Skip to main content

PropInstance

Struct PropInstance 

Source
pub struct PropInstance<'a, D: Dynamics>{
    pub state: D::StateType,
    pub prop: &'a Propagator<D>,
    pub details: IntegrationDetails,
    pub log_progress: bool,
    /* private fields */
}
Expand description

A Propagator allows propagating a set of dynamics forward or backward in time. It is an EventTracker, without any event tracking. It includes the options, the integrator details of the previous step, and the set of coefficients used for the monomorphic instance.

Fields§

§state: D::StateType

The state of this propagator instance

§prop: &'a Propagator<D>

The propagator setup (kind, stages, etc.)

§details: IntegrationDetails

Stores the details of the previous integration step

§log_progress: bool

Should progress reports be logged

Implementations§

Source§

impl<D: Dynamics> PropInstance<'_, D>

Source

pub fn until_event( &mut self, max_duration: Duration, event: &Event, event_frame: Option<Frame>, ) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>

Propagates the dynamics until the specified event has occurred one, or until max_duration is reached. Refer to [until_nth_event] for details.

Source

pub fn until_nth_event( &mut self, max_duration: Duration, event: &Event, event_frame: Option<Frame>, trigger: usize, ) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>

Propagates the dynamics until the specified event has occurred trigger times, or until max_duration is reached.

This method monitors the provided event during propagation. Once the event condition is met trigger number of times (e.g., set trigger to 1 for the first occurrence), the propagation stops at the end of that integration step.

A root-finding algorithm (Brent’s method) is then used to locate the exact time of the event within the final integration step. The returned state corresponds to this precise event time, interpolated from the trajectory.

§Arguments
  • max_duration - The maximum duration to propagate if the event is not triggered the requested number of times.
  • event - The event definition (scalar expression and condition) to monitor.
  • trigger - The 1-based index of the event occurrence to stop at (e.g. 1 for the first crossing, 2 for the second).
§Returns

A tuple containing:

  1. The interpolated state exactly at the moment the $n$-th event occurred.
  2. The full trajectory recorded up to the end of the propagation step where the event occurred.
§Errors
  • PropagationError::NthEventError: Returned if max_duration is reached before the event was triggered trigger times.
  • PropagationError::TrajectoryEvent: Returned if the interpolation of the event state fails.
  • PropagationError::Analysis: Returned if the event evaluation fails during the search.
Source§

impl<D: Dynamics> PropInstance<'_, D>

Source

pub fn quiet(self) -> Self

Sets this instance to not log progress

Source

pub fn verbose(self) -> Self

Sets this instance to log progress

Source

pub fn set_step(&mut self, step_size: Duration, fixed: bool)

Allows setting the step size of the propagator

Source

pub fn for_duration( &mut self, duration: Duration, ) -> Result<D::StateType, PropagationError>

This method propagates the provided Dynamics for the provided duration.

Source

pub fn for_duration_with_channel( &mut self, duration: Duration, tx_chan: Sender<D::StateType>, ) -> Result<D::StateType, PropagationError>

This method propagates the provided Dynamics for the provided duration and publishes each state on the channel.

Source

pub fn until_epoch( &mut self, end_time: Epoch, ) -> Result<D::StateType, PropagationError>

Propagates the provided Dynamics until the provided epoch. Returns the end state.

Source

pub fn until_epoch_with_channel( &mut self, end_time: Epoch, tx_chan: Sender<D::StateType>, ) -> Result<D::StateType, PropagationError>

Propagates the provided Dynamics until the provided epoch and publishes states on the provided channel. Returns the end state.

Source

pub fn for_duration_with_traj( &mut self, duration: Duration, ) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>

Propagates the provided Dynamics for the provided duration and generate the trajectory of these dynamics on its own thread. Returns the end state and the trajectory.

