pub struct TrackingDataArc {
pub measurements: BTreeMap<Epoch, Measurement>,
pub source: Option<String>,
pub moduli: Option<IndexMap<MeasurementType, f64>>,
}
Expand description
Tracking data storing all of measurements as a B-Tree. It inherently does NOT support multiple concurrent measurements from several trackers.
§Measurement Moduli, e.g. range modulus
In the case of ranging, and possibly other data types, a code is used to measure the range to the spacecraft. The length of this code determines the ambiguity resolution, as per equation 9 in section 2.2.2.2 of the JPL DESCANSO, document 214, Pseudo-Noise and Regenerative Ranging. For example, using the JPL Range Code and a frequency range clock of 1 MHz, the range ambiguity is 75,660 km. In other words, as soon as the spacecraft is at a range of 75,660 + 1 km the JPL Range Code will report the vehicle to be at a range of 1 km. This is simply because the range code overlaps with itself, effectively loosing track of its own reference: it’s due to the phase shift of the signal “lapping” the original signal length.
(Spacecraft)
^
| Actual Distance = 75,661 km
|
0 km 75,660 km (Wrap-Around)
|-----------------------------------------------|
When the "code length" is exceeded,
measurements wrap back to 0.
So effectively:
Observed code range = Actual range (mod 75,660 km)
75,661 km → 1 km
Nyx can only resolve the range ambiguity if the tracking data specifies a modulus for this specific measurement type. For example, in the case of the JPL Range Code and a 1 MHz range clock, the ambiguity interval is 75,660 km.
The measurement used in the Orbit Determination Process then becomes the following, where //
represents the Euclidian division.
k = computed_obs // ambiguity_interval
real_obs = measured_obs + k * modulus
Reference: JPL DESCANSO, document 214, Pseudo-Noise and Regenerative Ranging.
Fields§
§measurements: BTreeMap<Epoch, Measurement>
All measurements in this data arc
source: Option<String>
Source file if loaded from a file or saved to a file.
moduli: Option<IndexMap<MeasurementType, f64>>
Optionally provide a map of modulos (e.g. the RANGE_MODULO of CCSDS TDM).
Implementations§
Source§impl TrackingDataArc
impl TrackingDataArc
Sourcepub fn from_tdm<P: AsRef<Path>>(
path: P,
aliases: Option<HashMap<String, String>>,
) -> Result<Self, InputOutputError>
pub fn from_tdm<P: AsRef<Path>>( path: P, aliases: Option<HashMap<String, String>>, ) -> Result<Self, InputOutputError>
Loads a tracking arc from its serialization in CCSDS TDM.
§Support level
- Only the KVN format is supported.
- Support is limited to orbit determination in “xGEO”, i.e. cislunar and deep space missions.
- Only one metadata and data section per file is tested.
§Data types
Fully supported: - RANGE - DOPPLER_INSTANTANEOUS, DOPPLER_INTEGRATED - ANGLE_1 / ANGLE_2, as azimuth/elevation only
Partially supported: - TRANSMIT_FREQ / RECEIVE_FREQ : these will be converted to Doppler measurements using the TURNAROUND_NUMERATOR and TURNAROUND_DENOMINATOR in the TDM. The freq rate is not supported.
§Metadata support
§Mode
Only the MODE = SEQUENTIAL is supported.
§Time systems / time scales
All timescales supported by hifitime are supported here. This includes: UTC, TAI, GPS, TT, TDB, TAI, GST, QZSST.
§Path
Only one way or two way data is supported, i.e. path must be either PATH n,m,n
or PATH n,m
.
Note that the actual indexes of the path are ignored.
§Participants
PARTICIPANT_1
must be the ground station / tracker.
The second participant is ignored: the user must ensure that the Orbit Determination Process is properly configured and the proper arc is given.
§Turnaround ratio
The turnaround ratio is only accounted for when the data contains RECEIVE_FREQ and TRANSMIT_FREQ data.
§Range and modulus
Only kilometers are supported in range units. Range modulus is accounted for to compute range ambiguity.
