertainty.to_estimate()?;
94
95 // Set up the spacecraft dynamics.
96 // We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
97 // We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.
98
99 let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
100 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102 // Finalize setting up the dynamics.
103 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
104
105 // Build the propagator set up to use for the whole analysis.
106 let setup = Propagator::default(dynamics);
107
108 // All of the analysis will use this duration.
109 let prediction_duration = 6.5 * Unit::Day;
110
111 // === Covariance mapping ===
112 // For the covariance mapping / prediction, we'll use the common orbit determination approach.
113 // This is done by setting up a spacecraft OD process, and predicting for the analysis duration.
114
115 let ckf = KF::no_snc(jwst_estimate);
116
117 // Build the propagation instance for the OD process.
118 let prop = setup.with(jwst.with_stm(), almanac.clone());
119 let mut odp = SpacecraftODProcess::ckf(prop, ckf, BTreeMap::new(), None, almanac.clone());
120
121 // Define the prediction step, i.e. how often we want to know the covariance.
122 let step = 1_i64.minutes();
123 // Finally, predict, and export the trajectory with covariance to a parquet file.
124 odp.predict_for(step, prediction_duration)?;
125 odp.to_parquet(
126 &TrackingDataArc::default(),
127 "./02_jwst_covar_map.parquet",
128 ExportCfg::default(),
129 )?;
130
131 // === Monte Carlo framework ===
132 // Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.
133
134 let my_mc = MonteCarlo::new(
135 jwst, // Nominal state
136 jwst_estimate.to_random_variable()?,
137 "02_jwst".to_string(), // Scenario name
138 None, // No specific seed specified, so one will be drawn from the computer's entropy.
139 );
140
141 let num_runs = 5_000;
142 let rslts = my_mc.run_until_epoch(
143 setup,
144 almanac.clone(),
145 jwst.epoch() + prediction_duration,
146 num_runs,
147 );
148
149 assert_eq!(rslts.runs.len(), num_runs);
150 // Finally, export these results, computing the eclipse percentage for all of these results.
151
152 // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
153 let eclipse_loc = EclipseLocator::cislunar(almanac.clone());
154 let umbra_event = eclipse_loc.to_umbra_event();
155 let penumbra_event = eclipse_loc.to_penumbra_event();
156
157 rslts.to_parquet(
158 "02_jwst_monte_carlo.parquet",
159 Some(vec![&umbra_event, &penumbra_event]),
160 ExportCfg::default(),
161 almanac,
162 )?;
163
164 Ok(())
165}
examples/03_geo_analysis/drift.rs (line 155)
26fn main() -> Result<(), Box<dyn Error>> {
27 pel::init();
28 // Dynamics models require planetary constants and ephemerides to be defined.
29 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30 // This will automatically download the DE440s planetary ephemeris,
31 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
32 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
33 // planetary constants kernels.
34 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
35 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
36 // references to many functions.
37 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
38 // Define the orbit epoch
39 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
40
41 // Define the orbit.
42 // First we need to fetch the Earth J2000 from information from the Almanac.
43 // This allows the frame to include the gravitational parameters and the shape of the Earth,
44 // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
45 // by loading a different set of planetary constants.
46 let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
47
48 // Placing this GEO bird just above Colorado.
49 // In theory, the eccentricity is zero, but in practice, it's about 1e-5 to 1e-6 at best.
50 let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
51 // Print in in Keplerian form.
52 println!("{orbit:x}");
53
54 let state_bf = almanac.transform_to(orbit, IAU_EARTH_FRAME, None)?;
55 let (orig_lat_deg, orig_long_deg, orig_alt_km) = state_bf.latlongalt()?;
56
57 // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
58 // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
59 // models such as solar radiation pressure.
60
61 // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
62 let sc = Spacecraft::builder()
63 .orbit(orbit)
64 .mass(Mass::from_dry_mass(9.60))
65 .srp(SRPData {
66 area_m2: 10e-4,
67 coeff_reflectivity: 1.1,
68 })
69 .build();
70 println!("{sc:x}");
71
72 // Set up the spacecraft dynamics.
73
74 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
75 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
76 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
77
78 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
79 // We're using the JGM3 model here, which is the default in GMAT.