Examples found in repository?
examples/03_geo_analysis/raise.rs (line 137)
27fn main() -> Result<(), Box<dyn Error>> {
28    pel::init();
29
30    // Dynamics models require planetary constants and ephemerides to be defined.
31    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
32    // This will automatically download the DE440s planetary ephemeris,
33    // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
34    // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
35    // planetary constants kernels.
36    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
37    // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
38    // references to many functions.
39    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
40    // Fetch the EME2000 frame from the Almabac
41    let eme2k = almanac.frame_info(EARTH_J2000).unwrap();
42    // Define the orbit epoch
43    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45    // Build the spacecraft itself.
46    // Using slide 6 of https://aerospace.org/sites/default/files/2018-11/Davis-Mayberry_HPSEP_11212018.pdf
47    // for the "next gen" SEP characteristics.
48
49    // GTO start
50    let orbit = Orbit::keplerian(24505.9, 0.725, 7.05, 0.0, 0.0, 0.0, epoch, eme2k);
51
52    let sc = Spacecraft::builder()
53        .orbit(orbit)
54        .mass(Mass::from_dry_and_prop_masses(1000.0, 1000.0)) // 1000 kg of dry mass and prop, totalling 2.0 tons
55        .srp(SRPData::from_area(3.0 * 6.0)) // Assuming 1 kW/m^2 or 18 kW, giving a margin of 4.35 kW for on-propulsion consumption
56        .thruster(Thruster {
57            // "NEXT-STEP" row in Table 2
58            isp_s: 4435.0,
59            thrust_N: 0.472,
60        })
61        .mode(GuidanceMode::Thrust) // Start thrusting immediately.
62        .build();
63
64    let prop_time = 180.0 * Unit::Day;
65
66    // Define the guidance law -- we're just using a Ruggiero controller as demonstrated in AAS-2004-5089.
67    let objectives = &[
68        Objective::within_tolerance(
69            StateParameter::Element(OrbitalElement::SemiMajorAxis),
70            42_165.0,
71            20.0,
72        ),
73        Objective::within_tolerance(
74            StateParameter::Element(OrbitalElement::Eccentricity),
75            0.001,
76            5e-5,
77        ),
78        Objective::within_tolerance(
79            StateParameter::Element(OrbitalElement::Inclination),
80            0.05,
81            1e-2,
82        ),
83    ];
84
85    // Ensure that we only thrust if we have more than 20% illumination.
86    let ruggiero_ctrl = Ruggiero::from_max_eclipse(objectives, sc, 0.2).unwrap();
87    println!("{ruggiero_ctrl}");
88
89    // Define the high fidelity dynamics
90
91    // Set up the spacecraft dynamics.
92
93    // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
94    // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
95    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
96
97    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
98    // We're using the JGM3 model here, which is the default in GMAT.
99    let mut jgm3_meta = MetaFile {
100        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
101        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
102    };
103    // And let's download it if we don't have it yet.
104    jgm3_meta.process(true)?;
105
106    // Build the spherical harmonics.
107    // The harmonics must be computed in the body fixed frame.
108    // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
109    let harmonics = Harmonics::from_stor(
110        almanac.frame_info(IAU_EARTH_FRAME)?,
111        HarmonicsMem::from_cof(&jgm3_meta.uri, 8, 8, true).unwrap(),
112    );
113
114    // Include the spherical harmonics into the orbital dynamics.
115    orbital_dyn.accel_models.push(harmonics);
116
117    // We define the solar radiation pressure, using the default solar flux and accounting only
118    // for the eclipsing caused by the Earth.
119    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
120
121    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
122    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
123    let sc_dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn)
124        .with_guidance_law(ruggiero_ctrl.clone());
125
126    println!("{orbit:x}");
127
128    // We specify a minimum step in the propagator because the Ruggiero control would otherwise drive this step very low.
129    let (final_state, traj) = Propagator::rk89(
130        sc_dynamics.clone(),
131        IntegratorOptions::builder()
132            .min_step(10.0_f64.seconds())
133            .error_ctrl(ErrorControl::RSSCartesianStep)
134            .build(),
135    )
136    .with(sc, almanac.clone())
137    .for_duration_with_traj(prop_time)?;
138
139    let prop_usage = sc.mass.prop_mass_kg - final_state.mass.prop_mass_kg;
140    println!("{:x}", final_state.orbit);
141    println!("prop usage: {prop_usage:.3} kg");
142
143    // Finally, export the results for analysis, including the penumbra percentage throughout the orbit raise.
144    traj.to_parquet("./03_geo_raise.parquet", ExportCfg::default())?;
145
146    for status_line in ruggiero_ctrl.status(&final_state) {
147        println!("{status_line}");
148    }
149
150    ruggiero_ctrl
151        .achieved(&final_state)
152        .expect("objective not achieved");
153
154    Ok(())
155}
More examples
Hide additional examples
examples/05_cislunar_spacecraft_link_od/main.rs (line 94)
34fn main() -> Result<(), Box<dyn Error>> {
35    pel::init();
36
37    // ====================== //
38    // === ALMANAC SET UP === //
39    // ====================== //
40
41    let manifest_dir =
42        PathBuf::from(std::env::var("CARGO_MANIFEST_DIR").unwrap_or(".".to_string()));
43
44    let out = manifest_dir.join("data/04_output/");
45
46    let almanac = Arc::new(
47        Almanac::new(
48            &manifest_dir
49                .join("data/01_planetary/pck08.pca")
50                .to_string_lossy(),
51        )
52        .unwrap()
53        .load(
54            &manifest_dir
55                .join("data/01_planetary/de440s.bsp")
56                .to_string_lossy(),
57        )
58        .unwrap(),
59    );
60
61    let eme2k = almanac.frame_info(EARTH_J2000).unwrap();
62    let moon_iau = almanac.frame_info(IAU_MOON_FRAME).unwrap();
63
64    let epoch = Epoch::from_gregorian_tai(2021, 5, 29, 19, 51, 16, 852_000);
65    let nrho = Orbit::cartesian(
66        166_473.631_302_239_7,
67        -274_715.487_253_382_7,
68        -211_233.210_176_686_7,
69        0.933_451_604_520_018_4,
70        0.436_775_046_841_900_9,
71        -0.082_211_021_250_348_95,
72        epoch,
73        eme2k,
74    );
75