Source§impl TrackingDataArc
impl TrackingDataArc
Sourcepub fn from_parquet<P: AsRef<Path>>(path: P) -> Result<Self, InputOutputError>
pub fn from_parquet<P: AsRef<Path>>(path: P) -> Result<Self, InputOutputError>
Loads a tracking arc from its serialization in parquet.
Warning: no metadata is read from the parquet file, even that written to it by Nyx.
Sourcepub fn to_parquet_simple<P: AsRef<Path>>(
&self,
path: P,
) -> Result<PathBuf, Box<dyn Error>>
pub fn to_parquet_simple<P: AsRef<Path>>( &self, path: P, ) -> Result<PathBuf, Box<dyn Error>>
Store this tracking arc to a parquet file.
Examples found in repository?
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
fn main() -> Result<(), Box<dyn Error>> {
pel::init();
// ====================== //
// === ALMANAC SET UP === //
// ====================== //
// Dynamics models require planetary constants and ephemerides to be defined.
// Let's start by grabbing those by using ANISE's MetaAlmanac.
let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
.iter()
.collect();
let meta = data_folder.join("lro-dynamics.dhall");
// Load this ephem in the general Almanac we're using for this analysis.
let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
.map_err(Box::new)?
.process(true)
.map_err(Box::new)?;
let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
moon_pc.mu_km3_s2 = 4902.74987;
almanac.planetary_data.set_by_id(MOON, moon_pc)?;
let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
earth_pc.mu_km3_s2 = 398600.436;
almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
// Save this new kernel for reuse.
// In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
almanac
.planetary_data
.save_as(&data_folder.join("lro-specific.pca"), true)?;
// Lock the almanac (an Arc is a read only structure).
let almanac = Arc::new(almanac);
// Orbit determination requires a Trajectory structure, which can be saved as parquet file.
// In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
// To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
// Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
let lro_frame = Frame::from_ephem_j2000(-85);
// To build the trajectory we need to provide a spacecraft template.
let sc_template = Spacecraft::builder()
.mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
.srp(SRPData {
// SRP configuration is arbitrary, but we will be estimating it anyway.
area_m2: 3.9 * 2.7,
coeff_reflectivity: 0.96,
})
.orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
.build();
// Now we can build the trajectory from the BSP file.
// We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
let traj_as_flown = Traj::from_bsp(
lro_frame,
MOON_J2000,
almanac.clone(),
sc_template,
5.seconds(),
Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
Aberration::LT,
Some("LRO".to_string()),
)?;
println!("{traj_as_flown}");
// ====================== //
// === MODEL MATCHING === //
// ====================== //
// Set up the spacecraft dynamics.
// Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
// The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
// We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
// We're using the GRAIL JGGRX model.
let mut jggrx_meta = MetaFile {
uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
};
// And let's download it if we don't have it yet.
jggrx_meta.process(true)?;
// Build the spherical harmonics.
// The harmonics must be computed in the body fixed frame.
// We're using the long term prediction of the Moon principal axes frame.
let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
let sph_harmonics = Harmonics::from_stor(
almanac.frame_from_uid(moon_pa_frame)?,
HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
);
// Include the spherical harmonics into the orbital dynamics.
orbital_dyn.accel_models.push(sph_harmonics);
// We define the solar radiation pressure, using the default solar flux and accounting only
// for the eclipsing caused by the Earth and Moon.
// Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
// Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
// acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
println!("{dynamics}");
// Now we can build the propagator.
let setup = Propagator::default_dp78(dynamics.clone());
// For reference, let's build the trajectory with Nyx's models from that LRO state.
let (sim_final, traj_as_sim) = setup
.with(*traj_as_flown.first(), almanac.clone())
.until_epoch_with_traj(traj_as_flown.last().epoch())?;
println!("SIM INIT: {:x}", traj_as_flown.first());
println!("SIM FINAL: {sim_final:x}");
// Compute RIC difference between SIM and LRO ephem
let sim_lro_delta = sim_final
.orbit
.ric_difference(&traj_as_flown.last().orbit)?;
println!("{traj_as_sim}");
println!(
"SIM v LRO - RIC Position (m): {:.3}",
sim_lro_delta.radius_km * 1e3
);
println!(
"SIM v LRO - RIC Velocity (m/s): {:.3}",
sim_lro_delta.velocity_km_s * 1e3
);
traj_as_sim.ric_diff_to_parquet(
&traj_as_flown,
"./04_lro_sim_truth_error.parquet",
ExportCfg::default(),
)?;
// ==================== //
// === OD SIMULATOR === //
// ==================== //
// After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
// and the truth LRO state.
