nyx_space::od::filter::kalman

Struct KF

Source
pub struct KF<T, A, M>
where A: DimName, M: DimName, T: State, DefaultAllocator: Allocator<M> + Allocator<<T as State>::Size> + Allocator<<T as State>::VecLength> + Allocator<A> + Allocator<M, M> + Allocator<M, <T as State>::Size> + Allocator<<T as State>::Size, <T as State>::Size> + Allocator<A, A> + Allocator<<T as State>::Size, A> + Allocator<A, <T as State>::Size>, <DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy, <DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,
{ pub prev_estimate: KfEstimate<T>, pub process_noise: Vec<SNC<A>>, pub ekf: bool, /* private fields */ }
Expand description

Defines both a Classical and an Extended Kalman filter (CKF and EKF) T: Type of state A: Acceleration size (for SNC) M: Measurement size (used for the sensitivity matrix)

Fields§

§prev_estimate: KfEstimate<T>

The previous estimate used in the KF computations.

§process_noise: Vec<SNC<A>>

A sets of process noise (usually noted Q), must be ordered chronologically

§ekf: bool

Determines whether this KF should operate as a Conventional/Classical Kalman filter or an Extended Kalman Filter. Recall that one should switch to an Extended KF only once the estimate is good (i.e. after a few good measurement updates on a CKF).

Implementations§

Source§

impl<T, A, M> KF<T, A, M>
where A: DimName, M: DimName, T: State, DefaultAllocator: Allocator<M> + Allocator<<T as State>::Size> + Allocator<<T as State>::VecLength> + Allocator<A> + Allocator<M, M> + Allocator<M, <T as State>::Size> + Allocator<<T as State>::Size, M> + Allocator<<T as State>::Size, <T as State>::Size> + Allocator<A, A> + Allocator<<T as State>::Size, A> + Allocator<A, <T as State>::Size>, <DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy, <DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,

Source

pub fn new(initial_estimate: KfEstimate<T>, process_noise: SNC<A>) -> Self

Initializes this KF with an initial estimate, measurement noise, and one process noise

Examples found in repository?
examples/04_lro_od/main.rs (lines 253-258)
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();

    // ====================== //
    // === ALMANAC SET UP === //
    // ====================== //

    // Dynamics models require planetary constants and ephemerides to be defined.
    // Let's start by grabbing those by using ANISE's MetaAlmanac.

    let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
        .iter()
        .collect();

    let meta = data_folder.join("lro-dynamics.dhall");

    // Load this ephem in the general Almanac we're using for this analysis.
    let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
        .map_err(Box::new)?
        .process(true)
        .map_err(Box::new)?;

    let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
    moon_pc.mu_km3_s2 = 4902.74987;
    almanac.planetary_data.set_by_id(MOON, moon_pc)?;

    let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
    earth_pc.mu_km3_s2 = 398600.436;
    almanac.planetary_data.set_by_id(EARTH, earth_pc)?;

    // Save this new kernel for reuse.
    // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
    almanac
        .planetary_data
        .save_as(&data_folder.join("lro-specific.pca"), true)?;

    // Lock the almanac (an Arc is a read only structure).
    let almanac = Arc::new(almanac);

    // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
    // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
    // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
    // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
    let lro_frame = Frame::from_ephem_j2000(-85);

    // To build the trajectory we need to provide a spacecraft template.
    let sc_template = Spacecraft::builder()
        .dry_mass_kg(1018.0) // Launch masses
        .fuel_mass_kg(900.0)
        .srp(SrpConfig {
            // SRP configuration is arbitrary, but we will be estimating it anyway.
            area_m2: 3.9 * 2.7,
            cr: 0.96,
        })
        .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
        .build();
    // Now we can build the trajectory from the BSP file.
    // We'll arbitrarily set the tracking arc to 48 hours with a one minute time step.
    let traj_as_flown = Traj::from_bsp(
        lro_frame,
        MOON_J2000,
        almanac.clone(),
        sc_template,
        5.seconds(),
        Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
        Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
        Aberration::LT,
        Some("LRO".to_string()),
    )?;

    println!("{traj_as_flown}");

    // ====================== //
    // === MODEL MATCHING === //
    // ====================== //

    // Set up the spacecraft dynamics.

    // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
    // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);

    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
    // We're using the GRAIL JGGRX model.
    let mut jggrx_meta = MetaFile {
        uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
        crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
    };
    // And let's download it if we don't have it yet.
    jggrx_meta.process(true)?;

    // Build the spherical harmonics.
    // The harmonics must be computed in the body fixed frame.
    // We're using the long term prediction of the Moon principal axes frame.
    let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
    // let moon_pa_frame = IAU_MOON_FRAME;
    let sph_harmonics = Harmonics::from_stor(
        almanac.frame_from_uid(moon_pa_frame)?,
        HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
    );

    // Include the spherical harmonics into the orbital dynamics.
    orbital_dyn.accel_models.push(sph_harmonics);

    // We define the solar radiation pressure, using the default solar flux and accounting only
    // for the eclipsing caused by the Earth and Moon.
    // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;

    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);

    println!("{dynamics}");

    // Now we can build the propagator.
    let setup = Propagator::default_dp78(dynamics.clone());

    // For reference, let's build the trajectory with Nyx's models from that LRO state.
    let (sim_final, traj_as_sim) = setup
        .with(*traj_as_flown.first(), almanac.clone())
        .until_epoch_with_traj(traj_as_flown.last().epoch())?;

    println!("SIM INIT:  {:x}", traj_as_flown.first());
    println!("SIM FINAL: {sim_final:x}");
    // Compute RIC difference between SIM and LRO ephem
    let sim_lro_delta = sim_final
        .orbit
        .ric_difference(&traj_as_flown.last().orbit)?;
    println!("{traj_as_sim}");
    println!(
        "SIM v LRO - RIC Position (m): {:.3}",
        sim_lro_delta.radius_km * 1e3
    );
    println!(
        "SIM v LRO - RIC Velocity (m/s): {:.3}",
        sim_lro_delta.velocity_km_s * 1e3
    );

    traj_as_sim.ric_diff_to_parquet(
        &traj_as_flown,
        "./04_lro_sim_truth_error.parquet",
        ExportCfg::default(),
    )?;

    // ==================== //
    // === OD SIMULATOR === //
    // ==================== //

    // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
    // and the truth LRO state.

    // Therefore, we will actually run an estimation from a dispersed LRO state.
    // The sc_seed is the true LRO state from the BSP.
    let sc_seed = *traj_as_flown.first();

    // Load the Deep Space Network ground stations.
    // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
    let ground_station_file: PathBuf = [
        env!("CARGO_MANIFEST_DIR"),
        "examples",
        "04_lro_od",
        "dsn-network.yaml",
    ]
    .iter()
    .collect();

    let devices = GroundStation::load_many(ground_station_file)?;

    // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
    // Nyx can build a tracking schedule for you based on the first station with access.
    let trkconfg_yaml: PathBuf = [
        env!("CARGO_MANIFEST_DIR"),
        "examples",
        "04_lro_od",
        "tracking-cfg.yaml",
    ]
    .iter()
    .collect();

    let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;

    // Build the tracking arc simulation to generate a "standard measurement".
    let mut trk = TrackingArcSim::<Spacecraft, RangeDoppler, _>::new(
        devices,
        traj_as_flown.clone(),
        configs,
    )?;

    trk.build_schedule(almanac.clone())?;
    let arc = trk.generate_measurements(almanac.clone())?;
    // Save the simulated tracking data
    arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;

    // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
    println!("{arc}");

    // Now that we have simulated measurements, we'll run the orbit determination.

    // ===================== //
    // === OD ESTIMATION === //
    // ===================== //

    let sc = SpacecraftUncertainty::builder()
        .nominal(sc_seed)
        .frame(LocalFrame::RIC)
        .x_km(0.5)
        .y_km(0.5)
        .z_km(0.5)
        .vx_km_s(5e-3)
        .vy_km_s(5e-3)
        .vz_km_s(5e-3)
        .build();

    // Build the filter initial estimate, which we will reuse in the filter.
    let initial_estimate = sc.to_estimate()?;

    println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");

    let kf = KF::new(
        // Increase the initial covariance to account for larger deviation.
        initial_estimate,
        // Until https://github.com/nyx-space/nyx/issues/351, we need to specify the SNC in the acceleration of the Moon J2000 frame.
        SNC3::from_diagonal(10 * Unit::Minute, &[1e-11, 1e-11, 1e-11]),
    );

    // We'll set up the OD process to reject measurements whose residuals are mover than 4 sigmas away from what we expect.
    let mut odp = ODProcess::ckf(
        setup.with(initial_estimate.state().with_stm(), almanac.clone()),
        kf,
        Some(ResidRejectCrit::default()),
        almanac.clone(),
    );

    odp.process_arc::<GroundStation>(&arc)?;

    let ric_err = traj_as_flown
        .at(odp.estimates.last().unwrap().epoch())?
        .orbit
        .ric_difference(&odp.estimates.last().unwrap().orbital_state())?;
    println!("== RIC at end ==");
    println!("RIC Position (m): {}", ric_err.radius_km * 1e3);
    println!("RIC Velocity (m/s): {}", ric_err.velocity_km_s * 1e3);

    odp.to_parquet("./04_lro_od_results.parquet", ExportCfg::default())?;