76    let tx_nrho_sc = Spacecraft::from(nrho);
77
78    let state_luna = almanac.transform_to(nrho, MOON_J2000, None).unwrap();
79    println!("Start state (dynamics: Earth, Moon, Sun gravity):\n{state_luna}");
80
81    let bodies = vec![EARTH, SUN];
82    let dynamics = SpacecraftDynamics::new(OrbitalDynamics::point_masses(bodies));
83
84    let setup = Propagator::rk89(
85        dynamics,
86        IntegratorOptions::builder().max_step(0.5.minutes()).build(),
87    );
88
89    /* == Propagate the NRHO vehicle == */
90    let prop_time = 1.1 * state_luna.period().unwrap();
91
92    let (nrho_final, mut tx_traj) = setup
93        .with(tx_nrho_sc, almanac.clone())
94        .for_duration_with_traj(prop_time)
95        .unwrap();
96
97    tx_traj.name = Some("NRHO Tx SC".to_string());
98
99    println!("{tx_traj}");
100
101    /* == Propagate an LLO vehicle == */
102    let llo_orbit =
103        Orbit::try_keplerian_altitude(110.0, 1e-4, 90.0, 0.0, 0.0, 0.0, epoch, moon_iau).unwrap();
104
105    let llo_sc = Spacecraft::builder().orbit(llo_orbit).build();
106
107    let (_, llo_traj) = setup
108        .with(llo_sc, almanac.clone())
109        .until_epoch_with_traj(nrho_final.epoch())
110        .unwrap();
111
112    // Export the subset of the first two hours.
113    llo_traj
114        .clone()
115        .filter_by_offset(..2.hours())
116        .to_parquet_simple(out.join("05_caps_llo_truth.pq"))?;
117
118    /* == Setup the interlink == */
119
120    let mut measurement_types = IndexSet::new();
121    measurement_types.insert(MeasurementType::Range);
122    measurement_types.insert(MeasurementType::Doppler);
123
124    let mut stochastics = IndexMap::new();
125
126    let sa45_csac_allan_dev = 1e-11;
127
128    stochastics.insert(
129        MeasurementType::Range,
130        StochasticNoise::from_hardware_range_km(
131            sa45_csac_allan_dev,
132            10.0.seconds(),
133            link_specific::ChipRate::StandardT4B,
134            link_specific::SN0::Average,
135        ),
136    );
137
138    stochastics.insert(
139        MeasurementType::Doppler,
140        StochasticNoise::from_hardware_doppler_km_s(
141            sa45_csac_allan_dev,
142            10.0.seconds(),
143            link_specific::CarrierFreq::SBand,
144            link_specific::CN0::Average,
145        ),
146    );
147
148    let interlink = InterlinkTxSpacecraft {
149        traj: tx_traj,
150        measurement_types,
151        integration_time: None,
152        timestamp_noise_s: None,
153        ab_corr: Aberration::LT,
154        stochastic_noises: Some(stochastics),
155    };
156
157    // Devices are the transmitter, which is our NRHO vehicle.
158    let mut devices = BTreeMap::new();
159    devices.insert("NRHO Tx SC".to_string(), interlink);
160
161    let mut configs = BTreeMap::new();
162    configs.insert(
163        "NRHO Tx SC".to_string(),
164        TrkConfig::builder()
165            .strands(vec![Strand {
166                start: epoch,
167                end: nrho_final.epoch(),
168            }])
169            .build(),
170    );
171
172    let mut trk_sim =
173        TrackingArcSim::with_seed(devices.clone(), llo_traj.clone(), configs, 0).unwrap();
174    println!("{trk_sim}");
175
176    let trk_data = trk_sim.generate_measurements(almanac.clone()).unwrap();
177    println!("{trk_data}");
178
179    trk_data
180        .to_parquet_simple(out.clone().join("nrho_interlink_msr.pq"))
181        .unwrap();
182
183    // Run a truth OD where we estimate the LLO position
184    let llo_uncertainty = SpacecraftUncertainty::builder()
185        .nominal(llo_sc)
186        .x_km(1.0)
187        .y_km(1.0)
188        .z_km(1.0)
189        .vx_km_s(1e-3)
190        .vy_km_s(1e-3)
191        .vz_km_s(1e-3)
192        .build();
193
194    let mut proc_devices = devices.clone();
195
196    // Define the initial estimate, randomized, seed for reproducibility
197    let mut initial_estimate = llo_uncertainty.to_estimate_randomized(Some(0)).unwrap();
198    // Inflate the covariance -- https://github.com/nyx-space/nyx/issues/339
199    initial_estimate.covar *= 2.5;
200
201    // Increase the noise in the devices to accept more measurements.
202
203    for link in proc_devices.values_mut() {
204        for noise in &mut link.stochastic_noises.as_mut().unwrap().values_mut() {
205            *noise.white_noise.as_mut().unwrap() *= 3.0;
206        }
207    }
208
209    let init_err = initial_estimate
210        .orbital_state()
211        .ric_difference(&llo_orbit)
212        .unwrap();
213
214    println!("initial estimate:\n{initial_estimate}");
215    println!("RIC errors = {init_err}",);
216
217    let odp = InterlinkKalmanOD::new(
218        setup.clone(),
219        KalmanVariant::ReferenceUpdate,
220        Some(ResidRejectCrit::default()),
221        proc_devices,
222        almanac.clone(),
223    );
224
225    // Shrink the data to process.
226    let arc = trk_data.filter_by_offset(..2.hours());
227
228    let od_sol = odp.process_arc(initial_estimate, &arc).unwrap();
229
230    println!("{od_sol}");
231
232    od_sol
233        .to_parquet(
234            out.join("05_caps_interlink_od_sol.pq"),
235            ExportCfg::default(),
236        )
237        .unwrap();
238
239    let od_traj = od_sol.to_traj().unwrap();
240
241    od_traj
242        .ric_diff_to_parquet(
243            &llo_traj,
244            out.join("05_caps_interlink_llo_est_error.pq"),
245            ExportCfg::default(),
246        )
247        .unwrap();
248
249    let final_est = od_sol.estimates.last().unwrap();
250    assert!(final_est.within_3sigma(), "should be within 3 sigma");
251
252    println!("ESTIMATE\n{final_est:x}\n");
253    let truth = llo_traj.at(final_est.epoch()).unwrap();
254    println!("TRUTH\n{truth:x}");
255
256    let final_err = truth
257        .orbit
258        .ric_difference(&final_est.orbital_state())
259        .unwrap();
260    println!("ERROR {final_err}");
261
262    // Build the residuals versus reference plot.
263    let rvr_sol = odp
264        .process_arc(initial_estimate, &arc.resid_vs_ref_check())
265        .unwrap();
266
267    rvr_sol
268        .to_parquet(
269            out.join("05_caps_interlink_resid_v_ref.pq"),
270            ExportCfg::default(),
271        )
272        .unwrap();
273
274    let final_rvr = rvr_sol.estimates.last().unwrap();
275
276    println!("RMAG error {:.3} m", final_err.rmag_km() * 1e3);
277    println!(
278        "Pure prop error {:.3} m",
279        final_rvr
280            .orbital_state()
281            .ric_difference(&final_est.orbital_state())
282            .unwrap()
283            .rmag_km()
284            * 1e3
285    );
286
287    Ok(())
288}
Source

