nyx_space::cosmic::eclipse

Struct EclipseLocator

Source
pub struct EclipseLocator {
    pub light_source: Frame,
    pub shadow_bodies: Vec<Frame>,
}

Fields§

§light_source: Frame§shadow_bodies: Vec<Frame>

Implementations§

Source§

impl EclipseLocator

Source

pub fn cislunar(almanac: Arc<Almanac>) -> Self

Creates a new typical eclipse locator. The light source is the Sun, and the shadow bodies are the Earth and the Moon.

Examples found in repository?
examples/03_geo_analysis/stationkeeping.rs (line 122)
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();
    // Set up the dynamics like in the orbit raise.
    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);

    // Define the GEO orbit, and we're just going to maintain it very tightly.
    let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
    let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
    println!("{orbit:x}");

    let sc = Spacecraft::builder()
        .orbit(orbit)
        .dry_mass_kg(1000.0) // 1000 kg of dry mass
        .fuel_mass_kg(1000.0) // 1000 kg of fuel, totalling 2.0 tons
        .srp(SrpConfig::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
        .thruster(Thruster {
            // "NEXT-STEP" row in Table 2
            isp_s: 4435.0,
            thrust_N: 0.472,
        })
        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
        .build();

    // Set up the spacecraft dynamics like in the orbit raise example.

    let prop_time = 30.0 * Unit::Day;

    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
    let objectives = &[
        Objective::within_tolerance(StateParameter::SMA, 42_164.0, 5.0), // 5 km
        Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
        Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
    ];

    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2)?;
    println!("{ruggiero_ctrl}");

    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);

    let mut jgm3_meta = MetaFile {
        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
    };
    jgm3_meta.process(true)?;

    let harmonics = Harmonics::from_stor(
        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true)?,
    );
    orbital_dyn.accel_models.push(harmonics);

    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
        .with_guidance_law(ruggiero_ctrl.clone());

    println!("{sc_dynamics}");

    // Finally, let's use the Monte Carlo framework built into Nyx to propagate spacecraft.

    // Let's start by defining the dispersion.
    // The MultivariateNormal structure allows us to define the dispersions in any of the orbital parameters, but these are applied directly in the Cartesian state space.
    // Note that additional validation on the MVN is in progress -- https://github.com/nyx-space/nyx/issues/339.
    let mc_rv = MultivariateNormal::new(
        sc,
        vec![StateDispersion::zero_mean(StateParameter::SMA, 3.0)],
    )?;

    let my_mc = MonteCarlo::new(
        sc, // Nominal state
        mc_rv,
        "03_geo_sk".to_string(), // Scenario name
        None, // No specific seed specified, so one will be drawn from the computer's entropy.
    );

    // Build the propagator setup.
    let setup = Propagator::rk89(
        sc_dynamics.clone(),
        IntegratorOptions::builder()
            .min_step(10.0_f64.seconds())
            .error_ctrl(ErrorControl::RSSCartesianStep)
            .build(),
    );

    let num_runs = 25;
    let rslts = my_mc.run_until_epoch(setup, almanac.clone(), sc.epoch() + prop_time, num_runs);

    assert_eq!(rslts.runs.len(), num_runs);

    // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.

    rslts.to_parquet(
        "03_geo_sk.parquet",
        Some(vec![
            &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
        ]),
        ExportCfg::default(),
        almanac,
    )?;

    Ok(())
}
More examples
Hide additional examples
examples/03_geo_analysis/raise.rs (line 136)
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();

    // Dynamics models require planetary constants and ephemerides to be defined.
    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
    // This will automatically download the DE440s planetary ephemeris,
    // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
    // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
    // planetary constants kernels.
    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
    // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
    // references to many functions.
    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
    // Fetch the EME2000 frame from the Almabac
    let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
    // Define the orbit epoch
    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);

    // Build the spacecraft itself.
    // Using slide 6 of https://aerospace.org/sites/default/files/2018-11/Davis-Mayberry_HPSEP_11212018.pdf
    // for the "next gen" SEP characteristics.

    // GTO start
    let orbit = Orbit::keplerian(24505.9, 0.725, 7.05, 0.0, 0.0, 0.0, epoch, eme2k);

    let sc = Spacecraft::builder()
        .orbit(orbit)
        .dry_mass_kg(1000.0) // 1000 kg of dry mass
        .fuel_mass_kg(1000.0) // 1000 kg of fuel, totalling 2.0 tons
        .srp(SrpConfig::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
        .thruster(Thruster {
            // "NEXT-STEP" row in Table 2
            isp_s: 4435.0,
            thrust_N: 0.472,
        })
        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
        .build();

    let prop_time = 180.0 * Unit::Day;

    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
    let objectives = &[
        Objective::within_tolerance(StateParameter::SMA, 42_165.0, 20.0),
        Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
        Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
    ];

    // Ensure that we only thrust if we have more than 20% illumination.
    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2).unwrap();
    println!("{ruggiero_ctrl}");

    // Define the high fidelity dynamics

    // Set up the spacecraft dynamics.

    // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
    // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);

    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
    // We're using the JGM3 model here, which is the default in GMAT.
    let mut jgm3_meta = MetaFile {
        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
    };
    // And let's download it if we don't have it yet.
    jgm3_meta.process(true)?;

    // Build the spherical harmonics.
    // The harmonics must be computed in the body fixed frame.
    // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
    let harmonics = Harmonics::from_stor(
        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true).unwrap(),
    );

    // Include the spherical harmonics into the orbital dynamics.
    orbital_dyn.accel_models.push(harmonics);

    // We define the solar radiation pressure, using the default solar flux and accounting only
    // for the eclipsing caused by the Earth.
    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;

    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
        .with_guidance_law(ruggiero_ctrl.clone());

    println!("{:x}", orbit);

    // We specify a minimum step in the propagator because the Ruggiero control would otherwise drive this step very low.
    let (final_state, traj) = Propagator::rk89(
        sc_dynamics.clone(),
        IntegratorOptions::builder()
            .min_step(10.0_f64.seconds())
            .error_ctrl(ErrorControl::RSSCartesianStep)
            .build(),
    )
    .with(sc, almanac.clone())
    .for_duration_with_traj(prop_time)?;

    let fuel_usage = sc.fuel_mass_kg - final_state.fuel_mass_kg;
    println!("{:x}", final_state.orbit);
    println!("fuel usage: {:.3} kg", fuel_usage);

    // Finally, export the results for analysis, including the penumbra percentage throughout the orbit raise.
    traj.to_parquet(
        "./03_geo_raise.parquet",
        Some(vec![
            &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
        ]),
        ExportCfg::default(),
        almanac,
    )?;

    for status_line in ruggiero_ctrl.status(&final_state) {
        println!("{status_line}");
    }

    ruggiero_ctrl
        .achieved(&final_state)
        .expect("objective not achieved");

    Ok(())
}
examples/02_jwst_covar_monte_carlo/main.rs (line 149)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();
    // Dynamics models require planetary constants and ephemerides to be defined.
    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.

    // Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
    // Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
    let mut latest_jwst_ephem = MetaFile {
        uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
        crc32: None,
    };
    latest_jwst_ephem.process(true)?;

    // Load this ephem in the general Almanac we're using for this analysis.
    let almanac = Arc::new(
        MetaAlmanac::latest()
            .map_err(Box::new)?
            .load_from_metafile(latest_jwst_ephem, true)?,
    );

    // By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
    // in the BSP. We need this ID in order to query the ephemeris.
    const JWST_NAIF_ID: i32 = -170;
    // Let's build a frame in the J2000 orientation centered on the JWST.
    const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);

    // Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
    let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
    println!("JWST defined from {earliest_epoch} to {latest_epoch}");
    // Fetch the state, printing it in the Earth J2000 frame.
    let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
    println!("{jwst_orbit:x}");

    // Build the spacecraft
    // SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
    // SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
    let jwst = Spacecraft::builder()
        .orbit(jwst_orbit)
        .srp(SrpConfig {
            area_m2: 21.197 * 14.162,
            cr: 1.56,
        })
        .dry_mass_kg(6200.0)
        .build();

    // Build up the spacecraft uncertainty builder.
    // We can use the spacecraft uncertainty structure to build this up.
    // We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
    // in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
    // Nyx can also estimate the deviation of the spacecraft parameters.
    let jwst_uncertainty = SpacecraftUncertainty::builder()
        .nominal(jwst)
        .frame(LocalFrame::RIC)
        .x_km(0.5)
        .y_km(0.3)
        .z_km(1.5)
        .vx_km_s(1e-4)
        .vy_km_s(0.6e-3)
        .vz_km_s(3e-3)
        .build();

    println!("{jwst_uncertainty}");

    // Build the Kalman filter estimate.
    // Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
    // but this approach requires quite a bit more boilerplate code.
    let jwst_estimate = jwst_uncertainty.to_estimate()?;

    // Set up the spacecraft dynamics.
    // We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
    // We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.

    let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;

    // Finalize setting up the dynamics.
    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);

    // Build the propagator set up to use for the whole analysis.
    let setup = Propagator::default(dynamics);

    // All of the analysis will use this duration.
    let prediction_duration = 6.5 * Unit::Day;

    // === Covariance mapping ===
    // For the covariance mapping / prediction, we'll use the common orbit determination approach.
    // This is done by setting up a spacecraft OD process, and predicting for the analysis duration.

    let ckf = KF::no_snc(jwst_estimate);

    // Build the propagation instance for the OD process.
    let prop = setup.with(jwst.with_stm(), almanac.clone());
    let mut odp = SpacecraftODProcess::ckf(prop, ckf, None, almanac.clone());

