Struct TrackingDataArc

Source
pub struct TrackingDataArc {
    pub measurements: BTreeMap<Epoch, Measurement>,
    pub source: Option<String>,
    pub moduli: Option<IndexMap<MeasurementType, f64>>,
}
Expand description

Tracking data storing all of measurements as a B-Tree. It inherently does NOT support multiple concurrent measurements from several trackers.

§Measurement Moduli, e.g. range modulus

In the case of ranging, and possibly other data types, a code is used to measure the range to the spacecraft. The length of this code determines the ambiguity resolution, as per equation 9 in section 2.2.2.2 of the JPL DESCANSO, document 214, Pseudo-Noise and Regenerative Ranging. For example, using the JPL Range Code and a frequency range clock of 1 MHz, the range ambiguity is 75,660 km. In other words, as soon as the spacecraft is at a range of 75,660 + 1 km the JPL Range Code will report the vehicle to be at a range of 1 km. This is simply because the range code overlaps with itself, effectively loosing track of its own reference: it’s due to the phase shift of the signal “lapping” the original signal length.

            (Spacecraft)
            ^
            |    Actual Distance = 75,661 km
            |
0 km                                         75,660 km (Wrap-Around)
|-----------------------------------------------|
  When the "code length" is exceeded,
  measurements wrap back to 0.

So effectively:
    Observed code range = Actual range (mod 75,660 km)
    75,661 km → 1 km

Nyx can only resolve the range ambiguity if the tracking data specifies a modulus for this specific measurement type. For example, in the case of the JPL Range Code and a 1 MHz range clock, the ambiguity interval is 75,660 km.

The measurement used in the Orbit Determination Process then becomes the following, where // represents the Euclidian division.

k = computed_obs // ambiguity_interval
real_obs = measured_obs + k * modulus

Reference: JPL DESCANSO, document 214, Pseudo-Noise and Regenerative Ranging.

Fields§

§measurements: BTreeMap<Epoch, Measurement>

All measurements in this data arc

§source: Option<String>

Source file if loaded from a file or saved to a file.

§moduli: Option<IndexMap<MeasurementType, f64>>

Optionally provide a map of modulos (e.g. the RANGE_MODULO of CCSDS TDM).

Implementations§

Source§

impl TrackingDataArc

Source

pub fn from_tdm<P: AsRef<Path>>( path: P, aliases: Option<HashMap<String, String>>, ) -> Result<Self, InputOutputError>

Loads a tracking arc from its serialization in CCSDS TDM.

§Support level
  • Only the KVN format is supported.
  • Support is limited to orbit determination in “xGEO”, i.e. cislunar and deep space missions.
  • Only one metadata and data section per file is tested.
§Data types

Fully supported: - RANGE - DOPPLER_INSTANTANEOUS, DOPPLER_INTEGRATED - ANGLE_1 / ANGLE_2, as azimuth/elevation only

Partially supported: - TRANSMIT_FREQ / RECEIVE_FREQ : these will be converted to Doppler measurements using the TURNAROUND_NUMERATOR and TURNAROUND_DENOMINATOR in the TDM. The freq rate is not supported.

§Metadata support
§Mode

Only the MODE = SEQUENTIAL is supported.

§Time systems / time scales

All timescales supported by hifitime are supported here. This includes: UTC, TAI, GPS, TT, TDB, TAI, GST, QZSST.

§Path

Only one way or two way data is supported, i.e. path must be either PATH n,m,n or PATH n,m.

Note that the actual indexes of the path are ignored.

§Participants

PARTICIPANT_1 must be the ground station / tracker. The second participant is ignored: the user must ensure that the Orbit Determination Process is properly configured and the proper arc is given.

§Turnaround ratio

The turnaround ratio is only accounted for when the data contains RECEIVE_FREQ and TRANSMIT_FREQ data.

§Range and modulus

Only kilometers are supported in range units. Range modulus is accounted for to compute range ambiguity.

Source

pub fn to_tdm_file<P: AsRef<Path>>( self, spacecraft_name: String, aliases: Option<HashMap<String, String>>, path: P, cfg: ExportCfg, ) -> Result<PathBuf, InputOutputError>

Store this tracking arc to a CCSDS TDM file, with optional metadata and a timestamp appended to the filename.

