pub struct PropInstance<'a, D: Dynamics>where
DefaultAllocator: Allocator<<D::StateType as State>::Size> + Allocator<<D::StateType as State>::Size, <D::StateType as State>::Size> + Allocator<<D::StateType as State>::VecLength>,{
pub state: D::StateType,
pub prop: &'a Propagator<D>,
pub details: IntegrationDetails,
pub log_progress: bool,
/* private fields */
}
Expand description
A Propagator allows propagating a set of dynamics forward or backward in time. It is an EventTracker, without any event tracking. It includes the options, the integrator details of the previous step, and the set of coefficients used for the monomorphic instance.
Fields§
§state: D::StateType
The state of this propagator instance
prop: &'a Propagator<D>
The propagator setup (kind, stages, etc.)
details: IntegrationDetails
Stores the details of the previous integration step
log_progress: bool
Should progress reports be logged
Implementations§
Source§impl<D: Dynamics> PropInstance<'_, D>
impl<D: Dynamics> PropInstance<'_, D>
Sourcepub fn set_step(&mut self, step_size: Duration, fixed: bool)
pub fn set_step(&mut self, step_size: Duration, fixed: bool)
Allows setting the step size of the propagator
Sourcepub fn for_duration(
&mut self,
duration: Duration,
) -> Result<D::StateType, PropagationError>
pub fn for_duration( &mut self, duration: Duration, ) -> Result<D::StateType, PropagationError>
This method propagates the provided Dynamics for the provided duration.
Sourcepub fn for_duration_with_channel(
&mut self,
duration: Duration,
tx_chan: Sender<D::StateType>,
) -> Result<D::StateType, PropagationError>
pub fn for_duration_with_channel( &mut self, duration: Duration, tx_chan: Sender<D::StateType>, ) -> Result<D::StateType, PropagationError>
This method propagates the provided Dynamics for the provided duration and publishes each state on the channel.
Sourcepub fn until_epoch(
&mut self,
end_time: Epoch,
) -> Result<D::StateType, PropagationError>
pub fn until_epoch( &mut self, end_time: Epoch, ) -> Result<D::StateType, PropagationError>
Propagates the provided Dynamics until the provided epoch. Returns the end state.
Sourcepub fn until_epoch_with_channel(
&mut self,
end_time: Epoch,
tx_chan: Sender<D::StateType>,
) -> Result<D::StateType, PropagationError>
pub fn until_epoch_with_channel( &mut self, end_time: Epoch, tx_chan: Sender<D::StateType>, ) -> Result<D::StateType, PropagationError>
Propagates the provided Dynamics until the provided epoch and publishes states on the provided channel. Returns the end state.
Sourcepub fn for_duration_with_traj(
&mut self,
duration: Duration,
) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>where
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
D::StateType: Interpolatable,
pub fn for_duration_with_traj(
&mut self,
duration: Duration,
) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>where
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
D::StateType: Interpolatable,
Propagates the provided Dynamics for the provided duration and generate the trajectory of these dynamics on its own thread. Returns the end state and the trajectory.
Examples found in repository?
27fn main() -> Result<(), Box<dyn Error>> {
28 pel::init();
29
30 // Dynamics models require planetary constants and ephemerides to be defined.
31 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
32 // This will automatically download the DE440s planetary ephemeris,
33 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
34 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
35 // planetary constants kernels.
36 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
37 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
38 // references to many functions.
39 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
40 // Fetch the EME2000 frame from the Almabac
41 let eme2k = almanac.frame_from_uid(EARTH_J2000).unwrap();
42 // Define the orbit epoch
43 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45 // Build the spacecraft itself.
46 // Using slide 6 of https://aerospace.org/sites/default/files/2018-11/Davis-Mayberry_HPSEP_11212018.pdf
47 // for the "next gen" SEP characteristics.
48
49 // GTO start
50 let orbit = Orbit::keplerian(24505.9, 0.725, 7.05, 0.0, 0.0, 0.0, epoch, eme2k);
51
52 let sc = Spacecraft::builder()
53 .orbit(orbit)
54 .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
55 .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
56 .thruster(Thruster {
57 // "NEXT-STEP" row in Table 2
58 isp_s: 4435.0,
59 thrust_N: 0.472,
60 })
61 .mode(GuidanceMode::Thrust) // Start thrusting immediately.