pub fn until_epoch_with_traj( &mut self, end_time: Epoch, ) -> Result<(D::StateType, Traj<D::StateType>), PropagationError>

Propagates the provided Dynamics until the provided epoch and generate the trajectory of these dynamics on its own thread. Returns the end state and the trajectory. Known bug #190: Cannot generate a valid trajectory when propagating backward

Examples found in repository?
examples/05_cislunar_spacecraft_link_od/main.rs (line 109)
34fn main() -> Result<(), Box<dyn Error>> {
35    pel::init();
36
37    // ====================== //
38    // === ALMANAC SET UP === //
39    // ====================== //
40
41    let manifest_dir =
42        PathBuf::from(std::env::var("CARGO_MANIFEST_DIR").unwrap_or(".".to_string()));
43
44    let out = manifest_dir.join("data/04_output/");
45
46    let almanac = Arc::new(
47        Almanac::new(
48            &manifest_dir
49                .join("data/01_planetary/pck08.pca")
50                .to_string_lossy(),
51        )
52        .unwrap()
53        .load(
54            &manifest_dir
55                .join("data/01_planetary/de440s.bsp")
56                .to_string_lossy(),
57        )
58        .unwrap(),
59    );
60
61    let eme2k = almanac.frame_info(EARTH_J2000).unwrap();
62    let moon_iau = almanac.frame_info(IAU_MOON_FRAME).unwrap();
63
64    let epoch = Epoch::from_gregorian_tai(2021, 5, 29, 19, 51, 16, 852_000);
65    let nrho = Orbit::cartesian(
66        166_473.631_302_239_7,
67        -274_715.487_253_382_7,
68        -211_233.210_176_686_7,
69        0.933_451_604_520_018_4,
70        0.436_775_046_841_900_9,
71        -0.082_211_021_250_348_95,
72        epoch,
73        eme2k,
74    );
75
76    let tx_nrho_sc = Spacecraft::from(nrho);
77
78    let state_luna = almanac.transform_to(nrho, MOON_J2000, None).unwrap();
79    println!("Start state (dynamics: Earth, Moon, Sun gravity):\n{state_luna}");
80
81    let bodies = vec![EARTH, SUN];
82    let dynamics = SpacecraftDynamics::new(OrbitalDynamics::point_masses(bodies));
83
84    let setup = Propagator::rk89(
85        dynamics,
86        IntegratorOptions::builder().max_step(0.5.minutes()).build(),
87    );
88
89    /* == Propagate the NRHO vehicle == */
90    let prop_time = 1.1 * state_luna.period().unwrap();
91
92    let (nrho_final, mut tx_traj) = setup
93        .with(tx_nrho_sc, almanac.clone())
94        .for_duration_with_traj(prop_time)
95        .unwrap();
96
97    tx_traj.name = Some("NRHO Tx SC".to_string());
98
99    println!("{tx_traj}");
100
101    /* == Propagate an LLO vehicle == */
102    let llo_orbit =
103        Orbit::try_keplerian_altitude(110.0, 1e-4, 90.0, 0.0, 0.0, 0.0, epoch, moon_iau).unwrap();
104
105    let llo_sc = Spacecraft::builder().orbit(llo_orbit).build();
106
107    let (_, llo_traj) = setup
108        .with(llo_sc, almanac.clone())
109        .until_epoch_with_traj(nrho_final.epoch())
110        .unwrap();
111
112    // Export the subset of the first two hours.
113    llo_traj
114        .clone()
115        .filter_by_offset(..2.hours())
116        .to_parquet_simple(out.join("05_caps_llo_truth.pq"))?;
117
118    /* == Setup the interlink == */
119
120    let mut measurement_types = IndexSet::new();
121    measurement_types.insert(MeasurementType::Range);
122    measurement_types.insert(MeasurementType::Doppler);
123
124    let mut stochastics = IndexMap::new();
125
126    let sa45_csac_allan_dev = 1e-11;
127
128    stochastics.insert(
129        MeasurementType::Range,
130        StochasticNoise::from_hardware_range_km(
131            sa45_csac_allan_dev,
132            10.0.seconds(),
133            link_specific::ChipRate::StandardT4B,
134            link_specific::SN0::Average,
135        ),
136    );
137
138    stochastics.insert(
139        MeasurementType::Doppler,
140        StochasticNoise::from_hardware_doppler_km_s(
141            sa45_csac_allan_dev,
142            10.0.seconds(),
143            link_specific::CarrierFreq::SBand,
144            link_specific::CN0::Average,
145        ),
146    );
147
148    let interlink = InterlinkTxSpacecraft {
149        traj: tx_traj,
150        measurement_types,
151        integration_time: None,
152        timestamp_noise_s: None,
153        ab_corr: Aberration::LT,
154        stochastic_noises: Some(stochastics),
155    };
156
157    // Devices are the transmitter, which is our NRHO vehicle.
158    let mut devices = BTreeMap::new();
159    devices.insert("NRHO Tx SC".to_string(), interlink);
160
161    let mut configs = BTreeMap::new();
162    configs.insert(
163        "NRHO Tx SC".to_string(),
164        TrkConfig::builder()
165            .strands(vec![Strand {
166                start: epoch,
167                end: nrho_final.epoch(),
168            }])
169            .build(),
170    );
171
172    let mut trk_sim =
173        TrackingArcSim::with_seed(devices.clone(), llo_traj.clone(), configs, 0).unwrap();
174    println!("{trk_sim}");
175
176    let trk_data = trk_sim.generate_measurements(almanac.clone()).unwrap();
177    println!("{trk_data}");
178
179    trk_data
180        .to_parquet_simple(out.clone().join("nrho_interlink_msr.pq"))
181        .unwrap();
182
183    // Run a truth OD where we estimate the LLO position
184    let llo_uncertainty = SpacecraftUncertainty::builder()
185        .nominal(llo_sc)
186        .x_km(1.0)
187        .y_km(1.0)
188        .z_km(1.0)
189        .vx_km_s(1e-3)
190        .vy_km_s(1e-3)
191        .vz_km_s(1e-3)
192        .build();
193
194    let mut proc_devices = devices.clone();
195
196    // Define the initial estimate, randomized, seed for reproducibility
197    let mut initial_estimate = llo_uncertainty.to_estimate_randomized(Some(0)).unwrap();
198    // Inflate the covariance -- https://github.com/nyx-space/nyx/issues/339
199    initial_estimate.covar *= 2.5;
200
201    // Increase the noise in the devices to accept more measurements.
202
203    for link in proc_devices.values_mut() {
204        for noise in &mut link.stochastic_noises.as_mut().unwrap().values_mut() {
205            *noise.white_noise.as_mut().unwrap() *= 3.0;
206        }
207    }
208
209    let init_err = initial_estimate
210        .orbital_state()
211        .ric_difference(&llo_orbit)
212        .unwrap();
213
214    println!("initial estimate:\n{initial_estimate}");
215    println!("RIC errors = {init_err}",);
216
217    let odp = InterlinkKalmanOD::new(
218        setup.clone(),
219        KalmanVariant::ReferenceUpdate,
220        Some(ResidRejectCrit::default()),
221        proc_devices,
222        almanac.clone(),
223    );
224
225    // Shrink the data to process.
226    let arc = trk_data.filter_by_offset(..2.hours());
227
228    let od_sol = odp.process_arc(initial_estimate, &arc).unwrap();
229
230    println!("{od_sol}");
231
232    od_sol
233        .to_parquet(
234            out.join("05_caps_interlink_od_sol.pq"),
235            ExportCfg::default(),
236        )
237        .unwrap();
238
239    let od_traj = od_sol.to_traj().unwrap();
240
241    od_traj
242        .ric_diff_to_parquet(
243            &llo_traj,
244            out.join("05_caps_interlink_llo_est_error.pq"),
245            ExportCfg::default(),
246        )
247        .unwrap();
248
249    let final_est = od_sol.estimates.last().unwrap();
250    assert!(final_est.within_3sigma(), "should be within 3 sigma");
251
252    println!("ESTIMATE\n{final_est:x}\n");
253    let truth = llo_traj.at(final_est.epoch()).unwrap();
254    println!("TRUTH\n{truth:x}");
255
256    let final_err = truth
257        .orbit
258        .ric_difference(&final_est.orbital_state())
259        .unwrap();
260    println!("ERROR {final_err}");
261
262    // Build the residuals versus reference plot.
263    let rvr_sol = odp
264        .process_arc(initial_estimate, &arc.resid_vs_ref_check())
265        .unwrap();
266
267    rvr_sol
268        .to_parquet(
269            out.join("05_caps_interlink_resid_v_ref.pq"),
270            ExportCfg::default(),
271        )
272        .unwrap();
273
274    let final_rvr = rvr_sol.estimates.last().unwrap();
275
276    println!("RMAG error {:.3} m", final_err.rmag_km() * 1e3);
277    println!(
278        "Pure prop error {:.3} m",
279        final_rvr
280            .orbital_state()
281            .ric_difference(&final_est.orbital_state())
282            .unwrap()
283            .rmag_km()