Source§

impl TrackingDataArc

Source

pub fn from_parquet<P: AsRef<Path>>(path: P) -> Result<Self, InputOutputError>

Loads a tracking arc from its serialization in parquet.

Warning: no metadata is read from the parquet file, even that written to it by Nyx.

Source

pub fn to_parquet_simple<P: AsRef<Path>>( &self, path: P, ) -> Result<PathBuf, Box<dyn Error>>

Store this tracking arc to a parquet file.

Examples found in repository?
examples/04_lro_od/main.rs (line 223)
33fn main() -> Result<(), Box<dyn Error>> {
34    pel::init();
35
36    // ====================== //
37    // === ALMANAC SET UP === //
38    // ====================== //
39
40    // Dynamics models require planetary constants and ephemerides to be defined.
41    // Let's start by grabbing those by using ANISE's MetaAlmanac.
42
43    let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
44        .iter()
45        .collect();
46
47    let meta = data_folder.join("lro-dynamics.dhall");
48
49    // Load this ephem in the general Almanac we're using for this analysis.
50    let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
51        .map_err(Box::new)?
52        .process(true)
53        .map_err(Box::new)?;
54
55    let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
56    moon_pc.mu_km3_s2 = 4902.74987;
57    almanac.planetary_data.set_by_id(MOON, moon_pc)?;
58
59    let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
60    earth_pc.mu_km3_s2 = 398600.436;
61    almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
62
63    // Save this new kernel for reuse.
64    // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
65    almanac
66        .planetary_data
67        .save_as(&data_folder.join("lro-specific.pca"), true)?;
68
69    // Lock the almanac (an Arc is a read only structure).
70    let almanac = Arc::new(almanac);
71
72    // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
73    // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
74    // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
75    // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
76    let lro_frame = Frame::from_ephem_j2000(-85);
77
78    // To build the trajectory we need to provide a spacecraft template.
79    let sc_template = Spacecraft::builder()
80        .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
81        .srp(SRPData {
82            // SRP configuration is arbitrary, but we will be estimating it anyway.
83            area_m2: 3.9 * 2.7,
84            coeff_reflectivity: 0.96,
85        })
86        .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
87        .build();
88    // Now we can build the trajectory from the BSP file.
89    // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
90    let traj_as_flown = Traj::from_bsp(
91        lro_frame,
92        MOON_J2000,
93        almanac.clone(),
94        sc_template,
95        5.seconds(),
96        Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
97        Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
98        Aberration::LT,
99        Some("LRO".to_string()),
100    )?;
101
102    println!("{traj_as_flown}");
103
104    // ====================== //
105    // === MODEL MATCHING === //
106    // ====================== //
107
108    // Set up the spacecraft dynamics.
109
110    // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
111    // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
112    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
113
114    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
115    // We're using the GRAIL JGGRX model.
116    let mut jggrx_meta = MetaFile {
117        uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
118        crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
119    };
120    // And let's download it if we don't have it yet.
121    jggrx_meta.process(true)?;
122
123    // Build the spherical harmonics.
124    // The harmonics must be computed in the body fixed frame.
125    // We're using the long term prediction of the Moon principal axes frame.
126    let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
127    let sph_harmonics = Harmonics::from_stor(
128        almanac.frame_from_uid(moon_pa_frame)?,
129        HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
130    );
131
132    // Include the spherical harmonics into the orbital dynamics.
133    orbital_dyn.accel_models.push(sph_harmonics);
134
135    // We define the solar radiation pressure, using the default solar flux and accounting only
136    // for the eclipsing caused by the Earth and Moon.
137    // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
138    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
139
140    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
141    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
142    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
143
144    println!("{dynamics}");
145
146    // Now we can build the propagator.
147    let setup = Propagator::default_dp78(dynamics.clone());
148
149    // For reference, let's build the trajectory with Nyx's models from that LRO state.