62 .build();
63
64 let prop_time = 180.0 * Unit::Day;
65
66 // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
67 let objectives = &[
68 Objective::within_tolerance(StateParameter::SMA, 42_165.0, 20.0),
69 Objective::within_tolerance(StateParameter::Eccentricity, 0.001, 5e-5),
70 Objective::within_tolerance(StateParameter::Inclination, 0.05, 1e-2),
71 ];
72
73 // Ensure that we only thrust if we have more than 20% illumination.
74 let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2).unwrap();
75 println!("{ruggiero_ctrl}");
76
77 // Define the high fidelity dynamics
78
79 // Set up the spacecraft dynamics.
80
81 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
82 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
83 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
84
85 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
86 // We're using the JGM3 model here, which is the default in GMAT.
87 let mut jgm3_meta = MetaFile {
88 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
89 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
90 };
91 // And let's download it if we don't have it yet.
92 jgm3_meta.process(true)?;
93
94 // Build the spherical harmonics.
95 // The harmonics must be computed in the body fixed frame.
96 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
97 let harmonics = Harmonics::from_stor(
98 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
99 HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true).unwrap(),
100 );
101
102 // Include the spherical harmonics into the orbital dynamics.
103 orbital_dyn.accel_models.push(harmonics);
104
105 // We define the solar radiation pressure, using the default solar flux and accounting only
106 // for the eclipsing caused by the Earth.
107 let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
108
109 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
110 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
111 let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
112 .with_guidance_law(ruggiero_ctrl.clone());
113
114 println!("{:x}", orbit);
115
116 // We specify a minimum step in the propagator because the Ruggiero control would otherwise drive this step very low.
117 let (final_state, traj) = Propagator::rk89(
118 sc_dynamics.clone(),
119 IntegratorOptions::builder()
120 .min_step(10.0_f64.seconds())
121 .error_ctrl(ErrorControl::RSSCartesianStep)
122 .build(),
123 )
124 .with(sc, almanac.clone())
125 .for_duration_with_traj(prop_time)?;
126
127 let prop_usage = sc.mass.prop_mass_kg - final_state.mass.prop_mass_kg;
128 println!("{:x}", final_state.orbit);
129 println!("prop usage: {:.3} kg", prop_usage);
130
131 // Finally, export the results for analysis, including the penumbra percentage throughout the orbit raise.
132 traj.to_parquet(
133 "./03_geo_raise.parquet",
134 Some(vec![
135 &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
136 ]),
137 ExportCfg::default(),
138 almanac,
139 )?;
140
141 for status_line in ruggiero_ctrl.status(&final_state) {
142 println!("{status_line}");
143 }
144
145 ruggiero_ctrl
146 .achieved(&final_state)
147 .expect("objective not achieved");
148
149 Ok(())
150}
Sourcepub fn until_epoch_with_traj(
&mut self,
end_time: Epoch,
) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>where
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
D::StateType: Interpolatable,
pub fn until_epoch_with_traj(
&mut self,
end_time: Epoch,
) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>where
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
D::StateType: Interpolatable,
Propagates the provided Dynamics until the provided epoch and generate the trajectory of these dynamics on its own thread. Returns the end state and the trajectory. Known bug #190: Cannot generate a valid trajectory when propagating backward
Examples found in repository?
26fn main() -> Result<(), Box<dyn Error>> {
27 pel::init();
28 // Dynamics models require planetary constants and ephemerides to be defined.
29 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30 // This will automatically download the DE440s planetary ephemeris,
31 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
32 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
33 // planetary constants kernels.
34 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
35 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
36 // references to many functions.
37 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
38 // Define the orbit epoch
39 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
40
41 // Define the orbit.
42 // First we need to fetch the Earth J2000 from information from the Almanac.
43 // This allows the frame to include the gravitational parameters and the shape of the Earth,
44 // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
45 // by loading a different set of planetary constants.
46 let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
47
48 // Placing this GEO bird just above Colorado.
49 // In theory, the eccentricity is zero, but in practice, it's about 1e-5 to 1e-6 at best.
50 let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
51 // Print in in Keplerian form.
52 println!("{orbit:x}");
53
54 let state_bf = almanac.transform_to(orbit, IAU_EARTH_FRAME, None)?;
55 let (orig_lat_deg, orig_long_deg, orig_alt_km) = state_bf.latlongalt()?;
56
57 // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
58 // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
59 // models such as solar radiation pressure.