    // Define the prediction step, i.e. how often we want to know the covariance.
    let step = 1_i64.minutes();
    // Finally, predict, and export the trajectory with covariance to a parquet file.
    odp.predict_for(step, prediction_duration)?;
    odp.to_parquet("./02_jwst_covar_map.parquet", ExportCfg::default())?;

    // === Monte Carlo framework ===
    // Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.

    let my_mc = MonteCarlo::new(
        jwst, // Nominal state
        jwst_estimate.to_random_variable()?,
        "02_jwst".to_string(), // Scenario name
        None, // No specific seed specified, so one will be drawn from the computer's entropy.
    );

    let num_runs = 5_000;
    let rslts = my_mc.run_until_epoch(
        setup,
        almanac.clone(),
        jwst.epoch() + prediction_duration,
        num_runs,
    );

    assert_eq!(rslts.runs.len(), num_runs);
    // Finally, export these results, computing the eclipse percentage for all of these results.

    // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
    let eclipse_loc = EclipseLocator::cislunar(almanac.clone());
    let umbra_event = eclipse_loc.to_umbra_event();
    let penumbra_event = eclipse_loc.to_penumbra_event();

    rslts.to_parquet(
        "02_jwst_monte_carlo.parquet",
        Some(vec![&umbra_event, &penumbra_event]),
        ExportCfg::default(),
        almanac,
    )?;

    Ok(())
}
examples/03_geo_analysis/drift.rs (line 155)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();
    // Dynamics models require planetary constants and ephemerides to be defined.
    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
    // This will automatically download the DE440s planetary ephemeris,
    // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
    // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
    // planetary constants kernels.
    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
    // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
    // references to many functions.
    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
    // Define the orbit epoch
    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);

    // Define the orbit.
    // First we need to fetch the Earth J2000 from information from the Almanac.
    // This allows the frame to include the gravitational parameters and the shape of the Earth,
    // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
    // by loading a different set of planetary constants.
    let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;

    // Placing this GEO bird just above Colorado.
    // In theory, the eccentricity is zero, but in practice, it's about 1e-5 to 1e-6 at best.
    let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
    // Print in in Keplerian form.
    println!("{orbit:x}");

    let state_bf = almanac.transform_to(orbit, IAU_EARTH_FRAME, None)?;
    let (orig_lat_deg, orig_long_deg, orig_alt_km) = state_bf.latlongalt()?;

    // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
    // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
    // models such as solar radiation pressure.

    // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
    let sc = Spacecraft::builder()
        .orbit(orbit)
        .dry_mass_kg(9.60)
        .srp(SrpConfig {
            area_m2: 10e-4,
            cr: 1.1,
        })
        .build();
    println!("{sc:x}");

    // Set up the spacecraft dynamics.

    // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
    // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);

    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
    // We're using the JGM3 model here, which is the default in GMAT.
    let mut jgm3_meta = MetaFile {
        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
    };
    // And let's download it if we don't have it yet.
    jgm3_meta.process(true)?;

    // Build the spherical harmonics.
    // The harmonics must be computed in the body fixed frame.
    // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
    let harmonics_21x21 = Harmonics::from_stor(
        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
        HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
    );

    // Include the spherical harmonics into the orbital dynamics.
    orbital_dyn.accel_models.push(harmonics_21x21);

    // We define the solar radiation pressure, using the default solar flux and accounting only
    // for the eclipsing caused by the Earth and Moon.
    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;

    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);

    println!("{dynamics}");

    // Finally, let's propagate this orbit to the same epoch as above.
    // The first returned value is the spacecraft state at the final epoch.
    // The second value is the full trajectory where the step size is variable step used by the propagator.
    let (future_sc, trajectory) = Propagator::default(dynamics)
        .with(sc, almanac.clone())
        .until_epoch_with_traj(epoch + Unit::Century * 0.03)?;

    println!("=== High fidelity propagation ===");
    println!(
        "SMA changed by {:.3} km",
        orbit.sma_km()? - future_sc.orbit.sma_km()?
    );
    println!(
        "ECC changed by {:.6}",
        orbit.ecc()? - future_sc.orbit.ecc()?
    );
    println!(
        "INC changed by {:.3e} deg",
        orbit.inc_deg()? - future_sc.orbit.inc_deg()?
    );
    println!(
        "RAAN changed by {:.3} deg",
        orbit.raan_deg()? - future_sc.orbit.raan_deg()?
    );
    println!(
        "AOP changed by {:.3} deg",
        orbit.aop_deg()? - future_sc.orbit.aop_deg()?
    );
    println!(
        "TA changed by {:.3} deg",
        orbit.ta_deg()? - future_sc.orbit.ta_deg()?
    );

    // We also have access to the full trajectory throughout the propagation.
    println!("{trajectory}");

    println!("Spacecraft params after 3 years without active control:\n{future_sc:x}");

    // With the trajectory, let's build a few data products.