// Therefore, we will actually run an estimation from a dispersed LRO state.
// The sc_seed is the true LRO state from the BSP.
let sc_seed = *traj_as_flown.first();
// Load the Deep Space Network ground stations.
// Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
let ground_station_file: PathBuf = [
env!("CARGO_MANIFEST_DIR"),
"examples",
"04_lro_od",
"dsn-network.yaml",
]
.iter()
.collect();
let devices = GroundStation::load_named(ground_station_file)?;
// Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
// Nyx can build a tracking schedule for you based on the first station with access.
let trkconfg_yaml: PathBuf = [
env!("CARGO_MANIFEST_DIR"),
"examples",
"04_lro_od",
"tracking-cfg.yaml",
]
.iter()
.collect();
let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
// Build the tracking arc simulation to generate a "standard measurement".
let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::new(
devices.clone(),
traj_as_flown.clone(),
configs,
)?;
trk.build_schedule(almanac.clone())?;
let arc = trk.generate_measurements(almanac.clone())?;
// Save the simulated tracking data
arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
// We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
println!("{arc}");
// Now that we have simulated measurements, we'll run the orbit determination.
// ===================== //
// === OD ESTIMATION === //
// ===================== //
let sc = SpacecraftUncertainty::builder()
.nominal(sc_seed)
.frame(LocalFrame::RIC)
.x_km(0.5)
.y_km(0.5)
.z_km(0.5)
.vx_km_s(5e-3)
.vy_km_s(5e-3)
.vz_km_s(5e-3)
.build();
// Build the filter initial estimate, which we will reuse in the filter.
let initial_estimate = sc.to_estimate()?;
println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
let kf = KF::new(
// Increase the initial covariance to account for larger deviation.
initial_estimate,
// Until https://github.com/nyx-space/nyx/issues/351, we need to specify the SNC in the acceleration of the Moon J2000 frame.
SNC3::from_diagonal(10 * Unit::Minute, &[1e-12, 1e-12, 1e-12]),
);
// We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
let mut odp = SpacecraftODProcess::ckf(
setup.with(initial_estimate.state().with_stm(), almanac.clone()),
kf,
devices,
Some(ResidRejectCrit::default()),
almanac.clone(),
);
odp.process_arc(&arc)?;
let ric_err = traj_as_flown
.at(odp.estimates.last().unwrap().epoch())?
.orbit
.ric_difference(&odp.estimates.last().unwrap().orbital_state())?;
println!("== RIC at end ==");
println!("RIC Position (m): {}", ric_err.radius_km * 1e3);
println!("RIC Velocity (m/s): {}", ric_err.velocity_km_s * 1e3);
odp.to_parquet(&arc, "./04_lro_od_results.parquet", ExportCfg::default())?;
// In our case, we have the truth trajectory from NASA.
// So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
// Export the OD trajectory first.
let od_trajectory = odp.to_traj()?;
// Build the RIC difference.
od_trajectory.ric_diff_to_parquet(
&traj_as_flown,
"./04_lro_od_truth_error.parquet",
ExportCfg::default(),
)?;
Ok(())
}
Source§impl TrackingDataArc
impl TrackingDataArc
Sourcepub fn set_moduli(&mut self, msr_type: MeasurementType, modulus: f64)
pub fn set_moduli(&mut self, msr_type: MeasurementType, modulus: f64)
Set (or overwrites) the modulus of the provided measurement type.