60
61 // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
62 let sc = Spacecraft::builder()
63 .orbit(orbit)
64 .mass(Mass::from_dry_mass(9.60))
65 .srp(SRPData {
66 area_m2: 10e-4,
67 coeff_reflectivity: 1.1,
68 })
69 .build();
70 println!("{sc:x}");
71
72 // Set up the spacecraft dynamics.
73
74 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
75 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
76 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
77
78 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
79 // We're using the JGM3 model here, which is the default in GMAT.
80 let mut jgm3_meta = MetaFile {
81 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
82 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
83 };
84 // And let's download it if we don't have it yet.
85 jgm3_meta.process(true)?;
86
87 // Build the spherical harmonics.
88 // The harmonics must be computed in the body fixed frame.
89 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
90 let harmonics_21x21 = Harmonics::from_stor(
91 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
92 HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
93 );
94
95 // Include the spherical harmonics into the orbital dynamics.
96 orbital_dyn.accel_models.push(harmonics_21x21);
97
98 // We define the solar radiation pressure, using the default solar flux and accounting only
99 // for the eclipsing caused by the Earth and Moon.
100 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
103 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
104 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
105
106 println!("{dynamics}");
107
108 // Finally, let's propagate this orbit to the same epoch as above.
109 // The first returned value is the spacecraft state at the final epoch.
110 // The second value is the full trajectory where the step size is variable step used by the propagator.
111 let (future_sc, trajectory) = Propagator::default(dynamics)
112 .with(sc, almanac.clone())
113 .until_epoch_with_traj(epoch + Unit::Century * 0.03)?;
114
115 println!("=== High fidelity propagation ===");
116 println!(
117 "SMA changed by {:.3} km",
118 orbit.sma_km()? - future_sc.orbit.sma_km()?
119 );
120 println!(
121 "ECC changed by {:.6}",
122 orbit.ecc()? - future_sc.orbit.ecc()?
123 );
124 println!(
125 "INC changed by {:.3e} deg",
126 orbit.inc_deg()? - future_sc.orbit.inc_deg()?
127 );
128 println!(
129 "RAAN changed by {:.3} deg",
130 orbit.raan_deg()? - future_sc.orbit.raan_deg()?
131 );
132 println!(
133 "AOP changed by {:.3} deg",
134 orbit.aop_deg()? - future_sc.orbit.aop_deg()?
135 );
136 println!(
137 "TA changed by {:.3} deg",
138 orbit.ta_deg()? - future_sc.orbit.ta_deg()?
139 );
140
141 // We also have access to the full trajectory throughout the propagation.
142 println!("{trajectory}");
143
144 println!("Spacecraft params after 3 years without active control:\n{future_sc:x}");
145
146 // With the trajectory, let's build a few data products.
147
148 // 1. Export the trajectory as a parquet file, which includes the Keplerian orbital elements.
149
150 let analysis_step = Unit::Minute * 5;
151
152 trajectory.to_parquet(
153 "./03_geo_hf_prop.parquet",
154 Some(vec![
155 &EclipseLocator::cislunar(almanac.clone()).to_penumbra_event()
156 ]),
157 ExportCfg::builder().step(analysis_step).build(),
158 almanac.clone(),
159 )?;
160
161 // 2. Compute the latitude, longitude, and altitude throughout the trajectory by rotating the spacecraft position into the Earth body fixed frame.
162
163 // We iterate over the trajectory, grabbing a state every two minutes.
164 let mut offset_s = vec![];
165 let mut epoch_str = vec![];
166 let mut longitude_deg = vec![];
167 let mut latitude_deg = vec![];
168 let mut altitude_km = vec![];
169
170 for state in trajectory.every(analysis_step) {
171 // Convert the GEO bird state into the body fixed frame, and keep track of its latitude, longitude, and altitude.
172 // These define the GEO stationkeeping box.