    // 1. Export the trajectory as a parquet file, which includes the Keplerian orbital elements.

    let analysis_step = Unit::Minute * 5;

    trajectory.to_parquet(
        "./03_geo_hf_prop.parquet",
        Some(vec![
            &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
        ]),
        ExportCfg::builder().step(analysis_step).build(),
        almanac.clone(),
    )?;

    // 2. Compute the latitude, longitude, and altitude throughout the trajectory by rotating the spacecraft position into the Earth body fixed frame.

    // We iterate over the trajectory, grabbing a state every two minutes.
    let mut offset_s = vec![];
    let mut epoch_str = vec![];
    let mut longitude_deg = vec![];
    let mut latitude_deg = vec![];
    let mut altitude_km = vec![];

    for state in trajectory.every(analysis_step) {
        // Convert the GEO bird state into the body fixed frame, and keep track of its latitude, longitude, and altitude.
        // These define the GEO stationkeeping box.

        let this_epoch = state.epoch();

        offset_s.push((this_epoch - orbit.epoch).to_seconds());
        epoch_str.push(this_epoch.to_isoformat());

        let state_bf = almanac.transform_to(state.orbit, IAU_EARTH_FRAME, None)?;
        let (lat_deg, long_deg, alt_km) = state_bf.latlongalt()?;
        longitude_deg.push(long_deg);
        latitude_deg.push(lat_deg);
        altitude_km.push(alt_km);
    }

    println!(
        "Longitude changed by {:.3} deg -- Box is 0.1 deg E-W",
        orig_long_deg - longitude_deg.last().unwrap()
    );

    println!(
        "Latitude changed by {:.3} deg -- Box is 0.05 deg N-S",
        orig_lat_deg - latitude_deg.last().unwrap()
    );

    println!(
        "Altitude changed by {:.3} km -- Box is 30 km",
        orig_alt_km - altitude_km.last().unwrap()
    );

    // Build the station keeping data frame.
    let mut sk_df = df!(
        "Offset (s)" => offset_s.clone(),
        "Epoch (UTC)" => epoch_str.clone(),
        "Longitude E-W (deg)" => longitude_deg,
        "Latitude N-S (deg)" => latitude_deg,
        "Altitude (km)" => altitude_km,

    )?;

    // Create a file to write the Parquet to
    let file = File::create("./03_geo_lla.parquet").expect("Could not create file");

    // Create a ParquetWriter and write the DataFrame to the file
    ParquetWriter::new(file).finish(&mut sk_df)?;

    Ok(())
}
Source

pub fn compute( &self, observer: Orbit, almanac: Arc<Almanac>, ) -> AlmanacResult<Occultation>

Compute the visibility/eclipse between an observer and an observed state

Source

pub fn to_umbra_event(&self) -> UmbraEvent

Creates an umbra event from this eclipse locator. Evaluation of the event, returns 0.0 for umbra, 1.0 for visibility (no shadow) and some value in between for penumbra

Examples found in repository?
examples/02_jwst_covar_monte_carlo/main.rs (line 150)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();
    // Dynamics models require planetary constants and ephemerides to be defined.
    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.

    // Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
    // Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
    let mut latest_jwst_ephem = MetaFile {
        uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
        crc32: None,
    };
    latest_jwst_ephem.process(true)?;

    // Load this ephem in the general Almanac we're using for this analysis.
    let almanac = Arc::new(
        MetaAlmanac::latest()
            .map_err(Box::new)?
            .load_from_metafile(latest_jwst_ephem, true)?,
    );

    // By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
    // in the BSP. We need this ID in order to query the ephemeris.
    const JWST_NAIF_ID: i32 = -170;
    // Let's build a frame in the J2000 orientation centered on the JWST.
    const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);

    // Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
    let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
    println!("JWST defined from {earliest_epoch} to {latest_epoch}");
    // Fetch the state, printing it in the Earth J2000 frame.
    let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
    println!("{jwst_orbit:x}");

    // Build the spacecraft
    // SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
    // SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
    let jwst = Spacecraft::builder()
        .orbit(jwst_orbit)
        .srp(SrpConfig {
            area_m2: 21.197 * 14.162,
            cr: 1.56,
        })
        .dry_mass_kg(6200.0)
        .build();

    // Build up the spacecraft uncertainty builder.
    // We can use the spacecraft uncertainty structure to build this up.
    // We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
    // in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
    // Nyx can also estimate the deviation of the spacecraft parameters.
    let jwst_uncertainty = SpacecraftUncertainty::builder()
        .nominal(jwst)
        .frame(LocalFrame::RIC)
        .x_km(0.5)
        .y_km(0.3)
        .z_km(1.5)
        .vx_km_s(1e-4)
        .vy_km_s(0.6e-3)
        .vz_km_s(3e-3)
        .build();

    println!("{jwst_uncertainty}");

