Struct KF

Source
pub struct KF<T, A, M>
where A: DimName, M: DimName, T: State, DefaultAllocator: Allocator<M> + Allocator<<T as State>::Size> + Allocator<<T as State>::VecLength> + Allocator<A> + Allocator<M, M> + Allocator<M, <T as State>::Size> + Allocator<<T as State>::Size, <T as State>::Size> + Allocator<A, A> + Allocator<<T as State>::Size, A> + Allocator<A, <T as State>::Size>, <DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy, <DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,
{ pub prev_estimate: KfEstimate<T>, pub process_noise: Vec<SNC<A>>, pub ekf: bool, /* private fields */ }
Expand description

Defines both a Classical and an Extended Kalman filter (CKF and EKF) T: Type of state A: Acceleration size (for SNC) M: Measurement size (used for the sensitivity matrix)

Fields§

§prev_estimate: KfEstimate<T>

The previous estimate used in the KF computations.

§process_noise: Vec<SNC<A>>

A sets of process noise (usually noted Q), must be ordered chronologically

§ekf: bool

Determines whether this KF should operate as a Conventional/Classical Kalman filter or an Extended Kalman Filter. Recall that one should switch to an Extended KF only once the estimate is good (i.e. after a few good measurement updates on a CKF).

Implementations§

Source§

impl<T, A, M> KF<T, A, M>
where A: DimName, M: DimName, T: State, DefaultAllocator: Allocator<M> + Allocator<<T as State>::Size> + Allocator<<T as State>::VecLength> + Allocator<A> + Allocator<M, M> + Allocator<M, <T as State>::Size> + Allocator<<T as State>::Size, M> + Allocator<<T as State>::Size, <T as State>::Size> + Allocator<A, A> + Allocator<<T as State>::Size, A> + Allocator<A, <T as State>::Size>, <DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy, <DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,

Source

pub fn new(initial_estimate: KfEstimate<T>, process_noise: SNC<A>) -> Self

Initializes this KF with an initial estimate, measurement noise, and one process noise