173
174 let this_epoch = state.epoch();
175
176 offset_s.push((this_epoch - orbit.epoch).to_seconds());
177 epoch_str.push(this_epoch.to_isoformat());
178
179 let state_bf = almanac.transform_to(state.orbit, IAU_EARTH_FRAME, None)?;
180 let (lat_deg, long_deg, alt_km) = state_bf.latlongalt()?;
181 longitude_deg.push(long_deg);
182 latitude_deg.push(lat_deg);
183 altitude_km.push(alt_km);
184 }
185
186 println!(
187 "Longitude changed by {:.3} deg -- Box is 0.1 deg E-W",
188 orig_long_deg - longitude_deg.last().unwrap()
189 );
190
191 println!(
192 "Latitude changed by {:.3} deg -- Box is 0.05 deg N-S",
193 orig_lat_deg - latitude_deg.last().unwrap()
194 );
195
196 println!(
197 "Altitude changed by {:.3} km -- Box is 30 km",
198 orig_alt_km - altitude_km.last().unwrap()
199 );
200
201 // Build the station keeping data frame.
202 let mut sk_df = df!(
203 "Offset (s)" => offset_s.clone(),
204 "Epoch (UTC)" => epoch_str.clone(),
205 "Longitude E-W (deg)" => longitude_deg,
206 "Latitude N-S (deg)" => latitude_deg,
207 "Altitude (km)" => altitude_km,
208
209 )?;
210
211 // Create a file to write the Parquet to
212 let file = File::create("./03_geo_lla.parquet").expect("Could not create file");
213
214 // Create a ParquetWriter and write the DataFrame to the file
215 ParquetWriter::new(file).finish(&mut sk_df)?;
216
217 Ok(())
218}
More examples
33fn main() -> Result<(), Box<dyn Error>> {
34 pel::init();
35
36 // ====================== //
37 // === ALMANAC SET UP === //
38 // ====================== //
39
40 // Dynamics models require planetary constants and ephemerides to be defined.
41 // Let's start by grabbing those by using ANISE's MetaAlmanac.
42
43 let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
44 .iter()
45 .collect();
46
47 let meta = data_folder.join("lro-dynamics.dhall");
48
49 // Load this ephem in the general Almanac we're using for this analysis.
50 let mut almanac = MetaAlmanac::new(meta.to_string_lossy().to_string())
51 .map_err(Box::new)?
52 .process(true)
53 .map_err(Box::new)?;
54
55 let mut moon_pc = almanac.planetary_data.get_by_id(MOON)?;
56 moon_pc.mu_km3_s2 = 4902.74987;
57 almanac.planetary_data.set_by_id(MOON, moon_pc)?;
58
59 let mut earth_pc = almanac.planetary_data.get_by_id(EARTH)?;
60 earth_pc.mu_km3_s2 = 398600.436;
61 almanac.planetary_data.set_by_id(EARTH, earth_pc)?;
62
63 // Save this new kernel for reuse.
64 // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
65 almanac
66 .planetary_data
67 .save_as(&data_folder.join("lro-specific.pca"), true)?;
68
69 // Lock the almanac (an Arc is a read only structure).
70 let almanac = Arc::new(almanac);
71
72 // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
73 // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
74 // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
75 // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
76 let lro_frame = Frame::from_ephem_j2000(-85);
77
78 // To build the trajectory we need to provide a spacecraft template.
79 let sc_template = Spacecraft::builder()
80 .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
81 .srp(SRPData {
82 // SRP configuration is arbitrary, but we will be estimating it anyway.
83 area_m2: 3.9 * 2.7,
84 coeff_reflectivity: 0.96,
85 })
86 .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
87 .build();
88 // Now we can build the trajectory from the BSP file.
89 // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
90 let traj_as_flown = Traj::from_bsp(
91 lro_frame,
92 MOON_J2000,
93 almanac.clone(),
94 sc_template,
95 5.seconds(),
96 Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
97 Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
98 Aberration::LT,
99 Some("LRO".to_string()),
100 )?;
101
102 println!("{traj_as_flown}");
103
104 // ====================== //
105 // === MODEL MATCHING === //
106 // ====================== //
107
108 // Set up the spacecraft dynamics.
109
110 // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
111 // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
112 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
113
114 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
115 // We're using the GRAIL JGGRX model.
116 let mut jggrx_meta = MetaFile {
117 uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
118 crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
119 };
120 // And let's download it if we don't have it yet.
121 jggrx_meta.process(true)?;
122
123 // Build the spherical harmonics.
124 // The harmonics must be computed in the body fixed frame.
125 // We're using the long term prediction of the Moon principal axes frame.
126 let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
127 let sph_harmonics = Harmonics::from_stor(
128 almanac.frame_from_uid(moon_pa_frame)?,
129 HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
130 );
131
132 // Include the spherical harmonics into the orbital dynamics.