80 let mut jgm3_meta = MetaFile {
81 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
82 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
83 };
84 // And let's download it if we don't have it yet.
85 jgm3_meta.process(true)?;
86
87 // Build the spherical harmonics.
88 // The harmonics must be computed in the body fixed frame.
89 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
90 let harmonics_21x21 = Harmonics::from_stor(
91 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
92 HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
93 );
94
95 // Include the spherical harmonics into the orbital dynamics.
96 orbital_dyn.accel_models.push(harmonics_21x21);
97
98 // We define the solar radiation pressure, using the default solar flux and accounting only
99 // for the eclipsing caused by the Earth and Moon.
100 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
103 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
104 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
105
106 println!("{dynamics}");
107
108 // Finally, let's propagate this orbit to the same epoch as above.
109 // The first returned value is the spacecraft state at the final epoch.
110 // The second value is the full trajectory where the step size is variable step used by the propagator.
111 let (future_sc, trajectory) = Propagator::default(dynamics)
112 .with(sc, almanac.clone())
113 .until_epoch_with_traj(epoch + Unit::Century * 0.03)?;
114
115 println!("=== High fidelity propagation ===");
116 println!(
117 "SMA changed by {:.3} km",
118 orbit.sma_km()? - future_sc.orbit.sma_km()?
119 );
120 println!(
121 "ECC changed by {:.6}",
122 orbit.ecc()? - future_sc.orbit.ecc()?
123 );
124 println!(
125 "INC changed by {:.3e} deg",
126 orbit.inc_deg()? - future_sc.orbit.inc_deg()?
127 );
128 println!(
129 "RAAN changed by {:.3} deg",
130 orbit.raan_deg()? - future_sc.orbit.raan_deg()?
131 );
132 println!(
133 "AOP changed by {:.3} deg",
134 orbit.aop_deg()? - future_sc.orbit.aop_deg()?
135 );
136 println!(
137 "TA changed by {:.3} deg",
138 orbit.ta_deg()? - future_sc.orbit.ta_deg()?
139 );
140
141 // We also have access to the full trajectory throughout the propagation.
142 println!("{trajectory}");
143
144 println!("Spacecraft params after 3 years without active control:\n{future_sc:x}");
145
146 // With the trajectory, let's build a few data products.
147
148 // 1. Export the trajectory as a parquet file, which includes the Keplerian orbital elements.
149
150 let analysis_step = Unit::Minute * 5;
151
152 trajectory.to_parquet(
153 "./03_geo_hf_prop.parquet",
154 Some(vec![
155 &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
156 ]),
157 ExportCfg::builder().step(analysis_step).build(),
158 almanac.clone(),
159 )?;
160
161 // 2. Compute the latitude, longitude, and altitude throughout the trajectory by rotating the spacecraft position into the Earth body fixed frame.
162
163 // We iterate over the trajectory, grabbing a state every two minutes.
164 let mut offset_s = vec![];
165 let mut epoch_str = vec![];
166 let mut longitude_deg = vec![];
167 let mut latitude_deg = vec![];
168 let mut altitude_km = vec![];
169
170 for state in trajectory.every(analysis_step) {
171 // Convert the GEO bird state into the body fixed frame, and keep track of its latitude, longitude, and altitude.
172 // These define the GEO stationkeeping box.
173
174 let this_epoch = state.epoch();
175
176 offset_s.push((this_epoch - orbit.epoch).to_seconds());
177 epoch_str.push(this_epoch.to_isoformat());
178
179 let state_bf = almanac.transform_to(state.orbit, IAU_EARTH_FRAME, None)?;
180 let (lat_deg, long_deg, alt_km) = state_bf.latlongalt()?;
181 longitude_deg.push(long_deg);
182 latitude_deg.push(lat_deg);
183 altitude_km.push(alt_km);
184 }
185
186 println!(
187 "Longitude changed by {:.3} deg -- Box is 0.1 deg E-W",
188 orig_long_deg - longitude_deg.last().unwrap()
189 );
190
191 println!(
192 "Latitude changed by {:.3} deg -- Box is 0.05 deg N-S",
193 orig_lat_deg - latitude_deg.last().unwrap()
194 );
195
196 println!(
197 "Altitude changed by {:.3} km -- Box is 30 km",
198 orig_alt_km - altitude_km.last().unwrap()
199 );
200
201 // Build the station keeping data frame.