Examples found in repository?
examples/04_lro_od/main.rs (lines 250-255)
33fn main() -> Result<(), Box<dyn Error>> {
34    pel::init();
35
36    // ====================== //
37    // === ALMANAC SET UP === //
38    // ====================== //
39
40    // Dynamics models require planetary constants and ephemerides to be defined.
41    // Let's start by grabbing those by using ANISE's MetaAlmanac.
42
43    let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
44        .iter()
45        .collect();
46
47    let meta = data_folder.join("lro-dynamics.dhall");
48
49    // Load this ephem in the general Almanac we're using for this analysis.
50    let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
51        .map_err(Box::new)?
52        .process(true)
53        .map_err(Box::new)?;
54
55    let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
56    moon_pc.mu_km3_s2 = 4902.74987;
57    almanac.planetary_data.set_by_id(MOON, moon_pc)?;
58
59    let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
60    earth_pc.mu_km3_s2 = 398600.436;
61    almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
62
63    // Save this new kernel for reuse.
64    // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
65    almanac
66        .planetary_data
67        .save_as(&data_folder.join("lro-specific.pca"), true)?;
68
69    // Lock the almanac (an Arc is a read only structure).
70    let almanac = Arc::new(almanac);
71
72    // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
73    // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
74    // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
75    // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
76    let lro_frame = Frame::from_ephem_j2000(-85);
77
78    // To build the trajectory we need to provide a spacecraft template.
79    let sc_template = Spacecraft::builder()
80        .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
81        .srp(SRPData {
82            // SRP configuration is arbitrary, but we will be estimating it anyway.
83            area_m2: 3.9 * 2.7,
84            coeff_reflectivity: 0.96,
85        })
86        .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
87        .build();
88    // Now we can build the trajectory from the BSP file.
89    // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
90    let traj_as_flown = Traj::from_bsp(
91        lro_frame,
92        MOON_J2000,
93        almanac.clone(),
94        sc_template,
95        5.seconds(),
96        Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
97        Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
98        Aberration::LT,
99        Some("LRO".to_string()),
100    )?;
101
102    println!("{traj_as_flown}");
103
104    // ====================== //
105    // === MODEL MATCHING === //
106    // ====================== //
107
108    // Set up the spacecraft dynamics.
109
110    // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
111    // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
112    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
113
114    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
115    // We're using the GRAIL JGGRX model.
116    let mut jggrx_meta = MetaFile {
117        uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
118        crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
119    };
120    // And let's download it if we don't have it yet.
121    jggrx_meta.process(true)?;
122
123    // Build the spherical harmonics.
124    // The harmonics must be computed in the body fixed frame.
125    // We're using the long term prediction of the Moon principal axes frame.
126    let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
127    let sph_harmonics = Harmonics::from_stor(
128        almanac.frame_from_uid(moon_pa_frame)?,
129        HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
130    );
131
132    // Include the spherical harmonics into the orbital dynamics.
133    orbital_dyn.accel_models.push(sph_harmonics);
134
135    // We define the solar radiation pressure, using the default solar flux and accounting only
136    // for the eclipsing caused by the Earth and Moon.
137    // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
138    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
139
140    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
141    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
142    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
143
144    println!("{dynamics}");
145
146    // Now we can build the propagator.
147    let setup = Propagator::default_dp78(dynamics.clone());
148
149    // For reference, let's build the trajectory with Nyx's models from that LRO state.
150    let (sim_final, traj_as_sim) = setup
151        .with(*traj_as_flown.first(), almanac.clone())