133 orbital_dyn.accel_models.push(sph_harmonics);
134
135 // We define the solar radiation pressure, using the default solar flux and accounting only
136 // for the eclipsing caused by the Earth and Moon.
137 // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
138 let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
139
140 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
141 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
142 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
143
144 println!("{dynamics}");
145
146 // Now we can build the propagator.
147 let setup = Propagator::default_dp78(dynamics.clone());
148
149 // For reference, let's build the trajectory with Nyx's models from that LRO state.
150 let (sim_final, traj_as_sim) = setup
151 .with(*traj_as_flown.first(), almanac.clone())
152 .until_epoch_with_traj(traj_as_flown.last().epoch())?;
153
154 println!("SIM INIT: {:x}", traj_as_flown.first());
155 println!("SIM FINAL: {sim_final:x}");
156 // Compute RIC difference between SIM and LRO ephem
157 let sim_lro_delta = sim_final
158 .orbit
159 .ric_difference(&traj_as_flown.last().orbit)?;
160 println!("{traj_as_sim}");
161 println!(
162 "SIM v LRO - RIC Position (m): {:.3}",
163 sim_lro_delta.radius_km * 1e3
164 );
165 println!(
166 "SIM v LRO - RIC Velocity (m/s): {:.3}",
167 sim_lro_delta.velocity_km_s * 1e3
168 );
169
170 traj_as_sim.ric_diff_to_parquet(
171 &traj_as_flown,
172 "./04_lro_sim_truth_error.parquet",
173 ExportCfg::default(),
174 )?;
175
176 // ==================== //
177 // === OD SIMULATOR === //
178 // ==================== //
179
180 // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
181 // and the truth LRO state.
182
183 // Therefore, we will actually run an estimation from a dispersed LRO state.
184 // The sc_seed is the true LRO state from the BSP.
185 let sc_seed = *traj_as_flown.first();
186
187 // Load the Deep Space Network ground stations.
188 // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
189 let ground_station_file: PathBuf = [
190 env!("CARGO_MANIFEST_DIR"),
191 "examples",
192 "04_lro_od",
193 "dsn-network.yaml",
194 ]
195 .iter()
196 .collect();
197
198 let devices = GroundStation::load_named(ground_station_file)?;
199
200 // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
201 // Nyx can build a tracking schedule for you based on the first station with access.
202 let trkconfg_yaml: PathBuf = [
203 env!("CARGO_MANIFEST_DIR"),
204 "examples",
205 "04_lro_od",
206 "tracking-cfg.yaml",
207 ]
208 .iter()
209 .collect();
210
211 let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
212
213 // Build the tracking arc simulation to generate a "standard measurement".
214 let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::new(
215 devices.clone(),
216 traj_as_flown.clone(),
217 configs,
218 )?;
219
220 trk.build_schedule(almanac.clone())?;
221 let arc = trk.generate_measurements(almanac.clone())?;
222 // Save the simulated tracking data
223 arc.to_parquet_simple("./04_lro_simulated_tracking.parquet")?;
224
225 // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
226 println!("{arc}");
227
228 // Now that we have simulated measurements, we'll run the orbit determination.
229
230 // ===================== //
231 // === OD ESTIMATION === //
232 // ===================== //
233
234 let sc = SpacecraftUncertainty::builder()
235 .nominal(sc_seed)
236 .frame(LocalFrame::RIC)
237 .x_km(0.5)
238 .y_km(0.5)
239 .z_km(0.5)
240 .vx_km_s(5e-3)
241 .vy_km_s(5e-3)
242 .vz_km_s(5e-3)
243 .build();
244
245 // Build the filter initial estimate, which we will reuse in the filter.
246 let initial_estimate = sc.to_estimate()?;
247
248 println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
249
250 let kf = KF::new(
251 // Increase the initial covariance to account for larger deviation.
252 initial_estimate,
253 // Until https://github.com/nyx-space/nyx/issues/351, we need to specify the SNC in the acceleration of the Moon J2000 frame.
254 SNC3::from_diagonal(10 * Unit::Minute, &[1e-12, 1e-12, 1e-12]),
255 );
256
257 // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
258 let mut odp = SpacecraftODProcess::ckf(
259 setup.with(initial_estimate.state().with_stm(), almanac.clone()),
260 kf,
261 devices,
262 Some(ResidRejectCrit::default()),
263 almanac.clone(),
264 );
265
266 odp.process_arc(&arc)?;
267
268 let ric_err = traj_as_flown
269 .at(odp.estimates.last().unwrap().epoch())?