202 let mut sk_df = df!(
203 "Offset (s)" => offset_s.clone(),
204 "Epoch (UTC)" => epoch_str.clone(),
205 "Longitude E-W (deg)" => longitude_deg,
206 "Latitude N-S (deg)" => latitude_deg,
207 "Altitude (km)" => altitude_km,
208
209 )?;
210
211 // Create a file to write the Parquet to
212 let file = File::create("./03_geo_lla.parquet").expect("Could not create file");
213
214 // Create a ParquetWriter and write the DataFrame to the file
215 ParquetWriter::new(file).finish(&mut sk_df)?;
216
217 Ok(())
218}
Sourcepub fn compute(
&self,
observer: Orbit,
almanac: Arc<Almanac>,
) -> AlmanacResult<Occultation>
pub fn compute( &self, observer: Orbit, almanac: Arc<Almanac>, ) -> AlmanacResult<Occultation>
Compute the visibility/eclipse between an observer and an observed state
Sourcepub fn to_umbra_event(&self) -> UmbraEvent
pub fn to_umbra_event(&self) -> UmbraEvent
Creates an umbra event from this eclipse locator. Evaluation of the event, returns 0.0 for umbra, 1.0 for visibility (no shadow) and some value in between for penumbra
Examples found in repository?
examples/02_jwst_covar_monte_carlo/main.rs (line 154)
26fn main() -> Result<(), Box<dyn Error>> {
27 pel::init();
28 // Dynamics models require planetary constants and ephemerides to be defined.
29 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
31
32 // Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
33 // Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
34 let mut latest_jwst_ephem = MetaFile {
35 uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
36 crc32: None,
37 };
38 latest_jwst_ephem.process(true)?;
39
40 // Load this ephem in the general Almanac we're using for this analysis.
41 let almanac = Arc::new(
42 MetaAlmanac::latest()
43 .map_err(Box::new)?
44 .load_from_metafile(latest_jwst_ephem, true)?,
45 );
46
47 // By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
48 // in the BSP. We need this ID in order to query the ephemeris.
49 const JWST_NAIF_ID: i32 = -170;
50 // Let's build a frame in the J2000 orientation centered on the JWST.
51 const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);
52
53 // Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
54 let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
55 println!("JWST defined from {earliest_epoch} to {latest_epoch}");
56 // Fetch the state, printing it in the Earth J2000 frame.
57 let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
58 println!("{jwst_orbit:x}");
59
60 // Build the spacecraft
61 // SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
62 // SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
63 let jwst = Spacecraft::builder()
64 .orbit(jwst_orbit)
65 .srp(SRPData {
66 area_m2: 21.197 * 14.162,
67 coeff_reflectivity: 1.56,
68 })
69 .mass(Mass::from_dry_mass(6200.0))
70 .build();
71
72 // Build up the spacecraft uncertainty builder.
73 // We can use the spacecraft uncertainty structure to build this up.
74 // We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
75 // in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
76 // Nyx can also estimate the deviation of the spacecraft parameters.
77 let jwst_uncertainty = SpacecraftUncertainty::builder()
78 .nominal(jwst)
79 .frame(LocalFrame::RIC)
80 .x_km(0.5)
81 .y_km(0.3)
82 .z_km(1.5)
83 .vx_km_s(1e-4)
84 .vy_km_s(0.6e-3)
85 .vz_km_s(3e-3)
86 .build();
87
88 println!("{jwst_uncertainty}");
89
90 // Build the Kalman filter estimate.
91 // Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
92 // but this approach requires quite a bit more boilerplate code.
93 let jwst_estimate = jwst_uncertainty.to_estimate()?;
94
95 // Set up the spacecraft dynamics.
96 // We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
97 // We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.
98
99 let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
100 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102 // Finalize setting up the dynamics.
103 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
104
105 // Build the propagator set up to use for the whole analysis.
106 let setup = Propagator::default(dynamics);
107
108 // All of the analysis will use this duration.
109 let prediction_duration = 6.5 * Unit::Day;
110
111 // === Covariance mapping ===
112 // For the covariance mapping / prediction, we'll use the common orbit determination approach.