284            * 1e3
285    );
286
287    Ok(())
288}
More examples
Hide additional examples
examples/03_geo_analysis/drift.rs (line 113)
26fn main() -> Result<(), Box<dyn Error>> {
27    pel::init();
28    // Dynamics models require planetary constants and ephemerides to be defined.
29    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
30    // This will automatically download the DE440s planetary ephemeris,
31    // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
32    // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
33    // planetary constants kernels.
34    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
35    // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
36    // references to many functions.
37    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
38    // Define the orbit epoch
39    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
40
41    // Define the orbit.
42    // First we need to fetch the Earth J2000 from information from the Almanac.
43    // This allows the frame to include the gravitational parameters and the shape of the Earth,
44    // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
45    // by loading a different set of planetary constants.
46    let earth_j2000 = almanac.frame_info(EARTH_J2000)?;
47
48    // Placing this GEO bird just above Colorado.
49    // In theory, the eccentricity is zero, but in practice, it's about 1e-5 to 1e-6 at best.
50    let orbit = Orbit::try_keplerian(42164.0, 1e-5, 0., 163.0, 75.0, 0.0, epoch, earth_j2000)?;
51    // Print in in Keplerian form.
52    println!("{orbit:x}");
53
54    let state_bf = almanac.transform_to(orbit, IAU_EARTH_FRAME, None)?;
55    let (orig_lat_deg, orig_long_deg, orig_alt_km) = state_bf.latlongalt()?;
56
57    // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
58    // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
59    // models such as solar radiation pressure.
60
61    // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
62    let sc = Spacecraft::builder()
63        .orbit(orbit)
64        .mass(Mass::from_dry_mass(9.60))
65        .srp(SRPData {
66            area_m2: 10e-4,
67            coeff_reflectivity: 1.1,
68        })
69        .build();
70    println!("{sc:x}");
71
72    // Set up the spacecraft dynamics.
73
74    // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
75    // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
76    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
77
78    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
79    // We're using the JGM3 model here, which is the default in GMAT.
80    let mut jgm3_meta = MetaFile {
81        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
82        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
83    };
84    // And let's download it if we don't have it yet.
85    jgm3_meta.process(true)?;
86
87    // Build the spherical harmonics.
88    // The harmonics must be computed in the body fixed frame.
89    // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
90    let harmonics_21x21 = Harmonics::from_stor(
91        almanac.frame_info(IAU_EARTH_FRAME)?,
92        HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
93    );
94
95    // Include the spherical harmonics into the orbital dynamics.
96    orbital_dyn.accel_models.push(harmonics_21x21);
97
98    // We define the solar radiation pressure, using the default solar flux and accounting only
99    // for the eclipsing caused by the Earth and Moon.
100    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
101
102    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
103    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
104    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
105
106    println!("{dynamics}");
107
108    // Finally, let's propagate this orbit to the same epoch as above.
109    // The first returned value is the spacecraft state at the final epoch.
110    // The second value is the full trajectory where the step size is variable step used by the propagator.
111    let (future_sc, trajectory) = Propagator::default(dynamics)
112        .with(sc, almanac.clone())
113        .until_epoch_with_traj(epoch + Unit::Century * 0.03)?;
114
115    println!("=== High fidelity propagation ===");
116    println!(
117        "SMA changed by {:.3} km",
118        orbit.sma_km()? - future_sc.orbit.sma_km()?
119    );
120    println!(
121        "ECC changed by {:.6}",
122        orbit.ecc()? - future_sc.orbit.ecc()?
123    );
124    println!(
125        "INC changed by {:.3e} deg",
126        orbit.inc_deg()? - future_sc.orbit.inc_deg()?
127    );
128    println!(
129        "RAAN changed by {:.3} deg",
130        orbit.raan_deg()? - future_sc.orbit.raan_deg()?
131    );
132    println!(
133        "AOP changed by {:.3} deg",
134        orbit.aop_deg()? - future_sc.orbit.aop_deg()?
135    );
136    println!(
137        "TA changed by {:.3} deg",
138        orbit.ta_deg()? - future_sc.orbit.ta_deg()?
139    );
140
141    // We also have access to the full trajectory throughout the propagation.
142    println!("{trajectory}");
143
144    println!("Spacecraft params after 3 years without active control:\n{future_sc:x}");
145
146    // With the trajectory, let's build a few data products.
147
148    // 1. Export the trajectory as a parquet file, which includes the Keplerian orbital elements.
149
150    let analysis_step = Unit::Minute * 5;
151
152    trajectory.to_parquet(
153        "./03_geo_hf_prop.parquet",
154        ExportCfg::builder().step(analysis_step).build(),
155    )?;
156
157    // 2. Compute the latitude, longitude, and altitude throughout the trajectory by rotating the spacecraft position into the Earth body fixed frame.
158
159    // We iterate over the trajectory, grabbing a state every two minutes.
160    let mut offset_s = vec![];
161    let mut epoch_str = vec![];
162    let mut longitude_deg = vec![];
163    let mut latitude_deg = vec![];
164    let mut altitude_km = vec![];
165
166    for state in trajectory.every(analysis_step) {
167        // Convert the GEO bird state into the body fixed frame, and keep track of its latitude, longitude, and altitude.
168        // These define the GEO stationkeeping box.
169
170        let this_epoch = state.epoch();
171
172        offset_s.push((this_epoch - orbit.epoch).to_seconds());
173        epoch_str.push(this_epoch.to_isoformat());
174
175        let state_bf = almanac.transform_to(state.orbit, IAU_EARTH_FRAME, None)?;
176        let (lat_deg, long_deg, alt_km) = state_bf.latlongalt()?;
177        longitude_deg.push(long_deg);
178        latitude_deg.push(lat_deg);
179        altitude_km.push(alt_km);
180    }
181
182    println!(
183        "Longitude changed by {:.3} deg -- Box is 0.1 deg E-W",
184        orig_long_deg - longitude_deg.last().unwrap()
185    );
186
187    println!(
188        "Latitude changed by {:.3} deg -- Box is 0.05 deg N-S",
189        orig_lat_deg - latitude_deg.last().unwrap()
190    );
191
192    println!(
193        "Altitude changed by {:.3} km -- Box is 30 km",
194        orig_alt_km - altitude_km.last().unwrap()
195    );
196
197    // Build the station keeping data frame.
198    let mut sk_df = df!(
199        "Offset (s)" => offset_s.clone(),
200        "Epoch (UTC)" => epoch_str.clone(),
201        "Longitude E-W (deg)" => longitude_deg,
202        "Latitude N-S (deg)" => latitude_deg,
203        "Altitude (km)" => altitude_km,
204
205    )?;
206
207    // Create a file to write the Parquet to
208    let file = File::create("./03_geo_lla.parquet").expect("Could not create file");
209
210    // Create a ParquetWriter and write the DataFrame to the file
211    ParquetWriter::new(file).finish(&mut sk_df)?;
212
213    Ok(())
214}
examples/01_orbit_prop/main.rs (line 146)
30fn main() -> Result<(), Box<dyn Error>> {
31    pel::init();
32    // Dynamics models require planetary constants and ephemerides to be defined.
33    // Let's start by grabbing those by using ANISE's latest MetaAlmanac.
34    // This will automatically download the DE440s planetary ephemeris,
35    // the daily-updated Earth Orientation Parameters, the high fidelity Moon orientation
36    // parameters (for the Moon Mean Earth and Moon Principal Axes frames), and the PCK11
37    // planetary constants kernels.
38    // For details, refer to https://github.com/nyx-space/anise/blob/master/data/latest.dhall.