152        .until_epoch_with_traj(traj_as_flown.last().epoch())?;
153
154    println!("SIM INIT:  {:x}", traj_as_flown.first());
155    println!("SIM FINAL: {sim_final:x}");
156    // Compute RIC difference between SIM and LRO ephem
157    let sim_lro_delta = sim_final
158        .orbit
159        .ric_difference(&traj_as_flown.last().orbit)?;
160    println!("{traj_as_sim}");
161    println!(
162        "SIM v LRO - RIC Position (m): {:.3}",
163        sim_lro_delta.radius_km * 1e3
164    );
165    println!(
166        "SIM v LRO - RIC Velocity (m/s): {:.3}",
167        sim_lro_delta.velocity_km_s * 1e3
168    );
169
170    traj_as_sim.ric_diff_to_parquet(
171        &traj_as_flown,
172        "./04_lro_sim_truth_error.parquet",
173        ExportCfg::default(),
174    )?;
175
176    // ==================== //
177    // === OD SIMULATOR === //
178    // ==================== //
179
180    // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
181    // and the truth LRO state.
182
183    // Therefore, we will actually run an estimation from a dispersed LRO state.
184    // The sc_seed is the true LRO state from the BSP.
185    let sc_seed = *traj_as_flown.first();
186
187    // Load the Deep Space Network ground stations.
188    // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
189    let ground_station_file: PathBuf = [
190        env!("CARGO_MANIFEST_DIR"),
191        "examples",
192        "04_lro_od",
193        "dsn-network.yaml",
194    ]
195    .iter()
196    .collect();
197
198    let devices = GroundStation::load_named(ground_station_file)?;
199
200    // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
201    // Nyx can build a tracking schedule for you based on the first station with access.
202    let trkconfg_yaml: PathBuf = [
203        env!("CARGO_MANIFEST_DIR"),
204        "examples",
205        "04_lro_od",
206        "tracking-cfg.yaml",
207    ]
208    .iter()
209    .collect();
210
211    let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
212
213    // Build the tracking arc simulation to generate a "standard measurement".
214    let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::new(
215        devices.clone(),
216        traj_as_flown.clone(),
217        configs,
218    )?;
219
220    trk.build_schedule(almanac.clone())?;
221    let arc = trk.generate_measurements(almanac.clone())?;
222    // Save the simulated tracking data
223    arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
224
225    // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
226    println!("{arc}");
227
228    // Now that we have simulated measurements, we'll run the orbit determination.
229
230    // ===================== //
231    // === OD ESTIMATION === //
232    // ===================== //
233
234    let sc = SpacecraftUncertainty::builder()
235        .nominal(sc_seed)
236        .frame(LocalFrame::RIC)
237        .x_km(0.5)
238        .y_km(0.5)
239        .z_km(0.5)
240        .vx_km_s(5e-3)
241        .vy_km_s(5e-3)
242        .vz_km_s(5e-3)
243        .build();
244
245    // Build the filter initial estimate, which we will reuse in the filter.
246    let initial_estimate = sc.to_estimate()?;
247
248    println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
249
250    let kf = KF::new(
251        // Increase the initial covariance to account for larger deviation.
252        initial_estimate,
253        // Until https://github.com/nyx-space/nyx/issues/351, we need to specify the SNC in the acceleration of the Moon J2000 frame.
254        SNC3::from_diagonal(10 * Unit::Minute, &[1e-12, 1e-12, 1e-12]),
255    );
256
257    // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
258    let mut odp = SpacecraftODProcess::ckf(
259        setup.with(initial_estimate.state().with_stm(), almanac.clone()),
260        kf,
261        devices,
262        Some(ResidRejectCrit::default()),
263        almanac.clone(),
264    );
265
266    odp.process_arc(&arc)?;
267
268    let ric_err = traj_as_flown
269        .at(odp.estimates.last().unwrap().epoch())?
270        .orbit
271        .ric_difference(&odp.estimates.last().unwrap().orbital_state())?;
272    println!("== RIC at end ==");
273    println!("RIC Position (m): {}", ric_err.radius_km * 1e3);
274    println!("RIC Velocity (m/s): {}", ric_err.velocity_km_s * 1e3);
275
276    odp.to_parquet(&arc, "./04_lro_od_results.parquet", ExportCfg::default())?;
277
278    // In our case, we have the truth trajectory from NASA.
279    // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
280    // Export the OD trajectory first.
281    let od_trajectory = odp.to_traj()?;
282    // Build the RIC difference.
283    od_trajectory.ric_diff_to_parquet(
284        &traj_as_flown,
285        "./04_lro_od_truth_error.parquet",
286        ExportCfg::default(),
287    )?;
288
289    Ok(())
290}
Source