113 // This is done by setting up a spacecraft OD process, and predicting for the analysis duration.
114
115 let ckf = KF::no_snc(jwst_estimate);
116
117 // Build the propagation instance for the OD process.
118 let prop = setup.with(jwst.with_stm(), almanac.clone());
119 let mut odp = SpacecraftODProcess::ckf(prop, ckf, BTreeMap::new(), None, almanac.clone());
120
121 // Define the prediction step, i.e. how often we want to know the covariance.
122 let step = 1_i64.minutes();
123 // Finally, predict, and export the trajectory with covariance to a parquet file.
124 odp.predict_for(step, prediction_duration)?;
125 odp.to_parquet(
126 &TrackingDataArc::default(),
127 "./02_jwst_covar_map.parquet",
128 ExportCfg::default(),
129 )?;
130
131 // === Monte Carlo framework ===
132 // Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.
133
134 let my_mc = MonteCarlo::new(
135 jwst, // Nominal state
136 jwst_estimate.to_random_variable()?,
137 "02_jwst".to_string(), // Scenario name
138 None, // No specific seed specified, so one will be drawn from the computer's entropy.
139 );
140
141 let num_runs = 5_000;
142 let rslts = my_mc.run_until_epoch(
143 setup,
144 almanac.clone(),
145 jwst.epoch() + prediction_duration,
146 num_runs,
147 );
148
149 assert_eq!(rslts.runs.len(), num_runs);
150 // Finally, export these results, computing the eclipse percentage for all of these results.
151
152 // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
153 let eclipse_loc = EclipseLocator::cislunar(almanac.clone());
154 let umbra_event = eclipse_loc.to_umbra_event();
155 let penumbra_event = eclipse_loc.to_penumbra_event();
156
157 rslts.to_parquet(
158 "02_jwst_monte_carlo.parquet",
159 Some(vec![&umbra_event, &penumbra_event]),
160 ExportCfg::default(),
161 almanac,
162 )?;
163
164 Ok(())
165}
Sourcepub fn to_penumbra_event(&self) -> PenumbraEvent
pub fn to_penumbra_event(&self) -> PenumbraEvent
Creates a penumbra event from this eclipse locator
Examples found in repository?
examples/03_geo_analysis/stationkeeping.rs (line 121)
28fn main() -> Result<(), Box<dyn Error>> {
29 pel::init();
30 // Set up the dynamics like in the orbit raise.
31 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
32 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
33
34 // Define the GEO orbit, and we're just going to maintain it very tightly.
35 let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
36 let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
37 println!("{orbit:x}");
38
39 let sc = Spacecraft::builder()
40 .orbit(orbit)
41 .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
42 .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
43 .thruster(Thruster {
44 // "NEXT-STEP" row in Table 2
45 isp_s: 4435.0,
46 thrust_N: 0.472,
47 })
48 .mode(GuidanceMode::Thrust) // Start thrusting immediately.
49 .build();
50
51 // Set up the spacecraft dynamics like in the orbit raise example.
52
53 let prop_time = 30.0 * Unit::Day;
54
55 // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
56 let objectives = &[
57 Objective::within_tolerance(StateParameter::SMA, 42_164.0, 5.0), // 5 km
58 Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
59 Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
60 ];
61
62 let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2)?;
63 println!("{ruggiero_ctrl}");
64
65 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
66
67 let mut jgm3_meta = MetaFile {
68 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
69 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
70 };
71 jgm3_meta.process(true)?;
72
73 let harmonics = Harmonics::from_stor(
74 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
75 HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true)?,
76 );
77 orbital_dyn.accel_models.push(harmonics);
78
79 let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
80 let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
81 .with_guidance_law(ruggiero_ctrl.clone());
82
83 println!("{sc_dynamics}");
84
85 // Finally, let's use the Monte Carlo framework built into Nyx to propagate spacecraft.
86
87 // Let's start by defining the dispersion.
88 // The MultivariateNormal structure allows us to define the dispersions in any of the orbital parameters, but these are applied directly in the Cartesian state space.
89 // Note that additional validation on the MVN is in progress -- https://github.com/nyx-space/nyx/issues/339.