150    let (sim_final, traj_as_sim) = setup
151        .with(*traj_as_flown.first(), almanac.clone())
152        .until_epoch_with_traj(traj_as_flown.last().epoch())?;
153
154    println!("SIM INIT:  {:x}", traj_as_flown.first());
155    println!("SIM FINAL: {sim_final:x}");
156    // Compute RIC difference between SIM and LRO ephem
157    let sim_lro_delta = sim_final
158        .orbit
159        .ric_difference(&traj_as_flown.last().orbit)?;
160    println!("{traj_as_sim}");
161    println!(
162        "SIM v LRO - RIC Position (m): {:.3}",
163        sim_lro_delta.radius_km * 1e3
164    );
165    println!(
166        "SIM v LRO - RIC Velocity (m/s): {:.3}",
167        sim_lro_delta.velocity_km_s * 1e3
168    );
169
170    traj_as_sim.ric_diff_to_parquet(
171        &traj_as_flown,
172        "./04_lro_sim_truth_error.parquet",
173        ExportCfg::default(),
174    )?;
175
176    // ==================== //
177    // === OD SIMULATOR === //
178    // ==================== //
179
180    // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
181    // and the truth LRO state.
182
183    // Therefore, we will actually run an estimation from a dispersed LRO state.
184    // The sc_seed is the true LRO state from the BSP.
185    let sc_seed = *traj_as_flown.first();
186
187    // Load the Deep Space Network ground stations.
188    // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
189    let ground_station_file: PathBuf = [
190        env!("CARGO_MANIFEST_DIR"),
191        "examples",
192        "04_lro_od",
193        "dsn-network.yaml",
194    ]
195    .iter()
196    .collect();
197
198    let devices = GroundStation::load_named(ground_station_file)?;
199
200    // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
201    // Nyx can build a tracking schedule for you based on the first station with access.
202    let trkconfg_yaml: PathBuf = [
203        env!("CARGO_MANIFEST_DIR"),
204        "examples",
205        "04_lro_od",
206        "tracking-cfg.yaml",
207    ]
208    .iter()
209    .collect();
210
211    let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
212
213    // Build the tracking arc simulation to generate a "standard measurement".
214    let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::new(
215        devices.clone(),
216        traj_as_flown.clone(),
217        configs,
218    )?;
219
220    trk.build_schedule(almanac.clone())?;
221    let arc = trk.generate_measurements(almanac.clone())?;
222    // Save the simulated tracking data
223    arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
224
225    // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
226    println!("{arc}");
227
228    // Now that we have simulated measurements, we'll run the orbit determination.
229
230    // ===================== //
231    // === OD ESTIMATION === //
232    // ===================== //
233
234    let sc = SpacecraftUncertainty::builder()
235        .nominal(sc_seed)
236        .frame(LocalFrame::RIC)
237        .x_km(0.5)
238        .y_km(0.5)
239        .z_km(0.5)
240        .vx_km_s(5e-3)
241        .vy_km_s(5e-3)
242        .vz_km_s(5e-3)
243        .build();
244
245    // Build the filter initial estimate, which we will reuse in the filter.
246    let initial_estimate = sc.to_estimate()?;
247
248    println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
249
250    let kf = KF::new(
251        // Increase the initial covariance to account for larger deviation.
252        initial_estimate,
253        // Until https://github.com/nyx-space/nyx/issues/351, we need to specify the SNC in the acceleration of the Moon J2000 frame.
254        SNC3::from_diagonal(10 * Unit::Minute, &[1e-12, 1e-12, 1e-12]),
255    );
256
257    // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
258    let mut odp = SpacecraftODProcess::ckf(
259        setup.with(initial_estimate.state().with_stm(), almanac.clone()),
260        kf,
261        devices,
262        Some(ResidRejectCrit::default()),
263        almanac.clone(),
264    );
265
266    odp.process_arc(&arc)?;
267
268    let ric_err = traj_as_flown
269        .at(odp.estimates.last().unwrap().epoch())?
270        .orbit
271        .ric_difference(&odp.estimates.last().unwrap().orbital_state())?;
272    println!("== RIC at end ==");
273    println!("RIC Position (m): {}", ric_err.radius_km * 1e3);
274    println!("RIC Velocity (m/s): {}", ric_err.velocity_km_s * 1e3);
275
276    odp.to_parquet(&arc, "./04_lro_od_results.parquet", ExportCfg::default())?;
277
278    // In our case, we have the truth trajectory from NASA.
279    // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
280    // Export the OD trajectory first.
281    let od_trajectory = odp.to_traj()?;
282    // Build the RIC difference.
283    od_trajectory.ric_diff_to_parquet(
284        &traj_as_flown,
285        "./04_lro_od_truth_error.parquet",
286        ExportCfg::default(),
287    )?;
288
289    Ok(())
290}
Source

pub fn to_parquet<P: AsRef<Path>>( &self, path: P, cfg: ExportCfg, ) -> Result<PathBuf, Box<dyn Error>>

Store this tracking arc to a parquet file, with optional metadata and a timestamp appended to the filename.