pub fn with_sncs( initial_estimate: KfEstimate<T>, process_noises: Vec<SNC<A>>, ) -> Self

Initializes this KF with an initial estimate, measurement noise, and several process noise WARNING: SNCs MUST be ordered chronologically! They will be selected automatically by walking the list of SNCs backward until one can be applied!

Source§

impl<T, M> KF<T, U3, M>
where M: DimName, T: State, DefaultAllocator: Allocator<M> + Allocator<<T as State>::Size> + Allocator<<T as State>::VecLength> + Allocator<M, M> + Allocator<M, <T as State>::Size> + Allocator<<T as State>::Size, M> + Allocator<<T as State>::Size, <T as State>::Size> + Allocator<U3, U3> + Allocator<<T as State>::Size, U3> + Allocator<U3, <T as State>::Size>, <DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy, <DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,

Source

pub fn no_snc(initial_estimate: KfEstimate<T>) -> Self

Initializes this KF without SNC

Examples found in repository?
examples/02_jwst_covar_monte_carlo/main.rs (line 115)
26fn main() -> Result<(), Box<dyn Error>> {
27    pel::init();
28    // Dynamics models require planetary constants and ephemerides to be defined.
29    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
31
32    // Download the regularly update of the James Webb Space Telescope reconstucted (or definitive) ephemeris.
33    // Refer to https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/aareadme.txt for details.
34    let mut latest_jwst_ephem = MetaFile {
35        uri: "https://naif.jpl.nasa.gov/pub/naif/JWST/kernels/spk/jwst_rec.bsp".to_string(),
36        crc32: None,
37    };
38    latest_jwst_ephem.process(true)?;
39
40    // Load this ephem in the general Almanac we're using for this analysis.
41    let almanac = Arc::new(
42        MetaAlmanac::latest()
43            .map_err(Box::new)?
44            .load_from_metafile(latest_jwst_ephem, true)?,
45    );
46
47    // By loading this ephemeris file in the ANISE GUI or ANISE CLI, we can find the NAIF ID of the JWST
48    // in the BSP. We need this ID in order to query the ephemeris.
49    const JWST_NAIF_ID: i32 = -170;
50    // Let's build a frame in the J2000 orientation centered on the JWST.
51    const JWST_J2000: Frame = Frame::from_ephem_j2000(JWST_NAIF_ID);
52
53    // Since the ephemeris file is updated regularly, we'll just grab the latest state in the ephem.
54    let (earliest_epoch, latest_epoch) = almanac.spk_domain(JWST_NAIF_ID)?;
55    println!("JWST defined from {earliest_epoch} to {latest_epoch}");
56    // Fetch the state, printing it in the Earth J2000 frame.
57    let jwst_orbit = almanac.transform(JWST_J2000, EARTH_J2000, latest_epoch, None)?;
58    println!("{jwst_orbit:x}");
59
60    // Build the spacecraft
61    // SRP area assumed to be the full sunshield and mass if 6200.0 kg, c.f. https://webb.nasa.gov/content/about/faqs/facts.html
62    // SRP Coefficient of reflectivity assumed to be that of Kapton, i.e. 2 - 0.44 = 1.56, table 1 from https://amostech.com/TechnicalPapers/2018/Poster/Bengtson.pdf
63    let jwst = Spacecraft::builder()
64        .orbit(jwst_orbit)
65        .srp(SRPData {
66            area_m2: 21.197 * 14.162,
67            coeff_reflectivity: 1.56,
68        })
69        .mass(Mass::from_dry_mass(6200.0))
70        .build();
71
72    // Build up the spacecraft uncertainty builder.
73    // We can use the spacecraft uncertainty structure to build this up.
74    // We start by specifying the nominal state (as defined above), then the uncertainty in position and velocity
75    // in the RIC frame. We could also specify the Cr, Cd, and mass uncertainties, but these aren't accounted for until
76    // Nyx can also estimate the deviation of the spacecraft parameters.
77    let jwst_uncertainty = SpacecraftUncertainty::builder()
78        .nominal(jwst)
79        .frame(LocalFrame::RIC)
80        .x_km(0.5)
81        .y_km(0.3)
82        .z_km(1.5)
83        .vx_km_s(1e-4)
84        .vy_km_s(0.6e-3)
85        .vz_km_s(3e-3)
86        .build();
87
88    println!("{jwst_uncertainty}");
89
90    // Build the Kalman filter estimate.
91    // Note that we could have used the KfEstimate structure directly (as seen throughout the OD integration tests)
92    // but this approach requires quite a bit more boilerplate code.
93    let jwst_estimate = jwst_uncertainty.to_estimate()?;
94
95    // Set up the spacecraft dynamics.
96    // We'll use the point masses of the Earth, Sun, Jupiter (barycenter, because it's in the DE440), and the Moon.
97    // We'll also enable solar radiation pressure since the James Webb has a huge and highly reflective sun shield.
98
99    let orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN, JUPITER_BARYCENTER]);
100    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102    // Finalize setting up the dynamics.
103    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
104
105    // Build the propagator set up to use for the whole analysis.
106    let setup = Propagator::default(dynamics);
107
108    // All of the analysis will use this duration.
109    let prediction_duration = 6.5 * Unit::Day;
110
111    // === Covariance mapping ===
112    // For the covariance mapping / prediction, we'll use the common orbit determination approach.
113    // This is done by setting up a spacecraft OD process, and predicting for the analysis duration.
114
115    let ckf = KF::no_snc(jwst_estimate);
116
117    // Build the propagation instance for the OD process.
118    let prop = setup.with(jwst.with_stm(), almanac.clone());
119    let mut odp = SpacecraftODProcess::ckf(prop, ckf, BTreeMap::new(), None, almanac.clone());
120
121    // Define the prediction step, i.e. how often we want to know the covariance.
122    let step = 1_i64.minutes();
123    // Finally, predict, and export the trajectory with covariance to a parquet file.
124    odp.predict_for(step, prediction_duration)?;
125    odp.to_parquet(
126        &TrackingDataArc::default(),
127        "./02_jwst_covar_map.parquet",
128        ExportCfg::default(),
129    )?;
130
131    // === Monte Carlo framework ===
132    // Nyx comes with a complete multi-threaded Monte Carlo frame. It's blazing fast.
133
134    let my_mc = MonteCarlo::new(
135        jwst, // Nominal state
136        jwst_estimate.to_random_variable()?,
137        "02_jwst".to_string(), // Scenario name
138        None, // No specific seed specified, so one will be drawn from the computer's entropy.
139    );
140
141    let num_runs = 5_000;
142    let rslts = my_mc.run_until_epoch(
143        setup,
144        almanac.clone(),
145        jwst.epoch() + prediction_duration,
146        num_runs,
147    );
148
149    assert_eq!(rslts.runs.len(), num_runs);
150    // Finally, export these results, computing the eclipse percentage for all of these results.
151
152    // For all of the resulting trajectories, we'll want to compute the percentage of penumbra and umbra.
153    let eclipse_loc = EclipseLocator::cislunar(almanac.clone());
154    let umbra_event = eclipse_loc.to_umbra_event();
155    let penumbra_event = eclipse_loc.to_penumbra_event();
156
157    rslts.to_parquet(
158        "02_jwst_monte_carlo.parquet",
159        Some(vec![&umbra_event, &penumbra_event]),
160        ExportCfg::default(),
161        almanac,
162    )?;
163
164    Ok(())
165}