270 .orbit
271 .ric_difference(&odp.estimates.last().unwrap().orbital_state())?;
272 println!("== RIC at end ==");
273 println!("RIC Position (m): {}", ric_err.radius_km * 1e3);
274 println!("RIC Velocity (m/s): {}", ric_err.velocity_km_s * 1e3);
275
276 odp.to_parquet(&arc, "./04_lro_od_results.parquet", ExportCfg::default())?;
277
278 // In our case, we have the truth trajectory from NASA.
279 // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
280 // Export the OD trajectory first.
281 let od_trajectory = odp.to_traj()?;
282 // Build the RIC difference.
283 od_trajectory.ric_diff_to_parquet(
284 &traj_as_flown,
285 "./04_lro_od_truth_error.parquet",
286 ExportCfg::default(),
287 )?;
288
289 Ok(())
290}
30fn main() -> Result<(), Box<dyn Error>> {
31 pel::init();
32 // Dynamics models require planetary constants and ephemerides to be defined.
33 // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
34 // This will automatically download the DE440s planetary ephemeris,
35 // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
36 // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
37 // planetary constants kernels.
38 // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
39 // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
40 // references to many functions.
41 let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
42 // Define the orbit epoch
43 let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45 // Define the orbit.
46 // First we need to fetch the Earth J2000 from information from the Almanac.
47 // This allows the frame to include the gravitational parameters and the shape of the Earth,
48 // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
49 // by loading a different set of planetary constants.
50 let earth_j2000 = almanac.frame_from_uid(EARTH_J2000)?;
51
52 let orbit =
53 Orbit::try_keplerian_altitude(300.0, 0.015, 68.5, 65.2, 75.0, 0.0, epoch, earth_j2000)?;
54 // Print in in Keplerian form.
55 println!("{orbit:x}");
56
57 // There are two ways to propagate an orbit. We can make a quick approximation assuming only two-body
58 // motion. This is a useful first order approximation but it isn't used in real-world applications.
59
60 // This approach is a feature of ANISE.
61 let future_orbit_tb = orbit.at_epoch(epoch + Unit::Day * 3)?;
62 println!("{future_orbit_tb:x}");
63
64 // Two body propagation relies solely on Kepler's laws, so only the true anomaly will change.
65 println!(
66 "SMA changed by {:.3e} km",
67 orbit.sma_km()? - future_orbit_tb.sma_km()?
68 );
69 println!(
70 "ECC changed by {:.3e}",
71 orbit.ecc()? - future_orbit_tb.ecc()?
72 );
73 println!(
74 "INC changed by {:.3e} deg",
75 orbit.inc_deg()? - future_orbit_tb.inc_deg()?
76 );
77 println!(
78 "RAAN changed by {:.3e} deg",
79 orbit.raan_deg()? - future_orbit_tb.raan_deg()?
80 );
81 println!(
82 "AOP changed by {:.3e} deg",
83 orbit.aop_deg()? - future_orbit_tb.aop_deg()?
84 );
85 println!(
86 "TA changed by {:.3} deg",
87 orbit.ta_deg()? - future_orbit_tb.ta_deg()?
88 );
89
90 // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
91 // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
92 // models such as solar radiation pressure.
93
94 // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
95 let sc = Spacecraft::builder()
96 .orbit(orbit)
97 .mass(Mass::from_dry_mass(9.60))
98 .srp(SRPData {
99 area_m2: 10e-4,
100 coeff_reflectivity: 1.1,
101 })
102 .build();
103 println!("{sc:x}");
104
105 // Set up the spacecraft dynamics.
106
107 // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
108 // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
109 let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
110
111 // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
112 // We're using the JGM3 model here, which is the default in GMAT.
113 let mut jgm3_meta = MetaFile {
114 uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
115 crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
116 };
117 // And let's download it if we don't have it yet.
118 jgm3_meta.process(true)?;
119
120 // Build the spherical harmonics.
121 // The harmonics must be computed in the body fixed frame.
122 // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
123 let harmonics_21x21 = Harmonics::from_stor(
124 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
125 HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
126 );
127
128 // Include the spherical harmonics into the orbital dynamics.