39    // Note that we place the Almanac into an Arc so we can clone it cheaply and provide read-only
40    // references to many functions.
41    let almanac = Arc::new(MetaAlmanac::latest().map_err(Box::new)?);
42    // Define the orbit epoch
43    let epoch = Epoch::from_gregorian_utc_hms(2024, 2, 29, 12, 13, 14);
44
45    // Define the orbit.
46    // First we need to fetch the Earth J2000 from information from the Almanac.
47    // This allows the frame to include the gravitational parameters and the shape of the Earth,
48    // defined as a tri-axial ellipoid. Note that this shape can be changed manually or in the Almanac
49    // by loading a different set of planetary constants.
50    let earth_j2000 = almanac.frame_info(EARTH_J2000)?;
51
52    let orbit =
53        Orbit::try_keplerian_altitude(300.0, 0.015, 68.5, 65.2, 75.0, 0.0, epoch, earth_j2000)?;
54    // Print in in Keplerian form.
55    println!("{orbit:x}");
56
57    // There are two ways to propagate an orbit. We can make a quick approximation assuming only two-body
58    // motion. This is a useful first order approximation but it isn't used in real-world applications.
59
60    // This approach is a feature of ANISE.
61    let future_orbit_tb = orbit.at_epoch(epoch + Unit::Day * 3)?;
62    println!("{future_orbit_tb:x}");
63
64    // Two body propagation relies solely on Kepler's laws, so only the true anomaly will change.
65    println!(
66        "SMA changed by {:.3e} km",
67        orbit.sma_km()? - future_orbit_tb.sma_km()?
68    );
69    println!(
70        "ECC changed by {:.3e}",
71        orbit.ecc()? - future_orbit_tb.ecc()?
72    );
73    println!(
74        "INC changed by {:.3e} deg",
75        orbit.inc_deg()? - future_orbit_tb.inc_deg()?
76    );
77    println!(
78        "RAAN changed by {:.3e} deg",
79        orbit.raan_deg()? - future_orbit_tb.raan_deg()?
80    );
81    println!(
82        "AOP changed by {:.3e} deg",
83        orbit.aop_deg()? - future_orbit_tb.aop_deg()?
84    );
85    println!(
86        "TA changed by {:.3} deg",
87        orbit.ta_deg()? - future_orbit_tb.ta_deg()?
88    );
89
90    // Nyx is used for high fidelity propagation, not Keplerian propagation as above.
91    // Nyx only propagates Spacecraft at the moment, which allows it to account for acceleration
92    // models such as solar radiation pressure.
93
94    // Let's build a cubesat sized spacecraft, with an SRP area of 10 cm^2 and a mass of 9.6 kg.
95    let sc = Spacecraft::builder()
96        .orbit(orbit)
97        .mass(Mass::from_dry_mass(9.60))
98        .srp(SRPData {
99            area_m2: 10e-4,
100            coeff_reflectivity: 1.1,
101        })
102        .build();
103    println!("{sc:x}");
104
105    // Set up the spacecraft dynamics.
106
107    // Specify that the orbital dynamics must account for the graviational pull of the Moon and the Sun.
108    // The gravity of the Earth will also be accounted for since the spaceraft in an Earth orbit.
109    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![MOON, SUN]);
110
111    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
112    // We're using the JGM3 model here, which is the default in GMAT.
113    let mut jgm3_meta = MetaFile {
114        uri: "http://public-data.nyxspace.com/nyx/models/JGM3.cof.gz".to_string(),
115        crc32: Some(0xF446F027), // Specifying the CRC32 avoids redownloading it if it's cached.
116    };
117    // And let's download it if we don't have it yet.
118    jgm3_meta.process(true)?;
119
120    // Build the spherical harmonics.
121    // The harmonics must be computed in the body fixed frame.
122    // We're using the long term prediction of the Earth centered Earth fixed frame, IAU Earth.
123    let harmonics_21x21 = Harmonics::from_stor(
124        almanac.frame_info(IAU_EARTH_FRAME)?,
125        HarmonicsMem::from_cof(&jgm3_meta.uri, 21, 21, true).unwrap(),
126    );
127
128    // Include the spherical harmonics into the orbital dynamics.
129    orbital_dyn.accel_models.push(harmonics_21x21);
130
131    // We define the solar radiation pressure, using the default solar flux and accounting only
132    // for the eclipsing caused by the Earth.
133    let srp_dyn = SolarPressure::default(EARTH_J2000, almanac.clone())?;
134
135    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
136    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
137    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
138
139    println!("{dynamics}");
140
141    // Finally, let's propagate this orbit to the same epoch as above.
142    // The first returned value is the spacecraft state at the final epoch.
143    // The second value is the full trajectory where the step size is variable step used by the propagator.
144    let (future_sc, trajectory) = Propagator::default(dynamics)
145        .with(sc, almanac.clone())
146        .until_epoch_with_traj(future_orbit_tb.epoch)?;
147
148    println!("=== High fidelity propagation ===");
149    println!(
150        "SMA changed by {:.3} km",
151        orbit.sma_km()? - future_sc.orbit.sma_km()?
152    );
153    println!(
154        "ECC changed by {:.6}",
155        orbit.ecc()? - future_sc.orbit.ecc()?
156    );
157    println!(
158        "INC changed by {:.3e} deg",
159        orbit.inc_deg()? - future_sc.orbit.inc_deg()?
160    );
161    println!(
162        "RAAN changed by {:.3} deg",
163        orbit.raan_deg()? - future_sc.orbit.raan_deg()?
164    );
165    println!(
166        "AOP changed by {:.3} deg",
167        orbit.aop_deg()? - future_sc.orbit.aop_deg()?
168    );
169    println!(
170        "TA changed by {:.3} deg",
171        orbit.ta_deg()? - future_sc.orbit.ta_deg()?
172    );
173
174    // We also have access to the full trajectory throughout the propagation.
175    println!("{trajectory}");
176
177    // With the trajectory, let's build a few data products.
178
179    // 1. Export the trajectory as a CCSDS OEM version 2.0 file and as a parquet file, which includes the Keplerian orbital elements.
180
181    trajectory.to_oem_file(
182        "./01_cubesat_hf_prop.oem",
183        ExportCfg::builder().step(Unit::Minute * 2).build(),
184    )?;
185
186    trajectory.to_parquet_with_cfg(
187        "./01_cubesat_hf_prop.parquet",
188        ExportCfg::builder().step(Unit::Minute * 2).build(),
189    )?;
190
191    // 2. Compare the difference in the radial-intrack-crosstrack frame between the high fidelity
192    // and Keplerian propagation. The RIC frame is commonly used to compute the difference in position
193    // and velocity of different spacecraft.
194    // 3. Compute the azimuth, elevation, range, and range-rate data of that spacecraft as seen from Boulder, CO, USA.
195
196    let boulder_station = GroundStation::from_point(
197        "Boulder, CO, USA".to_string(),
198        40.014984,   // latitude in degrees
199        -105.270546, // longitude in degrees
200        1.6550,      // altitude in kilometers
201        almanac.frame_info(IAU_EARTH_FRAME)?,
202    );
203
204    // We iterate over the trajectory, grabbing a state every two minutes.
205    let mut offset_s = vec![];
206    let mut epoch_str = vec![];
207    let mut ric_x_km = vec![];
208    let mut ric_y_km = vec![];
209    let mut ric_z_km = vec![];
210    let mut ric_vx_km_s = vec![];
211    let mut ric_vy_km_s = vec![];
212    let mut ric_vz_km_s = vec![];
213
214    let mut azimuth_deg = vec![];
215    let mut elevation_deg = vec![];
216    let mut range_km = vec![];
217    let mut range_rate_km_s = vec![];
218    for state in trajectory.every(Unit::Minute * 2) {
219        // Try to compute the Keplerian/two body state just in time.
220        // This method occasionally fails to converge on an appropriate true anomaly
221        // from the mean anomaly. If that happens, we just skip this state.
222        // The high fidelity and Keplerian states diverge continuously, and we're curious
223        // about the divergence in this quick analysis.
224        let this_epoch = state.epoch();
225        match orbit.at_epoch(this_epoch) {
226            Ok(tb_then) => {
227                offset_s.push((this_epoch - orbit.epoch).to_seconds());
228                epoch_str.push(format!("{this_epoch}"));
229                // Compute the two body state just in time.
230                let ric = state.orbit.ric_difference(&tb_then)?;
