pub struct MultipleShooting<'a, T: MultishootNode<OT>, const VT: usize, const OT: usize> {
pub prop: &'a Propagator<SpacecraftDynamics>,
pub targets: Vec<T>,
pub x0: Spacecraft,
pub xf: Orbit,
pub current_iteration: usize,
pub max_iterations: usize,
pub improvement_threshold: f64,
pub variables: [Variable; VT],
pub all_dvs: Vec<SVector<f64, VT>>,
}
Expand description
Multiple shooting is an optimization method. Source of implementation: “Low Thrust Optimization in Cislunar and Translunar space”, 2018 Nathan Re (Parrish) OT: size of the objectives for each node (e.g. 3 if the objectives are X, Y, Z). VT: size of the variables for targeter node (e.g. 4 if the objectives are thrust direction (x,y,z) and thrust level).
Fields§
§prop: &'a Propagator<SpacecraftDynamics>
The propagator setup (kind, stages, etc.)
targets: Vec<T>
List of nodes of the optimal trajectory
x0: Spacecraft
Starting point, must be a spacecraft equipped with a thruster
xf: Orbit
Destination (Should this be the final node?)
current_iteration: usize
§max_iterations: usize
The maximum number of iterations allowed
improvement_threshold: f64
Threshold after which the outer loop is considered to have converged, e.g. 0.01 means that a 1% of less improvement in case between two iterations will stop the iterations.
variables: [Variable; VT]
The kind of correction to apply to achieve the objectives
all_dvs: Vec<SVector<f64, VT>>
Implementations§
Source§impl<'a> MultipleShooting<'a, Node, 3, 3>
impl<'a> MultipleShooting<'a, Node, 3, 3>
Sourcepub fn linear_altitude_heuristic(
x0: Spacecraft,
xf: Orbit,
node_count: usize,
angular_velocity_deg_s: f64,
body_frame: Frame,
prop: &'a Propagator<SpacecraftDynamics>,
almanac: Arc<Almanac>,
) -> Result<Self, MultipleShootingError>
pub fn linear_altitude_heuristic( x0: Spacecraft, xf: Orbit, node_count: usize, angular_velocity_deg_s: f64, body_frame: Frame, prop: &'a Propagator<SpacecraftDynamics>, almanac: Arc<Almanac>, ) -> Result<Self, MultipleShootingError>
Builds a multiple shooting structure assuming that the optimal trajectory is near a linear heuristic in geodetic altitude and direction. For example, if x0 has an altitude of 100 km and xf has an altitude of 200 km, and 10 nodes are required over 10 minutes, then node 1 will be 110 km, node 2 220km, etc. body_frame must be a body fixed frame
Source§impl<'a> MultipleShooting<'a, Node, 3, 3>
impl<'a> MultipleShooting<'a, Node, 3, 3>
Sourcepub fn equidistant_nodes(
x0: Spacecraft,
xf: Orbit,
node_count: usize,
prop: &'a Propagator<SpacecraftDynamics>,
) -> Result<Self, TargetingError>
pub fn equidistant_nodes( x0: Spacecraft, xf: Orbit, node_count: usize, prop: &'a Propagator<SpacecraftDynamics>, ) -> Result<Self, TargetingError>
Builds a multiple shooting structure assuming that the optimal trajectory is a straight line between the start and end points. The position of the nodes will be update at each iteration of the outer loop. NOTE: this may cause some nodes to be below the surface of a celestial object if in low orbit
Source§impl<T: MultishootNode<OT>, const VT: usize, const OT: usize> MultipleShooting<'_, T, VT, OT>
impl<T: MultishootNode<OT>, const VT: usize, const OT: usize> MultipleShooting<'_, T, VT, OT>
Sourcepub fn solve(
&mut self,
cost: CostFunction,
almanac: Arc<Almanac>,
) -> Result<MultipleShootingSolution<T, OT>, MultipleShootingError>
pub fn solve( &mut self, cost: CostFunction, almanac: Arc<Almanac>, ) -> Result<MultipleShootingSolution<T, OT>, MultipleShootingError>
Solve the multiple shooting problem by finding the arrangement of nodes to minimize the cost function.
Trait Implementations§
Auto Trait Implementations§
impl<'a, T, const VT: usize, const OT: usize> Freeze for MultipleShooting<'a, T, VT, OT>
impl<'a, T, const VT: usize, const OT: usize> !RefUnwindSafe for MultipleShooting<'a, T, VT, OT>
impl<'a, T, const VT: usize, const OT: usize> Send for MultipleShooting<'a, T, VT, OT>where
T: Send,
impl<'a, T, const VT: usize, const OT: usize> Sync for MultipleShooting<'a, T, VT, OT>where
T: Sync,
impl<'a, T, const VT: usize, const OT: usize> Unpin for MultipleShooting<'a, T, VT, OT>where
T: Unpin,
impl<'a, T, const VT: usize, const OT: usize> !UnwindSafe for MultipleShooting<'a, T, VT, OT>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.