129 orbital_dyn.accel_models.push(harmonics_21x21);
130
131 // We define the solar radiation pressure, using the default solar flux and accounting only
132 // for the eclipsing caused by the Earth.
133 let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
134
135 // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
136 // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
137 let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
138
139 println!("{dynamics}");
140
141 // Finally, let's propagate this orbit to the same epoch as above.
142 // The first returned value is the spacecraft state at the final epoch.
143 // The second value is the full trajectory where the step size is variable step used by the propagator.
144 let (future_sc, trajectory) = Propagator::default(dynamics)
145 .with(sc, almanac.clone())
146 .until_epoch_with_traj(future_orbit_tb.epoch)?;
147
148 println!("=== High fidelity propagation ===");
149 println!(
150 "SMA changed by {:.3} km",
151 orbit.sma_km()? - future_sc.orbit.sma_km()?
152 );
153 println!(
154 "ECC changed by {:.6}",
155 orbit.ecc()? - future_sc.orbit.ecc()?
156 );
157 println!(
158 "INC changed by {:.3e} deg",
159 orbit.inc_deg()? - future_sc.orbit.inc_deg()?
160 );
161 println!(
162 "RAAN changed by {:.3} deg",
163 orbit.raan_deg()? - future_sc.orbit.raan_deg()?
164 );
165 println!(
166 "AOP changed by {:.3} deg",
167 orbit.aop_deg()? - future_sc.orbit.aop_deg()?
168 );
169 println!(
170 "TA changed by {:.3} deg",
171 orbit.ta_deg()? - future_sc.orbit.ta_deg()?
172 );
173
174 // We also have access to the full trajectory throughout the propagation.
175 println!("{trajectory}");
176
177 // With the trajectory, let's build a few data products.
178
179 // 1. Export the trajectory as a CCSDS OEM version 2.0 file and as a parquet file, which includes the Keplerian orbital elements.
180
181 trajectory.to_oem_file(
182 "./01_cubesat_hf_prop.oem",
183 ExportCfg::builder().step(Unit::Minute * 2).build(),
184 )?;
185
186 trajectory.to_parquet_with_cfg(
187 "./01_cubesat_hf_prop.parquet",
188 ExportCfg::builder().step(Unit::Minute * 2).build(),
189 almanac.clone(),
190 )?;
191
192 // 2. Compare the difference in the radial-intrack-crosstrack frame between the high fidelity
193 // and Keplerian propagation. The RIC frame is commonly used to compute the difference in position
194 // and velocity of different spacecraft.
195 // 3. Compute the azimuth, elevation, range, and range-rate data of that spacecraft as seen from Boulder, CO, USA.
196
197 let boulder_station = GroundStation::from_point(
198 "Boulder, CO, USA".to_string(),
199 40.014984, // latitude in degrees
200 -105.270546, // longitude in degrees
201 1.6550, // altitude in kilometers
202 almanac.frame_from_uid(IAU_EARTH_FRAME)?,
203 );
204
205 // We iterate over the trajectory, grabbing a state every two minutes.
206 let mut offset_s = vec![];
207 let mut epoch_str = vec![];
208 let mut ric_x_km = vec![];
209 let mut ric_y_km = vec![];
210 let mut ric_z_km = vec![];
211 let mut ric_vx_km_s = vec![];
212 let mut ric_vy_km_s = vec![];
213 let mut ric_vz_km_s = vec![];
214
215 let mut azimuth_deg = vec![];
216 let mut elevation_deg = vec![];
217 let mut range_km = vec![];
218 let mut range_rate_km_s = vec![];
219 for state in trajectory.every(Unit::Minute * 2) {
220 // Try to compute the Keplerian/two body state just in time.
221 // This method occasionally fails to converge on an appropriate true anomaly
222 // from the mean anomaly. If that happens, we just skip this state.
223 // The high fidelity and Keplerian states diverge continuously, and we're curious
224 // about the divergence in this quick analysis.
225 let this_epoch = state.epoch();
226 match orbit.at_epoch(this_epoch) {
227 Ok(tb_then) => {
228 offset_s.push((this_epoch - orbit.epoch).to_seconds());
229 epoch_str.push(format!("{this_epoch}"));
230 // Compute the two body state just in time.