    // Build the Kalman filter estimate.
    // Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
    // but this approach requires quite a bit more boilerplate code.
    let jwst_estimate = jwst_uncertainty.to_estimate()?;

    // Set up the spacecraft dynamics.
    // We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
    // We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.

    let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;

    // Finalize setting up the dynamics.
    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);

    // Build the propagator set up to use for the whole analysis.
    let setup = Propagator::default(dynamics);

    // All of the analysis will use this duration.
    let prediction_duration = 6.5 * Unit::Day;

    // === Covariance mapping ===
    // For the covariance mapping / prediction, we'll use the common orbit determination approach.
    // This is done by setting up a spacecraft OD process, and predicting for the analysis duration.

    let ckf = KF::no_snc(jwst_estimate);

    // Build the propagation instance for the OD process.
    let prop = setup.with(jwst.with_stm(), almanac.clone());
    let mut odp = SpacecraftODProcess::ckf(prop, ckf, None, almanac.clone());

    // Define the prediction step, i.e. how often we want to know the covariance.
    let step = 1_i64.minutes();
    // Finally, predict, and export the trajectory with covariance to a parquet file.
    odp.predict_for(step, prediction_duration)?;
    odp.to_parquet("./02_jwst_covar_map.parquet", ExportCfg::default())?;

    // === Monte Carlo framework ===
    // Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.

    let my_mc = MonteCarlo::new(
        jwst, // Nominal state
        jwst_estimate.to_random_variable()?,
        "02_jwst".to_string(), // Scenario name
        None, // No specific seed specified, so one will be drawn from the computer's entropy.
    );

    let num_runs = 5_000;
    let rslts = my_mc.run_until_epoch(
        setup,
        almanac.clone(),
        jwst.epoch() + prediction_duration,
        num_runs,
    );

    assert_eq!(rslts.runs.len(), num_runs);
    // Finally, export these results, computing the eclipse percentage for all of these results.

    // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
    let eclipse_loc = EclipseLocator::cislunar(almanac.clone());
    let umbra_event = eclipse_loc.to_umbra_event();
    let penumbra_event = eclipse_loc.to_penumbra_event();

    rslts.to_parquet(
        "02_jwst_monte_carlo.parquet",
        Some(vec![&umbra_event, &penumbra_event]),
        ExportCfg::default(),
        almanac,
    )?;

    Ok(())
}
Source

pub fn to_penumbra_event(&self) -> PenumbraEvent

Creates a penumbra event from this eclipse locator

Examples found in repository?
examples/03_geo_analysis/stationkeeping.rs (line 122)
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();
    // Set up the dynamics like in the orbit raise.
    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);

    // Define the GEO orbit, and we're just going to maintain it very tightly.
    let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
    let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
    println!("{orbit:x}");

    let sc = Spacecraft::builder()
        .orbit(orbit)
        .dry_mass_kg(1000.0) // 1000 kg of dry mass
        .fuel_mass_kg(1000.0) // 1000 kg of fuel, totalling 2.0 tons
        .srp(SrpConfig::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
        .thruster(Thruster {
            // "NEXT-STEP" row in Table 2
            isp_s: 4435.0,
            thrust_N: 0.472,
        })
        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
        .build();

    // Set up the spacecraft dynamics like in the orbit raise example.

    let prop_time = 30.0 * Unit::Day;

    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
    let objectives = &[
        Objective::within_tolerance(StateParameter::SMA, 42_164.0, 5.0), // 5 km
        Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
        Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
    ];

    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2)?;
    println!("{ruggiero_ctrl}");

    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);

    let mut jgm3_meta = MetaFile {
        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
    };
    jgm3_meta.process(true)?;

    let harmonics = Harmonics::from_stor(
        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true)?,
    );
    orbital_dyn.accel_models.push(harmonics);

    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
        .with_guidance_law(ruggiero_ctrl.clone());

    println!("{sc_dynamics}");

    // Finally, let's use the Monte Carlo framework built into Nyx to propagate spacecraft.

    // Let's start by defining the dispersion.
    // The MultivariateNormal structure allows us to define the dispersions in any of the orbital parameters, but these are applied directly in the Cartesian state space.
    // Note that additional validation on the MVN is in progress -- https://github.com/nyx-space/nyx/issues/339.
    let mc_rv = MultivariateNormal::new(
        sc,
        vec![StateDispersion::zero_mean(StateParameter::SMA, 3.0)],
    )?;

    let my_mc = MonteCarlo::new(
        sc, // Nominal state
        mc_rv,
        "03_geo_sk".to_string(), // Scenario name
        None, // No specific seed specified, so one will be drawn from the computer's entropy.
    );