    // In our case, we have the truth trajectory from NASA.
    // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
    // Export the OD trajectory first.
    let od_trajectory = odp.to_traj()?;
    // Build the RIC difference.
    od_trajectory.ric_diff_to_parquet(
        &traj_as_flown,
        "./04_lro_od_truth_error.parquet",
        ExportCfg::default(),
    )?;

    Ok(())
}
Source

pub fn with_sncs( initial_estimate: KfEstimate<T>, process_noises: Vec<SNC<A>>, ) -> Self

Initializes this KF with an initial estimate, measurement noise, and several process noise WARNING: SNCs MUST be ordered chronologically! They will be selected automatically by walking the list of SNCs backward until one can be applied!

Source§

impl<T, M> KF<T, U3, M>
where M: DimName, T: State, DefaultAllocator: Allocator<M> + Allocator<<T as State>::Size> + Allocator<<T as State>::VecLength> + Allocator<M, M> + Allocator<M, <T as State>::Size> + Allocator<<T as State>::Size, M> + Allocator<<T as State>::Size, <T as State>::Size> + Allocator<U3, U3> + Allocator<<T as State>::Size, U3> + Allocator<U3, <T as State>::Size>, <DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy, <DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,

Source

pub fn no_snc(initial_estimate: KfEstimate<T>) -> Self

Initializes this KF without SNC

Examples found in repository?
examples/02_jwst_covar_monte_carlo/main.rs (line 115)
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
fn main() -> Result<(), Box<dyn Error>> {
    pel::init();
    // Dynamics models require planetary constants and ephemerides to be defined.
    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.

    // Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
    // Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
    let mut latest_jwst_ephem = MetaFile {
        uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
        crc32: None,
    };
    latest_jwst_ephem.process(true)?;

    // Load this ephem in the general Almanac we're using for this analysis.
    let almanac = Arc::new(
        MetaAlmanac::latest()
            .map_err(Box::new)?
            .load_from_metafile(latest_jwst_ephem, true)?,
    );

    // By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
    // in the BSP. We need this ID in order to query the ephemeris.
    const JWST_NAIF_ID: i32 = -170;
    // Let's build a frame in the J2000 orientation centered on the JWST.
    const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);

    // Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
    let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
    println!("JWST defined from {earliest_epoch} to {latest_epoch}");
    // Fetch the state, printing it in the Earth J2000 frame.
    let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
    println!("{jwst_orbit:x}");

    // Build the spacecraft
    // SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
    // SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
    let jwst = Spacecraft::builder()
        .orbit(jwst_orbit)
        .srp(SrpConfig {
            area_m2: 21.197 * 14.162,
            cr: 1.56,
        })
        .dry_mass_kg(6200.0)
        .build();

    // Build up the spacecraft uncertainty builder.
    // We can use the spacecraft uncertainty structure to build this up.
    // We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
    // in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
    // Nyx can also estimate the deviation of the spacecraft parameters.
    let jwst_uncertainty = SpacecraftUncertainty::builder()
        .nominal(jwst)
        .frame(LocalFrame::RIC)
        .x_km(0.5)
        .y_km(0.3)
        .z_km(1.5)
        .vx_km_s(1e-4)
        .vy_km_s(0.6e-3)
        .vz_km_s(3e-3)
        .build();

    println!("{jwst_uncertainty}");

    // Build the Kalman filter estimate.
    // Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
    // but this approach requires quite a bit more boilerplate code.
    let jwst_estimate = jwst_uncertainty.to_estimate()?;

    // Set up the spacecraft dynamics.
    // We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
    // We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.

    let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;

    // Finalize setting up the dynamics.
    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);

    // Build the propagator set up to use for the whole analysis.
    let setup = Propagator::default(dynamics);

    // All of the analysis will use this duration.
    let prediction_duration = 6.5 * Unit::Day;

    // === Covariance mapping ===
    // For the covariance mapping / prediction, we'll use the common orbit determination approach.
    // This is done by setting up a spacecraft OD process, and predicting for the analysis duration.

    let ckf = KF::no_snc(jwst_estimate);

    // Build the propagation instance for the OD process.
    let prop = setup.with(jwst.with_stm(), almanac.clone());
    let mut odp = SpacecraftODProcess::ckf(prop, ckf, None, almanac.clone());

    // Define the prediction step, i.e. how often we want to know the covariance.
    let step = 1_i64.minutes();
    // Finally, predict, and export the trajectory with covariance to a parquet file.
    odp.predict_for(step, prediction_duration)?;
    odp.to_parquet("./02_jwst_covar_map.parquet", ExportCfg::default())?;

    // === Monte Carlo framework ===
    // Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.

    let my_mc = MonteCarlo::new(
        jwst, // Nominal state
        jwst_estimate.to_random_variable()?,
        "02_jwst".to_string(), // Scenario name
        None, // No specific seed specified, so one will be drawn from the computer's entropy.
    );

    let num_runs = 5_000;
    let rslts = my_mc.run_until_epoch(
        setup,
        almanac.clone(),
        jwst.epoch() + prediction_duration,
        num_runs,
    );

    assert_eq!(rslts.runs.len(), num_runs);
    // Finally, export these results, computing the eclipse percentage for all of these results.

    // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
    let eclipse_loc = EclipseLocator::cislunar(almanac.clone());
    let umbra_event = eclipse_loc.to_umbra_event();
    let penumbra_event = eclipse_loc.to_penumbra_event();

    rslts.to_parquet(
        "02_jwst_monte_carlo.parquet",
        Some(vec![&umbra_event, &penumbra_event]),
        ExportCfg::default(),
        almanac,
    )?;

    Ok(())
}

Trait Implementations§

Source§

impl<T, A, M> Clone for KF<T, A, M>
where A: DimName + Clone, M: DimName + Clone, T: State + Clone, DefaultAllocator: Allocator<M> + Allocator<<T as State>::Size> + Allocator<<T as State>::VecLength> + Allocator<A> + Allocator<M, M> + Allocator<M, <T as State>::Size> + Allocator<<T as State>::Size, <T as State>::Size> + Allocator<A, A> + Allocator<<T as State>::Size, A> + Allocator<A, <T as State>::Size>, <DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy, <DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,

Source§

fn clone(&self) -> KF<T, A, M>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<T, A, M> Debug for KF<T, A, M>
where A: DimName + Debug, M: DimName + Debug, T: State + Debug, DefaultAllocator: Allocator<M> + Allocator<<T as State>::Size> + Allocator<<T as State>::VecLength> + Allocator<A> + Allocator<M, M> + Allocator<M, <T as State>::Size> + Allocator<<T as State>::Size, <T as State>::Size> + Allocator<A, A> + Allocator<<T as State>::Size, A> + Allocator<A, <T as State>::Size>, <DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy, <DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<T, A, M> Filter<T, A, M> for KF<T, A, M>
where A: DimName, M: DimName, T: State, DefaultAllocator: Allocator<M> + Allocator<<T as State>::Size> + Allocator<<T as State>::VecLength> + Allocator<A> + Allocator<M, M> + Allocator<M, <T as State>::Size> + Allocator<<T as State>::Size, M> + Allocator<<T as State>::Size, <T as State>::Size> + Allocator<A, A> + Allocator<<T as State>::Size, A> + Allocator<A, <T as State>::Size> + Allocator<Const<1>, M>, <DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy, <DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,

Source§

fn previous_estimate(&self) -> &Self::Estimate

Returns the previous estimate

Source§

fn update_h_tilde(&mut self, h_tilde: OMatrix<f64, M, <T as State>::Size>)

Update the sensitivity matrix (or “H tilde”). This function must be called prior to each call to measurement_update.

Source§

fn time_update(&mut self, nominal_state: T) -> Result<Self::Estimate, ODError>

Computes a time update/prediction (i.e. advances the filter estimate with the updated STM).

May return a FilterError if the STM was not updated.

Source§

fn measurement_update( &mut self, nominal_state: T, real_obs: &OVector<f64, M>, computed_obs: &OVector<f64, M>, measurement_covar: OMatrix<f64, M, M>, resid_rejection: Option<ResidRejectCrit>, ) -> Result<(Self::Estimate, Residual<M>), ODError>

Computes the measurement update with a provided real observation and computed observation.

May return a FilterError if the STM or sensitivity matrices were not updated.

Source§

fn set_process_noise(&mut self, snc: SNC<A>)

Overwrites all of the process noises to the one provided

Source§

type Estimate = KfEstimate<T>

Source§

fn set_previous_estimate(&mut self, est: &Self::Estimate)

Set the previous estimate
Source§

fn is_extended(&self) -> bool

Returns whether the filter is an extended filter (e.g. EKF)
Source§

fn set_extended(&mut self, status: bool)

Sets the filter to be extended or not depending on the value of status

Auto Trait Implementations§

§

impl<T, A, M> !Freeze for KF<T, A, M>

§

impl<T, A, M> !RefUnwindSafe for KF<T, A, M>

§

impl<T, A, M> !Send for KF<T, A, M>

§

impl<T, A, M> !Sync for KF<T, A, M>

§

impl<T, A, M> !Unpin for KF<T, A, M>

§

impl<T, A, M> !UnwindSafe for KF<T, A, M>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T> Allocation for T
where T: RefUnwindSafe + Send + Sync,