90 let mc_rv = MvnSpacecraft::new(
91 sc,
92 vec![StateDispersion::zero_mean(StateParameter::SMA, 3.0)],
93 )?;
94
95 let my_mc = MonteCarlo::new(
96 sc, // Nominal state
97 mc_rv,
98 "03_geo_sk".to_string(), // Scenario name
99 None, // No specific seed specified, so one will be drawn from the computer's entropy.
100 );
101
102 // Build the propagator setup.
103 let setup = Propagator::rk89(
104 sc_dynamics.clone(),
105 IntegratorOptions::builder()
106 .min_step(10.0_f64.seconds())
107 .error_ctrl(ErrorControl::RSSCartesianStep)
108 .build(),
109 );
110
111 let num_runs = 25;
112 let rslts = my_mc.run_until_epoch(setup, almanac.clone(), sc.epoch() + prop_time, num_runs);
113
114 assert_eq!(rslts.runs.len(), num_runs);
115
116 // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
117
118 rslts.to_parquet(
119 "03_geo_sk.parquet",
120 Some(vec![
121 &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
122 ]),
123 ExportCfg::default(),
124 almanac,
125 )?;
126
127 Ok(())
128}
More examples
examples/03_geo_analysis/raise.rs (line 135)
27fn main() -> Result<(), Box<dyn Error>> {
28 pel::init();
29
30 // Dynamics models require planetary constants and ephemerides to be defined.
31 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
32 // This will automatically download the DE440s planetary ephemeris,
33 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
34 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
35 // planetary constants kernels.
36 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
37 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
38 // references to many functions.
39 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
40 // Fetch the EME2000 frame from the Almabac
41 let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
42 // Define the orbit epoch
43 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45 // Build the spacecraft itself.
46 // Using slide 6 of https://aerospace.org/sites/default/files/2018-11/Davis-Mayberry_HPSEP_11212018.pdf
47 // for the "next gen" SEP characteristics.
48
49 // GTO start
50 let orbit = Orbit::keplerian(24505.9, 0.725, 7.05, 0.0, 0.0, 0.0, epoch, eme2k);
51
52 let sc = Spacecraft::builder()
53 .orbit(orbit)
54 .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
55 .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
56 .thruster(Thruster {
57 // "NEXT-STEP" row in Table 2
58 isp_s: 4435.0,
59 thrust_N: 0.472,
60 })
61 .mode(GuidanceMode::Thrust) // Start thrusting immediately.
62 .build();
63
64 let prop_time = 180.0 * Unit::Day;
65
66 // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
67 let objectives = &[
68 Objective::within_tolerance(StateParameter::SMA, 42_165.0, 20.0),
69 Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
70 Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
71 ];
72
73 // Ensure that we only thrust if we have more than 20% illumination.
74 let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2).unwrap();
75 println!("{ruggiero_ctrl}");
76
77 // Define the high fidelity dynamics
78
79 // Set up the spacecraft dynamics.
80
81 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
82 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
83 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
84
85 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
86 // We're using the JGM3 model here, which is the default in GMAT.
87 let mut jgm3_meta = MetaFile {
88 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
89 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
90 };
91 // And let's download it if we don't have it yet.
92 jgm3_meta.process(true)?;
93
94 // Build the spherical harmonics.
95 // The harmonics must be computed in the body fixed frame.
96 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
97 let harmonics = Harmonics::from_stor(
98 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
99 HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true).unwrap(),
100 );
101
102 // Include the spherical harmonics into the orbital dynamics.
103 orbital_dyn.accel_models.push(harmonics);
104
105 // We define the solar radiation pressure, using the default solar flux and accounting only
106 // for the eclipsing caused by the Earth.
107 let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
108
109 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
110 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
111 let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
112 .with_guidance_law(ruggiero_ctrl.clone());
113
114 println!("{:x}", orbit);
115
116 // We specify a minimum step in the propagator because the Ruggiero control would otherwise drive this step very low.
117 let (final_state, traj) = Propagator::rk89(
118 sc_dynamics.clone(),
119 IntegratorOptions::builder()
120 .min_step(10.0_f64.seconds())
121 .error_ctrl(ErrorControl::RSSCartesianStep)
122 .build(),
123 )
124 .with(sc, almanac.clone())
125 .for_duration_with_traj(prop_time)?;
126
127 let prop_usage = sc.mass.prop_mass_kg - final_state.mass.prop_mass_kg;
128 println!("{:x}", final_state.orbit);
129 println!("prop usage: {:.3} kg", prop_usage);
130
131 // Finally, export the results for analysis, including the penumbra percentage throughout the orbit raise.