    // Build the propagator setup.
    let setup = Propagator::rk89(
        sc_dynamics.clone(),
        IntegratorOptions::builder()
            .min_step(10.0_f64.seconds())
            .error_ctrl(ErrorControl::RSSCartesianStep)
            .build(),
    );

    let num_runs = 25;
    let rslts = my_mc.run_until_epoch(setup, almanac.clone(), sc.epoch() + prop_time, num_runs);

    assert_eq!(rslts.runs.len(), num_runs);

    // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.

    rslts.to_parquet(
        "03_geo_sk.parquet",
        Some(vec![
            &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
        ]),
        ExportCfg::default(),
        almanac,
    )?;

    Ok(())
}
More examples
Hide additional examples
examples/03_geo_analysis/raise.rs (line 136)
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();

    // Dynamics models require planetary constants and ephemerides to be defined.
    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
    // This will automatically download the DE440s planetary ephemeris,
    // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
    // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
    // planetary constants kernels.
    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
    // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
    // references to many functions.
    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
    // Fetch the EME2000 frame from the Almabac
    let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
    // Define the orbit epoch
    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);

    // Build the spacecraft itself.
    // Using slide 6 of https://aerospace.org/sites/default/files/2018-11/Davis-Mayberry_HPSEP_11212018.pdf
    // for the "next gen" SEP characteristics.

    // GTO start
    let orbit = Orbit::keplerian(24505.9, 0.725, 7.05, 0.0, 0.0, 0.0, epoch, eme2k);

    let sc = Spacecraft::builder()
        .orbit(orbit)
        .dry_mass_kg(1000.0) // 1000 kg of dry mass
        .fuel_mass_kg(1000.0) // 1000 kg of fuel, totalling 2.0 tons
        .srp(SrpConfig::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
        .thruster(Thruster {
            // "NEXT-STEP" row in Table 2
            isp_s: 4435.0,
            thrust_N: 0.472,
        })
        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
        .build();

    let prop_time = 180.0 * Unit::Day;

    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
    let objectives = &[
        Objective::within_tolerance(StateParameter::SMA, 42_165.0, 20.0),
        Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
        Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
    ];

    // Ensure that we only thrust if we have more than 20% illumination.
    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2).unwrap();
    println!("{ruggiero_ctrl}");

    // Define the high fidelity dynamics

    // Set up the spacecraft dynamics.

    // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
    // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);

    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
    // We're using the JGM3 model here, which is the default in GMAT.
    let mut jgm3_meta = MetaFile {
        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
    };
    // And let's download it if we don't have it yet.
    jgm3_meta.process(true)?;

    // Build the spherical harmonics.
    // The harmonics must be computed in the body fixed frame.
    // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
    let harmonics = Harmonics::from_stor(
        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true).unwrap(),
    );

    // Include the spherical harmonics into the orbital dynamics.
    orbital_dyn.accel_models.push(harmonics);

    // We define the solar radiation pressure, using the default solar flux and accounting only
    // for the eclipsing caused by the Earth.
    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;

    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
        .with_guidance_law(ruggiero_ctrl.clone());

    println!("{:x}", orbit);

    // We specify a minimum step in the propagator because the Ruggiero control would otherwise drive this step very low.
    let (final_state, traj) = Propagator::rk89(
        sc_dynamics.clone(),
        IntegratorOptions::builder()
            .min_step(10.0_f64.seconds())
            .error_ctrl(ErrorControl::RSSCartesianStep)
            .build(),
    )
    .with(sc, almanac.clone())
    .for_duration_with_traj(prop_time)?;

    let fuel_usage = sc.fuel_mass_kg - final_state.fuel_mass_kg;
    println!("{:x}", final_state.orbit);
    println!("fuel usage: {:.3} kg", fuel_usage);

    // Finally, export the results for analysis, including the penumbra percentage throughout the orbit raise.
    traj.to_parquet(
        "./03_geo_raise.parquet",
        Some(vec![
            &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
        ]),
        ExportCfg::default(),
        almanac,
    )?;

    for status_line in ruggiero_ctrl.status(&final_state) {
        println!("{status_line}");
    }

    ruggiero_ctrl
        .achieved(&final_state)
        .expect("objective not achieved");

    Ok(())
}
examples/02_jwst_covar_monte_carlo/main.rs (line 151)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();
    // Dynamics models require planetary constants and ephemerides to be defined.
    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.

    // Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
    // Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
    let mut latest_jwst_ephem = MetaFile {
        uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
        crc32: None,
    };
    latest_jwst_ephem.process(true)?;

    // Load this ephem in the general Almanac we're using for this analysis.
    let almanac = Arc::new(
        MetaAlmanac::latest()
            .map_err(Box::new)?
            .load_from_metafile(latest_jwst_ephem, true)?,
    );

    // By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
    // in the BSP. We need this ID in order to query the ephemeris.
    const JWST_NAIF_ID: i32 = -170;
    // Let's build a frame in the J2000 orientation centered on the JWST.
    const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);

    // Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
    let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
    println!("JWST defined from {earliest_epoch} to {latest_epoch}");
    // Fetch the state, printing it in the Earth J2000 frame.
    let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
    println!("{jwst_orbit:x}");

    // Build the spacecraft
    // SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
    // SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
    let jwst = Spacecraft::builder()
        .orbit(jwst_orbit)
        .srp(SrpConfig {
            area_m2: 21.197 * 14.162,
            cr: 1.56,
        })
        .dry_mass_kg(6200.0)
        .build();

    // Build up the spacecraft uncertainty builder.
    // We can use the spacecraft uncertainty structure to build this up.
    // We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
    // in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
    // Nyx can also estimate the deviation of the spacecraft parameters.
    let jwst_uncertainty = SpacecraftUncertainty::builder()
        .nominal(jwst)
        .frame(LocalFrame::RIC)
        .x_km(0.5)
        .y_km(0.3)
        .z_km(1.5)
        .vx_km_s(1e-4)
        .vy_km_s(0.6e-3)
        .vz_km_s(3e-3)
        .build();

    println!("{jwst_uncertainty}");

    // Build the Kalman filter estimate.
    // Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
    // but this approach requires quite a bit more boilerplate code.
    let jwst_estimate = jwst_uncertainty.to_estimate()?;

    // Set up the spacecraft dynamics.
    // We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
    // We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.

    let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;

    // Finalize setting up the dynamics.
    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);

    // Build the propagator set up to use for the whole analysis.
    let setup = Propagator::default(dynamics);

    // All of the analysis will use this duration.
    let prediction_duration = 6.5 * Unit::Day;

    // === Covariance mapping ===
    // For the covariance mapping / prediction, we'll use the common orbit determination approach.
    // This is done by setting up a spacecraft OD process, and predicting for the analysis duration.

    let ckf = KF::no_snc(jwst_estimate);

    // Build the propagation instance for the OD process.
    let prop = setup.with(jwst.with_stm(), almanac.clone());
    let mut odp = SpacecraftODProcess::ckf(prop, ckf, None, almanac.clone());

    // Define the prediction step, i.e. how often we want to know the covariance.
    let step = 1_i64.minutes();
    // Finally, predict, and export the trajectory with covariance to a parquet file.
    odp.predict_for(step, prediction_duration)?;
    odp.to_parquet("./02_jwst_covar_map.parquet", ExportCfg::default())?;

    // === Monte Carlo framework ===
    // Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.

    let my_mc = MonteCarlo::new(
        jwst, // Nominal state
        jwst_estimate.to_random_variable()?,
        "02_jwst".to_string(), // Scenario name
        None, // No specific seed specified, so one will be drawn from the computer's entropy.
    );

    let num_runs = 5_000;
    let rslts = my_mc.run_until_epoch(
        setup,
        almanac.clone(),
        jwst.epoch() + prediction_duration,
        num_runs,
    );

    assert_eq!(rslts.runs.len(), num_runs);
    // Finally, export these results, computing the eclipse percentage for all of these results.

    // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
    let eclipse_loc = EclipseLocator::cislunar(almanac.clone());
    let umbra_event = eclipse_loc.to_umbra_event();
    let penumbra_event = eclipse_loc.to_penumbra_event();

    rslts.to_parquet(
        "02_jwst_monte_carlo.parquet",
        Some(vec![&umbra_event, &penumbra_event]),
        ExportCfg::default(),
        almanac,
    )?;

    Ok(())
}
examples/03_geo_analysis/drift.rs (line 155)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();
    // Dynamics models require planetary constants and ephemerides to be defined.
    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
    // This will automatically download the DE440s planetary ephemeris,
    // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
    // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
    // planetary constants kernels.
    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
    // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
    // references to many functions.
    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
    // Define the orbit epoch
    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);

    // Define the orbit.
    // First we need to fetch the Earth J2000 from information from the Almanac.
    // This allows the frame to include the gravitational parameters and the shape of the Earth,
    // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
    // by loading a different set of planetary constants.
    let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;

    // Placing this GEO bird just above Colorado.
    // In theory, the eccentricity is zero, but in practice, it's about 1e-5 to 1e-6 at best.
    let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
    // Print in in Keplerian form.
    println!("{orbit:x}");

    let state_bf = almanac.transform_to(orbit, IAU_EARTH_FRAME, None)?;
    let (orig_lat_deg, orig_long_deg, orig_alt_km) = state_bf.latlongalt()?;

    // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
    // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
    // models such as solar radiation pressure.

    // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
    let sc = Spacecraft::builder()
        .orbit(orbit)
        .dry_mass_kg(9.60)
        .srp(SrpConfig {
            area_m2: 10e-4,
            cr: 1.1,
        })
        .build();
    println!("{sc:x}");

    // Set up the spacecraft dynamics.

    // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
    // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);

    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
    // We're using the JGM3 model here, which is the default in GMAT.
    let mut jgm3_meta = MetaFile {
        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
    };
    // And let's download it if we don't have it yet.
    jgm3_meta.process(true)?;

    // Build the spherical harmonics.
    // The harmonics must be computed in the body fixed frame.
    // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
    let harmonics_21x21 = Harmonics::from_stor(
        almanac.frame_from_uid(IAU_EARTH_FRAME)?,
        HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
    );

    // Include the spherical harmonics into the orbital dynamics.
    orbital_dyn.accel_models.push(harmonics_21x21);

    // We define the solar radiation pressure, using the default solar flux and accounting only
    // for the eclipsing caused by the Earth and Moon.
    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;

    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);

    println!("{dynamics}");

    // Finally, let's propagate this orbit to the same epoch as above.
    // The first returned value is the spacecraft state at the final epoch.
    // The second value is the full trajectory where the step size is variable step used by the propagator.
    let (future_sc, trajectory) = Propagator::default(dynamics)
        .with(sc, almanac.clone())
        .until_epoch_with_traj(epoch + Unit::Century * 0.03)?;

    println!("=== High fidelity propagation ===");
    println!(
        "SMA changed by {:.3} km",
        orbit.sma_km()? - future_sc.orbit.sma_km()?
    );
    println!(
        "ECC changed by {:.6}",
        orbit.ecc()? - future_sc.orbit.ecc()?
    );
    println!(
        "INC changed by {:.3e} deg",
        orbit.inc_deg()? - future_sc.orbit.inc_deg()?
    );
    println!(
        "RAAN changed by {:.3} deg",
        orbit.raan_deg()? - future_sc.orbit.raan_deg()?
    );
    println!(
        "AOP changed by {:.3} deg",
        orbit.aop_deg()? - future_sc.orbit.aop_deg()?
    );
    println!(
        "TA changed by {:.3} deg",
        orbit.ta_deg()? - future_sc.orbit.ta_deg()?
    );

    // We also have access to the full trajectory throughout the propagation.
    println!("{trajectory}");

    println!("Spacecraft params after 3 years without active control:\n{future_sc:x}");

    // With the trajectory, let's build a few data products.

    // 1. Export the trajectory as a parquet file, which includes the Keplerian orbital elements.

    let analysis_step = Unit::Minute * 5;

    trajectory.to_parquet(
        "./03_geo_hf_prop.parquet",
        Some(vec![
            &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
        ]),
        ExportCfg::builder().step(analysis_step).build(),
        almanac.clone(),
    )?;

    // 2. Compute the latitude, longitude, and altitude throughout the trajectory by rotating the spacecraft position into the Earth body fixed frame.

    // We iterate over the trajectory, grabbing a state every two minutes.
    let mut offset_s = vec![];
    let mut epoch_str = vec![];
    let mut longitude_deg = vec![];
    let mut latitude_deg = vec![];
    let mut altitude_km = vec![];

    for state in trajectory.every(analysis_step) {
        // Convert the GEO bird state into the body fixed frame, and keep track of its latitude, longitude, and altitude.
        // These define the GEO stationkeeping box.

        let this_epoch = state.epoch();

        offset_s.push((this_epoch - orbit.epoch).to_seconds());
        epoch_str.push(this_epoch.to_isoformat());

        let state_bf = almanac.transform_to(state.orbit, IAU_EARTH_FRAME, None)?;
        let (lat_deg, long_deg, alt_km) = state_bf.latlongalt()?;
        longitude_deg.push(long_deg);
        latitude_deg.push(lat_deg);
        altitude_km.push(alt_km);
    }

    println!(
        "Longitude changed by {:.3} deg -- Box is 0.1 deg E-W",
        orig_long_deg - longitude_deg.last().unwrap()
    );

    println!(
        "Latitude changed by {:.3} deg -- Box is 0.05 deg N-S",
        orig_lat_deg - latitude_deg.last().unwrap()
    );

    println!(
        "Altitude changed by {:.3} km -- Box is 30 km",
        orig_alt_km - altitude_km.last().unwrap()
    );

    // Build the station keeping data frame.
    let mut sk_df = df!(
        "Offset (s)" => offset_s.clone(),
        "Epoch (UTC)" => epoch_str.clone(),
        "Longitude E-W (deg)" => longitude_deg,
        "Latitude N-S (deg)" => latitude_deg,
        "Altitude (km)" => altitude_km,

    )?;

    // Create a file to write the Parquet to
    let file = File::create("./03_geo_lla.parquet").expect("Could not create file");

    // Create a ParquetWriter and write the DataFrame to the file
    ParquetWriter::new(file).finish(&mut sk_df)?;

    Ok(())
}

Trait Implementations§

Source§

impl Clone for EclipseLocator

Source§

fn clone(&self) -> EclipseLocator

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Display for EclipseLocator

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T> Allocation for T
where T: RefUnwindSafe + Send + Sync,