Trait Implementations§

Source§

impl<T, A, M> Clone for KF<T, A, M>
where A: DimName + Clone, M: DimName + Clone, T: State + Clone, DefaultAllocator: Allocator<M> + Allocator<<T as State>::Size> + Allocator<<T as State>::VecLength> + Allocator<A> + Allocator<M, M> + Allocator<M, <T as State>::Size> + Allocator<<T as State>::Size, <T as State>::Size> + Allocator<A, A> + Allocator<<T as State>::Size, A> + Allocator<A, <T as State>::Size>, <DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy, <DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,

Source§

fn clone(&self) -> KF<T, A, M>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<T, A, M> Debug for KF<T, A, M>
where A: DimName + Debug, M: DimName + Debug, T: State + Debug, DefaultAllocator: Allocator<M> + Allocator<<T as State>::Size> + Allocator<<T as State>::VecLength> + Allocator<A> + Allocator<M, M> + Allocator<M, <T as State>::Size> + Allocator<<T as State>::Size, <T as State>::Size> + Allocator<A, A> + Allocator<<T as State>::Size, A> + Allocator<A, <T as State>::Size>, <DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy, <DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl<T, A, M> Filter<T, A, M> for KF<T, A, M>
where A: DimName, M: DimName, T: State, DefaultAllocator: Allocator<M> + Allocator<<T as State>::Size> + Allocator<<T as State>::VecLength> + Allocator<A> + Allocator<M, M> + Allocator<M, <T as State>::Size> + Allocator<<T as State>::Size, M> + Allocator<<T as State>::Size, <T as State>::Size> + Allocator<A, A> + Allocator<<T as State>::Size, A> + Allocator<A, <T as State>::Size> + Allocator<Const<1>, M>, <DefaultAllocator as Allocator<<T as State>::Size>>::Buffer<f64>: Copy, <DefaultAllocator as Allocator<<T as State>::Size, <T as State>::Size>>::Buffer<f64>: Copy,

Source§

fn previous_estimate(&self) -> &Self::Estimate

Returns the previous estimate

Source§

fn update_h_tilde(&mut self, h_tilde: OMatrix<f64, M, <T as State>::Size>)

Update the sensitivity matrix (or “H tilde”). This function must be called prior to each call to measurement_update.

Source§

fn time_update(&mut self, nominal_state: T) -> Result<Self::Estimate, ODError>

Computes a time update/prediction (i.e. advances the filter estimate with the updated STM).

May return a FilterError if the STM was not updated.

Source§

fn measurement_update( &mut self, nominal_state: T, real_obs: &OVector<f64, M>, computed_obs: &OVector<f64, M>, r_k: OMatrix<f64, M, M>, resid_rejection: Option<ResidRejectCrit>, ) -> Result<(Self::Estimate, Residual<M>), ODError>

Computes the measurement update with a provided real observation and computed observation.

May return a FilterError if the STM or sensitivity matrices were not updated.

Source§

fn set_process_noise(&mut self, snc: SNC<A>)

Overwrites all of the process noises to the one provided

Source§

type Estimate = KfEstimate<T>

Source§

fn set_previous_estimate(&mut self, est: &Self::Estimate)

Set the previous estimate
Source§

fn is_extended(&self) -> bool

Returns whether the filter is an extended filter (e.g. EKF)
Source§

fn set_extended(&mut self, status: bool)

Sets the filter to be extended or not depending on the value of status

Auto Trait Implementations§

§

impl<T, A, M> !Freeze for KF<T, A, M>

§

impl<T, A, M> !RefUnwindSafe for KF<T, A, M>

§

impl<T, A, M> !Send for KF<T, A, M>

§

impl<T, A, M> !Sync for KF<T, A, M>

§

impl<T, A, M> !Unpin for KF<T, A, M>

§

impl<T, A, M> !UnwindSafe for KF<T, A, M>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T> Allocation for T
where T: RefUnwindSafe + Send + Sync,

§

impl<T> ErasedDestructor for T
where T: 'static,

§

impl<T> MaybeSendSync for T