132 traj.to_parquet(
133 "./03_geo_raise.parquet",
134 Some(vec![
135 &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
136 ]),
137 ExportCfg::default(),
138 almanac,
139 )?;
140
141 for status_line in ruggiero_ctrl.status(&final_state) {
142 println!("{status_line}");
143 }
144
145 ruggiero_ctrl
146 .achieved(&final_state)
147 .expect("objective not achieved");
148
149 Ok(())
150}
examples/02_jwst_covar_monte_carlo/main.rs (line 155)
26fn main() -> Result<(), Box<dyn Error>> {
27 pel::init();
28 // Dynamics models require planetary constants and ephemerides to be defined.
29 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
31
32 // Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
33 // Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
34 let mut latest_jwst_ephem = MetaFile {
35 uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
36 crc32: None,
37 };
38 latest_jwst_ephem.process(true)?;
39
40 // Load this ephem in the general Almanac we're using for this analysis.
41 let almanac = Arc::new(
42 MetaAlmanac::latest()
43 .map_err(Box::new)?
44 .load_from_metafile(latest_jwst_ephem, true)?,
45 );
46
47 // By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
48 // in the BSP. We need this ID in order to query the ephemeris.
49 const JWST_NAIF_ID: i32 = -170;
50 // Let's build a frame in the J2000 orientation centered on the JWST.
51 const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);
52
53 // Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
54 let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
55 println!("JWST defined from {earliest_epoch} to {latest_epoch}");
56 // Fetch the state, printing it in the Earth J2000 frame.
57 let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
58 println!("{jwst_orbit:x}");
59
60 // Build the spacecraft
61 // SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
62 // SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
63 let jwst = Spacecraft::builder()
64 .orbit(jwst_orbit)
65 .srp(SRPData {
66 area_m2: 21.197 * 14.162,
67 coeff_reflectivity: 1.56,
68 })
69 .mass(Mass::from_dry_mass(6200.0))
70 .build();
71
72 // Build up the spacecraft uncertainty builder.
73 // We can use the spacecraft uncertainty structure to build this up.
74 // We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
75 // in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
76 // Nyx can also estimate the deviation of the spacecraft parameters.
77 let jwst_uncertainty = SpacecraftUncertainty::builder()
78 .nominal(jwst)
79 .frame(LocalFrame::RIC)
80 .x_km(0.5)
81 .y_km(0.3)
82 .z_km(1.5)
83 .vx_km_s(1e-4)
84 .vy_km_s(0.6e-3)
85 .vz_km_s(3e-3)
86 .build();
87
88 println!("{jwst_uncertainty}");
89
90 // Build the Kalman filter estimate.
91 // Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
92 // but this approach requires quite a bit more boilerplate code.
93 let jwst_estimate = jwst_uncertainty.to_estimate()?;
94
95 // Set up the spacecraft dynamics.
96 // We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
97 // We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.
98
99 let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
100 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102 // Finalize setting up the dynamics.
103 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
104
105 // Build the propagator set up to use for the whole analysis.
106 let setup = Propagator::default(dynamics);
107
108 // All of the analysis will use this duration.
109 let prediction_duration = 6.5 * Unit::Day;
110
111 // === Covariance mapping ===
112 // For the covariance mapping / prediction, we'll use the common orbit determination approach.
113 // This is done by setting up a spacecraft OD process, and predicting for the analysis duration.
114
115 let ckf = KF::no_snc(jwst_estimate);
116
117 // Build the propagation instance for the OD process.
118 let prop = setup.with(jwst.with_stm(), almanac.clone());
119 let mut odp = SpacecraftODProcess::ckf(prop, ckf, BTreeMap::new(), None, almanac.clone());
120
121 // Define the prediction step, i.e. how often we want to know the covariance.
122 let step = 1_i64.minutes();
123 // Finally, predict, and export the trajectory with covariance to a parquet file.