231 let ric = state.orbit.ric_difference(&tb_then)?;
232 ric_x_km.push(ric.radius_km.x);
233 ric_y_km.push(ric.radius_km.y);
234 ric_z_km.push(ric.radius_km.z);
235 ric_vx_km_s.push(ric.velocity_km_s.x);
236 ric_vy_km_s.push(ric.velocity_km_s.y);
237 ric_vz_km_s.push(ric.velocity_km_s.z);
238
239 // Compute the AER data for each state.
240 let aer = almanac.azimuth_elevation_range_sez(
241 state.orbit,
242 boulder_station.to_orbit(this_epoch, &almanac)?,
243 None,
244 None,
245 )?;
246 azimuth_deg.push(aer.azimuth_deg);
247 elevation_deg.push(aer.elevation_deg);
248 range_km.push(aer.range_km);
249 range_rate_km_s.push(aer.range_rate_km_s);
250 }
251 Err(e) => warn!("{} {e}", state.epoch()),
252 };
253 }
254
255 // Build the data frames.
256 let ric_df = df!(
257 "Offset (s)" => offset_s.clone(),
258 "Epoch" => epoch_str.clone(),
259 "RIC X (km)" => ric_x_km,
260 "RIC Y (km)" => ric_y_km,
261 "RIC Z (km)" => ric_z_km,
262 "RIC VX (km/s)" => ric_vx_km_s,
263 "RIC VY (km/s)" => ric_vy_km_s,
264 "RIC VZ (km/s)" => ric_vz_km_s,
265 )?;
266
267 println!("RIC difference at start\n{}", ric_df.head(Some(10)));
268 println!("RIC difference at end\n{}", ric_df.tail(Some(10)));
269
270 let aer_df = df!(
271 "Offset (s)" => offset_s.clone(),
272 "Epoch" => epoch_str.clone(),
273 "azimuth (deg)" => azimuth_deg,
274 "elevation (deg)" => elevation_deg,
275 "range (km)" => range_km,
276 "range rate (km/s)" => range_rate_km_s,
277 )?;
278
279 // Finally, let's see when the spacecraft is visible, assuming 15 degrees minimum elevation.
280 let mask = aer_df
281 .column("elevation (deg)")?
282 .gt(&Column::Scalar(ScalarColumn::new(
283 "elevation mask (deg)".into(),
284 Scalar::new(DataType::Float64, AnyValue::Float64(15.0)),
285 offset_s.len(),
286 )))?;
287 let cubesat_visible = aer_df.filter(&mask)?;
288
289 println!("{cubesat_visible}");
290
291 Ok(())
292}
Sourcepub fn until_event<F: EventEvaluator<D::StateType>>(
&mut self,
max_duration: Duration,
event: &F,
) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>where
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
D::StateType: Interpolatable,
pub fn until_event<F: EventEvaluator<D::StateType>>(
&mut self,
max_duration: Duration,
event: &F,
) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>where
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
D::StateType: Interpolatable,
Propagate until a specific event is found once.
Returns the state found and the trajectory until max_duration
Sourcepub fn until_nth_event<F: EventEvaluator<D::StateType>>(
&mut self,
max_duration: Duration,
event: &F,
trigger: usize,
) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>where
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
D::StateType: Interpolatable,
pub fn until_nth_event<F: EventEvaluator<D::StateType>>(
&mut self,
max_duration: Duration,
event: &F,
trigger: usize,
) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>where
<DefaultAllocator as Allocator<<D::StateType as State>::VecLength>>::Buffer<f64>: Send,
D::StateType: Interpolatable,
Propagate until a specific event is found trigger
times.
Returns the state found and the trajectory until max_duration
Sourcepub fn single_step(&mut self) -> Result<(), PropagationError>
pub fn single_step(&mut self) -> Result<(), PropagationError>
Take a single propagator step and emit the result on the TX channel (if enabled)
Sourcepub fn latest_details(&self) -> IntegrationDetails
pub fn latest_details(&self) -> IntegrationDetails
Copy the details of the latest integration step.
Auto Trait Implementations§
impl<'a, D> Freeze for PropInstance<'a, D>
impl<'a, D> !RefUnwindSafe for PropInstance<'a, D>
impl<'a, D> !Send for PropInstance<'a, D>
impl<'a, D> !Sync for PropInstance<'a, D>
impl<'a, D> !Unpin for PropInstance<'a, D>
impl<'a, D> !UnwindSafe for PropInstance<'a, D>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
self
to the equivalent element of its superset.