231                ric_x_km.push(ric.radius_km.x);
232                ric_y_km.push(ric.radius_km.y);
233                ric_z_km.push(ric.radius_km.z);
234                ric_vx_km_s.push(ric.velocity_km_s.x);
235                ric_vy_km_s.push(ric.velocity_km_s.y);
236                ric_vz_km_s.push(ric.velocity_km_s.z);
237
238                // Compute the AER data for each state.
239                let aer = almanac.azimuth_elevation_range_sez(
240                    state.orbit,
241                    boulder_station.to_orbit(this_epoch, &almanac)?,
242                    None,
243                    None,
244                )?;
245                azimuth_deg.push(aer.azimuth_deg);
246                elevation_deg.push(aer.elevation_deg);
247                range_km.push(aer.range_km);
248                range_rate_km_s.push(aer.range_rate_km_s);
249            }
250            Err(e) => warn!("{} {e}", state.epoch()),
251        };
252    }
253
254    // Build the data frames.
255    let ric_df = df!(
256        "Offset (s)" => offset_s.clone(),
257        "Epoch" => epoch_str.clone(),
258        "RIC X (km)" => ric_x_km,
259        "RIC Y (km)" => ric_y_km,
260        "RIC Z (km)" => ric_z_km,
261        "RIC VX (km/s)" => ric_vx_km_s,
262        "RIC VY (km/s)" => ric_vy_km_s,
263        "RIC VZ (km/s)" => ric_vz_km_s,
264    )?;
265
266    println!("RIC difference at start\n{}", ric_df.head(Some(10)));
267    println!("RIC difference at end\n{}", ric_df.tail(Some(10)));
268
269    let aer_df = df!(
270        "Offset (s)" => offset_s.clone(),
271        "Epoch" => epoch_str.clone(),
272        "azimuth (deg)" => azimuth_deg,
273        "elevation (deg)" => elevation_deg,
274        "range (km)" => range_km,
275        "range rate (km/s)" => range_rate_km_s,
276    )?;
277
278    // Finally, let's see when the spacecraft is visible, assuming 15 degrees minimum elevation.
279    let mask = aer_df
280        .column("elevation (deg)")?
281        .gt(&Column::Scalar(ScalarColumn::new(
282            "elevation mask (deg)".into(),
283            Scalar::new(DataType::Float64, AnyValue::Float64(15.0)),
284            offset_s.len(),
285        )))?;
286    let cubesat_visible = aer_df.filter(&mask)?;
287
288    println!("{cubesat_visible}");
289
290    Ok(())
291}
examples/04_lro_od/main.rs (line 157)
35fn main() -> Result<(), Box<dyn Error>> {
36    pel::init();
37
38    // ====================== //
39    // === ALMANAC SET UP === //
40    // ====================== //
41
42    // Dynamics models require planetary constants and ephemerides to be defined.
43    // Let's start by grabbing those by using ANISE's MetaAlmanac.
44
45    let data_folder: PathBuf = [env!("CARGO_MANIFEST_DIR"), "examples", "04_lro_od"]
46        .iter()
47        .collect();
48
49    let meta = data_folder.join("lro-dynamics.dhall");
50
51    // Load this ephem in the general Almanac we're using for this analysis.
52    let mut almanac = MetaAlmanac::new(meta.to_string_lossy().as_ref())
53        .map_err(Box::new)?
54        .process(true)
55        .map_err(Box::new)?;
56
57    let mut moon_pc = almanac.get_planetary_data_from_id(MOON).unwrap();
58    moon_pc.mu_km3_s2 = 4902.74987;
59    almanac.set_planetary_data_from_id(MOON, moon_pc).unwrap();
60
61    let mut earth = almanac.get_planetary_data_from_id(EARTH).unwrap();
62    earth.mu_km3_s2 = 398600.436;
63    almanac.set_planetary_data_from_id(EARTH, earth).unwrap();
64
65    // Save this new kernel for reuse.
66    // In an operational context, this would be part of the "Lock" process, and should not change throughout the mission.
67    almanac
68        .planetary_data
69        .values()
70        .next()
71        .unwrap()
72        .save_as(&data_folder.join("lro-specific.pca"), true)?;
73
74    // Lock the almanac (an Arc is a read only structure).
75    let almanac = Arc::new(almanac);
76
77    // Orbit determination requires a Trajectory structure, which can be saved as parquet file.
78    // In our case, the trajectory comes from the BSP file, so we need to build a Trajectory from the almanac directly.
79    // To query the Almanac, we need to build the LRO frame in the J2000 orientation in our case.
80    // Inspecting the LRO BSP in the ANISE GUI shows us that NASA has assigned ID -85 to LRO.
81    let lro_frame = Frame::from_ephem_j2000(-85);
82
83    // To build the trajectory we need to provide a spacecraft template.
84    let sc_template = Spacecraft::builder()
85        .mass(Mass::from_dry_and_prop_masses(1018.0, 900.0)) // Launch masses
86        .srp(SRPData {
87            // SRP configuration is arbitrary, but we will be estimating it anyway.
88            area_m2: 3.9 * 2.7,
89            coeff_reflectivity: 0.96,
90        })
91        .orbit(Orbit::zero(MOON_J2000)) // Setting a zero orbit here because it's just a template
92        .build();
93    // Now we can build the trajectory from the BSP file.
94    // We'll arbitrarily set the tracking arc to 24 hours with a five second time step.
95    let traj_as_flown = Traj::from_bsp(
96        lro_frame,
97        MOON_J2000,
98        almanac.clone(),
99        sc_template,
100        5.seconds(),
101        Some(Epoch::from_str("2024-01-01 00:00:00 UTC")?),
102        Some(Epoch::from_str("2024-01-02 00:00:00 UTC")?),
103        Aberration::LT,
104        Some("LRO".to_string()),
105    )?;
106
107    println!("{traj_as_flown}");
108
109    // ====================== //
110    // === MODEL MATCHING === //
111    // ====================== //
112
113    // Set up the spacecraft dynamics.
114
115    // Specify that the orbital dynamics must account for the graviational pull of the Earth and the Sun.
116    // The gravity of the Moon will also be accounted for since the spaceraft in a lunar orbit.
117    let mut orbital_dyn = OrbitalDynamics::point_masses(vec![EARTH, SUN, JUPITER_BARYCENTER]);
118
119    // We want to include the spherical harmonics, so let's download the gravitational data from the Nyx Cloud.
120    // We're using the GRAIL JGGRX model.
121    let mut jggrx_meta = MetaFile {
122        uri: "http://public-data.nyxspace.com/nyx/models/Luna_jggrx_1500e_sha.tab.gz".to_string(),
123        crc32: Some(0x6bcacda8), // Specifying the CRC32 avoids redownloading it if it's cached.
124    };
125    // And let's download it if we don't have it yet.
126    jggrx_meta.process(true)?;
127
128    // Build the spherical harmonics.
129    // The harmonics must be computed in the body fixed frame.
130    // We're using the long term prediction of the Moon principal axes frame.
131    let moon_pa_frame = MOON_PA_FRAME.with_orient(31008);
132    let sph_harmonics = Harmonics::from_stor(
133        almanac.frame_info(moon_pa_frame)?,
134        HarmonicsMem::from_shadr(&jggrx_meta.uri, 80, 80, true)?,
135    );
136
137    // Include the spherical harmonics into the orbital dynamics.
138    orbital_dyn.accel_models.push(sph_harmonics);
139
140    // We define the solar radiation pressure, using the default solar flux and accounting only
141    // for the eclipsing caused by the Earth and Moon.
142    // Note that by default, enabling the SolarPressure model will also enable the estimation of the coefficient of reflectivity.
143    let srp_dyn = SolarPressure::new(vec![EARTH_J2000, MOON_J2000], almanac.clone())?;
144
145    // Finalize setting up the dynamics, specifying the force models (orbital_dyn) separately from the
146    // acceleration models (SRP in this case). Use `from_models` to specify multiple accel models.
147    let dynamics = SpacecraftDynamics::from_model(orbital_dyn, srp_dyn);
148
149    println!("{dynamics}");
150
151    // Now we can build the propagator.
152    let setup = Propagator::default_dp78(dynamics.clone());
153
154    // For reference, let's build the trajectory with Nyx's models from that LRO state.
155    let (sim_final, traj_as_sim) = setup
156        .with(*traj_as_flown.first(), almanac.clone())
157        .until_epoch_with_traj(traj_as_flown.last().epoch())?;
158
159    println!("SIM INIT:  {:x}", traj_as_flown.first());
160    println!("SIM FINAL: {sim_final:x}");
161    // Compute RIC difference between SIM and LRO ephem
162    let sim_lro_delta = sim_final
163        .orbit
164        .ric_difference(&traj_as_flown.last().orbit)?;
165    println!("{traj_as_sim}");