124 odp.predict_for(step, prediction_duration)?;
125 odp.to_parquet(
126 &TrackingDataArc::default(),
127 "./02_jwst_covar_map.parquet",
128 ExportCfg::default(),
129 )?;
130
131 // === Monte Carlo framework ===
132 // Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.
133
134 let my_mc = MonteCarlo::new(
135 jwst, // Nominal state
136 jwst_estimate.to_random_variable()?,
137 "02_jwst".to_string(), // Scenario name
138 None, // No specific seed specified, so one will be drawn from the computer's entropy.
139 );
140
141 let num_runs = 5_000;
142 let rslts = my_mc.run_until_epoch(
143 setup,
144 almanac.clone(),
145 jwst.epoch() + prediction_duration,
146 num_runs,
147 );
148
149 assert_eq!(rslts.runs.len(), num_runs);
150 // Finally, export these results, computing the eclipse percentage for all of these results.
151
152 // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
153 let eclipse_loc = EclipseLocator::cislunar(almanac.clone());
154 let umbra_event = eclipse_loc.to_umbra_event();
155 let penumbra_event = eclipse_loc.to_penumbra_event();
156
157 rslts.to_parquet(
158 "02_jwst_monte_carlo.parquet",
159 Some(vec![&umbra_event, &penumbra_event]),
160 ExportCfg::default(),
161 almanac,
162 )?;
163
164 Ok(())
165}
examples/03_geo_analysis/drift.rs (line 155)
26fn main() -> Result<(), Box<dyn Error>> {
27 pel::init();
28 // Dynamics models require planetary constants and ephemerides to be defined.
29 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30 // This will automatically download the DE440s planetary ephemeris,
31 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
32 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
33 // planetary constants kernels.
34 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
35 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
36 // references to many functions.
37 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
38 // Define the orbit epoch
39 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
40
41 // Define the orbit.
42 // First we need to fetch the Earth J2000 from information from the Almanac.
43 // This allows the frame to include the gravitational parameters and the shape of the Earth,
44 // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
45 // by loading a different set of planetary constants.
46 let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
47
48 // Placing this GEO bird just above Colorado.
49 // In theory, the eccentricity is zero, but in practice, it's about 1e-5 to 1e-6 at best.
50 let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
51 // Print in in Keplerian form.
52 println!("{orbit:x}");
53
54 let state_bf = almanac.transform_to(orbit, IAU_EARTH_FRAME, None)?;
55 let (orig_lat_deg, orig_long_deg, orig_alt_km) = state_bf.latlongalt()?;
56
57 // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
58 // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
59 // models such as solar radiation pressure.
60
61 // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
62 let sc = Spacecraft::builder()
63 .orbit(orbit)
64 .mass(Mass::from_dry_mass(9.60))
65 .srp(SRPData {
66 area_m2: 10e-4,
67 coeff_reflectivity: 1.1,
68 })
69 .build();
70 println!("{sc:x}");
71
72 // Set up the spacecraft dynamics.
73
74 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
75 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
76 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
77
78 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
79 // We're using the JGM3 model here, which is the default in GMAT.
80 let mut jgm3_meta = MetaFile {
81 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
82 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
83 };
84 // And let's download it if we don't have it yet.
85 jgm3_meta.process(true)?;
86
87 // Build the spherical harmonics.
88 // The harmonics must be computed in the body fixed frame.
89 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
90 let harmonics_21x21 = Harmonics::from_stor(
91 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
92 HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
93 );
94
95 // Include the spherical harmonics into the orbital dynamics.
96 orbital_dyn.accel_models.push(harmonics_21x21);
97
98 // We define the solar radiation pressure, using the default solar flux and accounting only
99 // for the eclipsing caused by the Earth and Moon.
100 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
103 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
104 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
105
106 println!("{dynamics}");
107
108 // Finally, let's propagate this orbit to the same epoch as above.
109 // The first returned value is the spacecraft state at the final epoch.
110 // The second value is the full trajectory where the step size is variable step used by the propagator.
111 let (future_sc, trajectory) = Propagator::default(dynamics)
112 .with(sc, almanac.clone())
113 .until_epoch_with_traj(epoch + Unit::Century * 0.03)?;
114
115 println!("=== High fidelity propagation ===");
116 println!(
117 "SMA changed by {:.3} km",
118 orbit.sma_km()? - future_sc.orbit.sma_km()?