Source§

impl TrackingDataArc

Source

pub fn set_moduli(&mut self, msr_type: MeasurementType, modulus: f64)

Set (or overwrites) the modulus of the provided measurement type.

Source

pub fn apply_moduli(&mut self)

Applies the moduli to each measurement, if defined.

Source

pub fn unique_aliases(&self) -> IndexSet<String>

Returns the unique list of aliases in this tracking data arc

Source

pub fn unique_types(&self) -> IndexSet<MeasurementType>

Returns the unique measurement types in this tracking data arc

Source

pub fn unique(&self) -> (IndexSet<String>, IndexSet<MeasurementType>)

Returns the unique trackers and unique measurement types in this data arc

Source

pub fn start_epoch(&self) -> Option<Epoch>

Returns the start epoch of this tracking arc

Source

pub fn end_epoch(&self) -> Option<Epoch>

Returns the end epoch of this tracking arc

Source

pub fn len(&self) -> usize

Returns the number of measurements in this data arc

Source

pub fn is_empty(&self) -> bool

Returns whether this arc has no measurements.

Source

pub fn min_duration_sep(&self) -> Option<Duration>

Returns the minimum duration between two subsequent measurements. This is important to correctly set up the propagator and not miss any measurement.

Source

pub fn filter_by_epoch<R: RangeBounds<Epoch>>(self, bound: R) -> Self

Returns a new tracking arc that only contains measurements that fall within the given epoch range.

Source

pub fn filter_by_offset<R: RangeBounds<Duration>>(self, bound: R) -> Self

Returns a new tracking arc that only contains measurements that fall within the given offset from the first epoch

Source

pub fn filter_by_tracker(self, tracker: String) -> Self

Returns a new tracking arc that only contains measurements from the desired tracker.

Source

pub fn downsample(self, target_step: Duration) -> Self

Downsamples the tracking data to a lower frequency using a simple moving average low-pass filter followed by decimation, returning new TrackingDataArc with downsampled measurements.

It provides a computationally efficient approach to reduce the sampling rate while mitigating aliasing effects.

§Algorithm
  1. A simple moving average filter is applied as a low-pass filter.
  2. Decimation is performed by selecting every Nth sample after filtering.
§Advantages
  • Computationally efficient, suitable for large datasets common in spaceflight applications.
  • Provides basic anti-aliasing, crucial for preserving signal integrity in orbit determination and tracking.
  • Maintains phase information, important for accurate timing in spacecraft state estimation.
§Limitations
  • The frequency response is not as sharp as more sophisticated filters (e.g., FIR, IIR).
  • May not provide optimal stopband attenuation for high-precision applications.
§Considerations for Spaceflight Applications
  • Suitable for initial data reduction in ground station tracking pipelines.
  • Adequate for many orbit determination and tracking tasks where computational speed is prioritized.
  • For high-precision applications (e.g., interplanetary navigation), consider using more advanced filtering techniques.

Trait Implementations§

Source§

impl Clone for TrackingDataArc

Source§

fn clone(&self) -> TrackingDataArc

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for TrackingDataArc

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for TrackingDataArc

Source§

fn default() -> TrackingDataArc

Returns the “default value” for a type. Read more
Source§

impl Display for TrackingDataArc

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl PartialEq for TrackingDataArc

Source§

fn eq(&self, other: &Self) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T> Allocation for T
where T: RefUnwindSafe + Send + Sync,

§

impl<T> ErasedDestructor for T
where T: 'static,

§

impl<T> MaybeSendSync for T

Source§

impl<T> Scalar for T
where T: 'static + Clone + PartialEq + Debug,