Sourcepub fn apply_moduli(&mut self)
pub fn apply_moduli(&mut self)
Applies the moduli to each measurement, if defined.
Sourcepub fn unique_aliases(&self) -> IndexSet<String>
pub fn unique_aliases(&self) -> IndexSet<String>
Returns the unique list of aliases in this tracking data arc
Sourcepub fn unique_types(&self) -> IndexSet<MeasurementType>
pub fn unique_types(&self) -> IndexSet<MeasurementType>
Returns the unique measurement types in this tracking data arc
Sourcepub fn unique(&self) -> (IndexSet<String>, IndexSet<MeasurementType>)
pub fn unique(&self) -> (IndexSet<String>, IndexSet<MeasurementType>)
Returns the unique trackers and unique measurement types in this data arc
Sourcepub fn start_epoch(&self) -> Option<Epoch>
pub fn start_epoch(&self) -> Option<Epoch>
Returns the start epoch of this tracking arc
Sourcepub fn min_duration_sep(&self) -> Option<Duration>
pub fn min_duration_sep(&self) -> Option<Duration>
Returns the minimum duration between two subsequent measurements. This is important to correctly set up the propagator and not miss any measurement.
Sourcepub fn filter_by_epoch<R: RangeBounds<Epoch>>(self, bound: R) -> Self
pub fn filter_by_epoch<R: RangeBounds<Epoch>>(self, bound: R) -> Self
Returns a new tracking arc that only contains measurements that fall within the given epoch range.
Sourcepub fn filter_by_offset<R: RangeBounds<Duration>>(self, bound: R) -> Self
pub fn filter_by_offset<R: RangeBounds<Duration>>(self, bound: R) -> Self
Returns a new tracking arc that only contains measurements that fall within the given offset from the first epoch
Sourcepub fn filter_by_tracker(self, tracker: String) -> Self
pub fn filter_by_tracker(self, tracker: String) -> Self
Returns a new tracking arc that only contains measurements from the desired tracker.
Sourcepub fn downsample(self, target_step: Duration) -> Self
pub fn downsample(self, target_step: Duration) -> Self
Downsamples the tracking data to a lower frequency using a simple moving average low-pass filter followed by decimation,
returning new TrackingDataArc
with downsampled measurements.
It provides a computationally efficient approach to reduce the sampling rate while mitigating aliasing effects.
§Algorithm
- A simple moving average filter is applied as a low-pass filter.
- Decimation is performed by selecting every Nth sample after filtering.
§Advantages
- Computationally efficient, suitable for large datasets common in spaceflight applications.
- Provides basic anti-aliasing, crucial for preserving signal integrity in orbit determination and tracking.
- Maintains phase information, important for accurate timing in spacecraft state estimation.
§Limitations
- The frequency response is not as sharp as more sophisticated filters (e.g., FIR, IIR).
- May not provide optimal stopband attenuation for high-precision applications.
§Considerations for Spaceflight Applications
- Suitable for initial data reduction in ground station tracking pipelines.
- Adequate for many orbit determination and tracking tasks where computational speed is prioritized.
- For high-precision applications (e.g., interplanetary navigation), consider using more advanced filtering techniques.
Trait Implementations§
Source§impl Clone for TrackingDataArc
impl Clone for TrackingDataArc
Source§fn clone(&self) -> TrackingDataArc
fn clone(&self) -> TrackingDataArc
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moreSource§impl Debug for TrackingDataArc
impl Debug for TrackingDataArc
Source§impl Default for TrackingDataArc
impl Default for TrackingDataArc
Source§fn default() -> TrackingDataArc
fn default() -> TrackingDataArc
Source§impl Display for TrackingDataArc
impl Display for TrackingDataArc
Source§impl PartialEq for TrackingDataArc
impl PartialEq for TrackingDataArc
Auto Trait Implementations§
impl Freeze for TrackingDataArc
impl RefUnwindSafe for TrackingDataArc
impl Send for TrackingDataArc
impl Sync for TrackingDataArc
impl Unpin for TrackingDataArc
impl UnwindSafe for TrackingDataArc
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.