119 );
120 println!(
121 "ECC changed by {:.6}",
122 orbit.ecc()? - future_sc.orbit.ecc()?
123 );
124 println!(
125 "INC changed by {:.3e} deg",
126 orbit.inc_deg()? - future_sc.orbit.inc_deg()?
127 );
128 println!(
129 "RAAN changed by {:.3} deg",
130 orbit.raan_deg()? - future_sc.orbit.raan_deg()?
131 );
132 println!(
133 "AOP changed by {:.3} deg",
134 orbit.aop_deg()? - future_sc.orbit.aop_deg()?
135 );
136 println!(
137 "TA changed by {:.3} deg",
138 orbit.ta_deg()? - future_sc.orbit.ta_deg()?
139 );
140
141 // We also have access to the full trajectory throughout the propagation.
142 println!("{trajectory}");
143
144 println!("Spacecraft params after 3 years without active control:\n{future_sc:x}");
145
146 // With the trajectory, let's build a few data products.
147
148 // 1. Export the trajectory as a parquet file, which includes the Keplerian orbital elements.
149
150 let analysis_step = Unit::Minute * 5;
151
152 trajectory.to_parquet(
153 "./03_geo_hf_prop.parquet",
154 Some(vec![
155 &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
156 ]),
157 ExportCfg::builder().step(analysis_step).build(),
158 almanac.clone(),
159 )?;
160
161 // 2. Compute the latitude, longitude, and altitude throughout the trajectory by rotating the spacecraft position into the Earth body fixed frame.
162
163 // We iterate over the trajectory, grabbing a state every two minutes.
164 let mut offset_s = vec![];
165 let mut epoch_str = vec![];
166 let mut longitude_deg = vec![];
167 let mut latitude_deg = vec![];
168 let mut altitude_km = vec![];
169
170 for state in trajectory.every(analysis_step) {
171 // Convert the GEO bird state into the body fixed frame, and keep track of its latitude, longitude, and altitude.
172 // These define the GEO stationkeeping box.
173
174 let this_epoch = state.epoch();
175
176 offset_s.push((this_epoch - orbit.epoch).to_seconds());
177 epoch_str.push(this_epoch.to_isoformat());
178
179 let state_bf = almanac.transform_to(state.orbit, IAU_EARTH_FRAME, None)?;
180 let (lat_deg, long_deg, alt_km) = state_bf.latlongalt()?;
181 longitude_deg.push(long_deg);
182 latitude_deg.push(lat_deg);
183 altitude_km.push(alt_km);
184 }
185
186 println!(
187 "Longitude changed by {:.3} deg -- Box is 0.1 deg E-W",
188 orig_long_deg - longitude_deg.last().unwrap()
189 );
190
191 println!(
192 "Latitude changed by {:.3} deg -- Box is 0.05 deg N-S",
193 orig_lat_deg - latitude_deg.last().unwrap()
194 );
195
196 println!(
197 "Altitude changed by {:.3} km -- Box is 30 km",
198 orig_alt_km - altitude_km.last().unwrap()
199 );
200
201 // Build the station keeping data frame.
202 let mut sk_df = df!(
203 "Offset (s)" => offset_s.clone(),
204 "Epoch (UTC)" => epoch_str.clone(),
205 "Longitude E-W (deg)" => longitude_deg,
206 "Latitude N-S (deg)" => latitude_deg,
207 "Altitude (km)" => altitude_km,
208
209 )?;
210
211 // Create a file to write the Parquet to
212 let file = File::create("./03_geo_lla.parquet").expect("Could not create file");
213
214 // Create a ParquetWriter and write the DataFrame to the file
215 ParquetWriter::new(file).finish(&mut sk_df)?;
216
217 Ok(())
218}
Trait Implementations§
Source§impl Clone for EclipseLocator
impl Clone for EclipseLocator
Source§fn clone(&self) -> EclipseLocator
fn clone(&self) -> EclipseLocator
Returns a copy of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreAuto Trait Implementations§
impl Freeze for EclipseLocator
impl RefUnwindSafe for EclipseLocator
impl Send for EclipseLocator
impl Sync for EclipseLocator
impl Unpin for EclipseLocator
impl UnwindSafe for EclipseLocator
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.