166    println!(
167        "SIM v LRO - RIC Position (m): {:.3}",
168        sim_lro_delta.radius_km * 1e3
169    );
170    println!(
171        "SIM v LRO - RIC Velocity (m/s): {:.3}",
172        sim_lro_delta.velocity_km_s * 1e3
173    );
174
175    traj_as_sim.ric_diff_to_parquet(
176        &traj_as_flown,
177        "./data/04_output/04_lro_sim_truth_error.parquet",
178        ExportCfg::default(),
179    )?;
180
181    // ==================== //
182    // === OD SIMULATOR === //
183    // ==================== //
184
185    // After quite some time trying to exactly match the model, we still end up with an oscillatory difference on the order of 150 meters between the propagated state
186    // and the truth LRO state.
187
188    // Therefore, we will actually run an estimation from a dispersed LRO state.
189    // The sc_seed is the true LRO state from the BSP.
190    let sc_seed = *traj_as_flown.first();
191
192    // Load the Deep Space Network ground stations.
193    // Nyx allows you to build these at runtime but it's pretty static so we can just load them from YAML.
194    let ground_station_file: PathBuf = [
195        env!("CARGO_MANIFEST_DIR"),
196        "examples",
197        "04_lro_od",
198        "dsn-network.yaml",
199    ]
200    .iter()
201    .collect();
202
203    let devices = GroundStation::load_named(ground_station_file)?;
204
205    let mut proc_devices = devices.clone();
206
207    // Increase the noise in the devices to accept more measurements.
208    for gs in proc_devices.values_mut() {
209        if let Some(noise) = &mut gs
210            .stochastic_noises
211            .as_mut()
212            .unwrap()
213            .get_mut(&MeasurementType::Range)
214        {
215            *noise.white_noise.as_mut().unwrap() *= 3.0;
216        }
217    }
218
219    // Typical OD software requires that you specify your own tracking schedule or you'll have overlapping measurements.
220    // Nyx can build a tracking schedule for you based on the first station with access.
221    let trkconfg_yaml: PathBuf = [
222        env!("CARGO_MANIFEST_DIR"),
223        "examples",
224        "04_lro_od",
225        "tracking-cfg.yaml",
226    ]
227    .iter()
228    .collect();
229
230    let configs: BTreeMap<String, TrkConfig> = TrkConfig::load_named(trkconfg_yaml)?;
231
232    // Build the tracking arc simulation to generate a "standard measurement".
233    let mut trk = TrackingArcSim::<Spacecraft, GroundStation>::with_seed(
234        devices.clone(),
235        traj_as_flown.clone(),
236        configs,
237        123, // Set a seed for reproducibility
238    )?;
239
240    trk.build_schedule(almanac.clone())?;
241    let arc = trk.generate_measurements(almanac.clone())?;
242    // Save the simulated tracking data
243    arc.to_parquet_simple("./data/04_output/04_lro_simulated_tracking.parquet")?;
244
245    // We'll note that in our case, we have continuous coverage of LRO when the vehicle is not behind the Moon.
246    println!("{arc}");
247
248    // Now that we have simulated measurements, we'll run the orbit determination.
249
250    // ===================== //
251    // === OD ESTIMATION === //
252    // ===================== //
253
254    let sc = SpacecraftUncertainty::builder()
255        .nominal(sc_seed)
256        .frame(LocalFrame::RIC)
257        .x_km(0.5)
258        .y_km(0.5)
259        .z_km(0.5)
260        .vx_km_s(5e-3)
261        .vy_km_s(5e-3)
262        .vz_km_s(5e-3)
263        .build();
264
265    // Build the filter initial estimate, which we will reuse in the filter.
266    let mut initial_estimate = sc.to_estimate()?;
267    initial_estimate.covar *= 3.0;
268
269    println!("== FILTER STATE ==\n{sc_seed:x}\n{initial_estimate}");
270
271    // Build the SNC in the Moon J2000 frame, specified as a velocity noise over time.
272    let process_noise = ProcessNoise3D::from_velocity_km_s(
273        &[1e-10, 1e-10, 1e-10],
274        1 * Unit::Hour,
275        10 * Unit::Minute,
276        None,
277    );
278
279    println!("{process_noise}");
280
281    // We'll set up the OD process to reject measurements whose residuals are move than 3 sigmas away from what we expect.
282    let odp = SpacecraftKalmanOD::new(
283        setup,
284        KalmanVariant::ReferenceUpdate,
285        Some(ResidRejectCrit::default()),
286        proc_devices,
287        almanac.clone(),
288    )
289    .with_process_noise(process_noise);
290
291    let od_sol = odp.process_arc(initial_estimate, &arc)?;
292
293    let final_est = od_sol.estimates.last().unwrap();
294
295    println!("{final_est}");
296
297    let ric_err = traj_as_flown
298        .at(final_est.epoch())?
299        .orbit
300        .ric_difference(&final_est.orbital_state())?;
301    println!("== RIC at end ==");
302    println!("RIC Position (m): {:.3}", ric_err.radius_km * 1e3);
303    println!("RIC Velocity (m/s): {:.3}", ric_err.velocity_km_s * 1e3);
304
305    println!(
306        "Num residuals rejected: #{}",
307        od_sol.rejected_residuals().len()
308    );
309    println!(
310        "Percentage within +/-3: {}",
311        od_sol.residual_ratio_within_threshold(3.0).unwrap()
312    );
313    println!("Ratios normal? {}", od_sol.is_normal(None).unwrap());
314
315    od_sol.to_parquet(
316        "./data/04_output/04_lro_od_results.parquet",
317        ExportCfg::default(),
318    )?;
319
320    // Create the ephemeris
321    let ephem = od_sol.to_ephemeris("LRO rebuilt".to_string());
322    let ephem_start = ephem.start_epoch().unwrap();
323    let ephem_end = ephem.end_epoch().unwrap();
324    // Check that the covariance is PSD throughout the ephemeris by interpolating it.
325    for epoch in TimeSeries::inclusive(ephem_start, ephem_end, Unit::Minute * 5) {
326        ephem
327            .covar_at(
328                epoch,
329                anise::ephemerides::ephemeris::LocalFrame::RIC,
330                &almanac,
331            )
332            .unwrap_or_else(|e| panic!("covar not PSD at {epoch}: {e}"));
333    }
334    // Export as BSP!
335    ephem
336        .write_spice_bsp(-85, "./data/04_output/04_lro_rebuilt.bsp", None)
337        .expect("could not built BSP");
338    let new_almanac = Almanac::default()
339        .load("./data/04_output/04_lro_rebuilt.bsp")
340        .unwrap();
341    new_almanac.describe(None, None, None, None, None, None, None, None);
342    let (spk_start, spk_end) = new_almanac.spk_domain(-85).unwrap();
343
344    assert!((ephem_start - spk_start).abs() < Unit::Microsecond * 1);
345    assert!((ephem_end - spk_end).abs() < Unit::Microsecond * 1);
346
347    // In our case, we have the truth trajectory from NASA.
348    // So we can compute the RIC state difference between the real LRO ephem and what we've just estimated.
349    // Export the OD trajectory first.
350    let od_trajectory = od_sol.to_traj()?;
351    // Build the RIC difference.
352    od_trajectory.ric_diff_to_parquet(
353        &traj_as_flown,
354        "./data/04_output/04_lro_od_truth_error.parquet",
355        ExportCfg::default(),
356    )?;
357
358    Ok(())
359}
Source

pub fn single_step(&mut self) -> Result<(), PropagationError>

Take a single propagator step and emit the result on the TX channel (if enabled)

Source

pub fn latest_details(&self) -> IntegrationDetails

Copy the details of the latest integration step.

Auto Trait Implementations§

§

impl<'a, D> Freeze for PropInstance<'a, D>

§

impl<'a, D> !RefUnwindSafe for PropInstance<'a, D>

§

impl<'a, D> !Send for PropInstance<'a, D>

§

impl<'a, D> !Sync for PropInstance<'a, D>

§

impl<'a, D> !Unpin for PropInstance<'a, D>

§

impl<'a, D> !UnwindSafe for PropInstance<'a, D>

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
§

impl<SS, SP> SupersetOf<SS> for SP
where SS: SubsetOf<SP>,

§

fn to_subset(&self) -> Option<SS>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more
§

fn is_in_subset(&self) -> bool

Checks if self is actually part of its subset T (and can be converted to it).
§

fn to_subset_unchecked(&self) -> SS

Use with care! Same as self.to_subset but without any property checks. Always succeeds.
§

fn from_subset(element: &SS) -> SP

The inclusion map: converts self to the equivalent element of its superset.
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T> Allocation for T
where T: RefUnwindSafe + Send + Sync,